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This research aims to develop a cloud-based system utilizing the You Only
Look Once version 8 (YOLOv8) model for assessing road surface quality. The
system is designed to address critical road maintenance challenges and the
need for high accuracy and fast response road surface quality monitoring.
Data acquisition involved images from the Internet, dashcams, and
smartphones, with subsequent processing through advanced image
techniques. The YOLOv8 model demonstrated e�cacy in detecting various
road surface defects, achieving a precision of 0.457 and a recall of 0.486.
While exhibiting potential in identifying patches and potholes, further
re�nement is required for crack detection. The model’s processing speed,
with 9.7 milliseconds per image, indicates its capability for near real-time
analysis. Finally, the model is deployed on cloud infrastructure hosted by
Digital Ocean to provide scalability and accessibility. The cloud-based system
enables users to upload videos for automated defect detection and o�ers
downloadable results, fostering collaborative initiatives in road surface
monitoring. While the model shows promise, particularly in detecting
patches and potholes, crack detection has room for improvement. Future
work could focus on enhancing the model’s performance for this challenging
defect class.

1. Introduction
The inconvenience and uncertainty of public
transportation in Malaysia cause many citizens to rely
on driving. However, the condition of the roads they
traverse is a critical factor that impacts their safety.
Maintaining high-quality road surfaces is essential
for ensuring road-user safety, facilitating economic
activities, and providing access to essential services.
Recognizing this, the Malaysian government must
prioritize addressing road surface quality to mitigate
the risks associated with poor infrastructure.

The Ministry of Transport Malaysia (MOT) reports
that around 600,000 road accident cases have been

recorded throughout 2023[1]. In that time, 6,443 lives
were lost to road accidents, which translates to an

average of 18 deaths every day last year[2]. A study by
the Malaysian Institute of Road Safety Research
(MIROS) found that road accidents were mainly
caused by human behaviour, followed by the design,
condition of road infrastructure, and vehicles’

condition[3]. This study shows that poor road
conditions signi�cantly contribute to road accidents,
although they are not the leading cause. There is still a
potential to reduce the number of road accidents and
injuries by improving road surfaces, thereby fostering
sustainable cities and communities.

Understanding the nature of road surface defects is
the �rst step toward addressing this issue. According

to Rolt et al.[4], road surface defects pose signi�cant
challenges to the durability and safety of

transportation infrastructure[4]. For instance,
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potholes, which are depressions in the road surface,
form due to factors such as water in�ltration, freezing
and thawing cycles, and tra�c wear and tear. These
defects can cause vehicle damage and present safety
hazards for drivers. Another common defect, fatigue
cracking, often referred to as crocodile cracking,
emerges from the continuous pressure exerted by
heavy vehicles, combined with temperature changes
and natural aging. These cracks resemble the skin of a
crocodile and, if not addressed promptly, can
intertwine and exacerbate structural vulnerabilities in
the roadway.

To tackle these issues, modern technology o�ers

promising solutions. Emara et al.[5]  highlighted the
importance of detecting and assessing road surface
conditions to ensure the safety and e�ciency of
transportation networks. The rise of smartphones and
their built-in sensors has led to innovative methods
like mobile crowdsensing (MCS) for evaluating road
surface quality. This approach leverages the
widespread use of smartphones to collect data on road
conditions, o�ering a cost-e�ective and scalable

solution[5]. The future of road surface quality
assessment lies in integrating advanced technologies.
Lasers, cameras, sensors, smartphones, and cloud
storage services are revolutionizing how we monitor
road conditions.

Although the initial cost of these systems may be
high, their bene�ts in terms of accuracy and coverage
make them a worthwhile investment. A cloud-based
road surface quality assessment system can be
developed by harnessing the computing power and
various sensors in smartphones and dashcams,
addressing the growing need for e�cient monitoring.
The primary goal of this study is to design a cost-
e�ective and highly accurate road surface quality
assessment system that e�ectively monitors road
damage and ultimately enhances road user safety. By
leveraging deep learning and cloud-based technology,
such a system can provide real-time insights and
timely interventions, ensuring safer and more reliable
transportation infrastructure for all.

2. Methodology
Figure 1 illustrates the framework of the research
study related to the cloud-based road surface quality
assessment. Data for this study was collected from
site visits and the internet, such as Google Images.
These images were pre-processed and partitioned
into test data and train data. A model was then
developed based on the train data. This model was

evaluated using the model’s predicted value and test
data through cross-validation. If the results were
insigni�cant, the process returned to the model
development stage for re�nement. Once the model
evaluation was satisfactory, the model was deployed
in the Digital Ocean cloud service.

Figure 1. Research Framework

3. Result
In this research, Python was used in the Jupyter
Notebook to run all the image preprocessing and
analysis. Figure 2 shows the video recorded by using
dashcam.

Figure 2. Video Recorded using Dashcam

Before model development, video and image
preprocessing were performed. First, frames were
extracted from the video and resized to 640*640
pixels. Robo�ow was implemented to perform image
preprocessing, such as annotation, resizing,
augmentation, and data partitioning. After
completing all the preprocessing, this dataset was
exported to a Jupyter Notebook environment for
model training. Model used for this study is YOLOv8.
YOLOv8 was chosen because of its state-of-the-art
(SOTA) object detection model, which balances speed,
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accuracy, and �exibility[6]. Building on its
predecessors in the YOLO series, YOLOv8 introduces
architectural advancements that improve precision
and recall, enabling highly accurate detections even in
complex environments. It maintains the hallmark
real-time inference speed of YOLO models, making it
ideal for time-sensitive applications like autonomous
vehicles and video surveillance. The model's
versatility is another key strength, as it supports
object detection, instance segmentation, and image
classi�cation within a uni�ed framework. With
multiple model sizes available (e.g., nano, small,
medium, large), YOLOv8 is scalable for deployment on
devices ranging from resource-constrained edge
devices to powerful GPUs.

For this study, the number of epochs for model
development was 200, and the batch size was 16. By
default, the model training will trigger early stopping
if there is no improvement in the last 50 epochs to
avoid over�tting; thus, this model stopped at epoch
153. The best result was obtained at epoch 103. Overall,
for 263 images and 1180 instances, the model achieved
a precision of 0.457, a recall of 0.486, a mAP50 of
0.441, and a mAP50-95 of 0.237. Speci�cally, for the
“crack” class, which had 711 instances, the model
demonstrated lower performance with a precision of
0.2, recall of 0.254, mAP50 of 0.136, and mAP50-95 of
0.0373. In contrast, the “patch” class, with 113
instances, showed the highest performance, achieving
a precision of 0.651, recall of 0.743, mAP50 of 0.703,
and mAP50-95 of 0.504. The “fatigue” class, with 242
instances, had moderate performance, with a
precision of 0.415, recall of 0.471, mAP50 of 0.409,
and mAP50-95 of 0.154. Lastly, the “pothole” class,
comprising 114 instances, performed reasonably well
with a precision of 0.564, recall of 0.476, mAP50 of

0.515, and mAP50-95 of 0.251. These metrics indicate
that while the model performs reasonably well in
detecting “patch” and “pothole,” it struggles more
with identifying “crack,” highlighting areas for
potential improvement.

The model’s speed is also broken down as follows: it
takes 0.7 milliseconds (ms) for preprocessing, 7.5 ms
for inference, 0.0 ms for loss computation, and 1.5 ms
for postprocessing per image. This breakdown
underscores that the model is optimized for real-time
or near-real-time analysis, with the majority of the
processing time dedicated to inference, the task of
detecting objects in the image. Preprocessing and
postprocessing times are relatively minimal,
suggesting that the model e�ciently prepares the
data for analysis and processes the results. The 0.0 ms
loss time con�rms that loss computation, typically
used during training to optimize the model, is not a
factor during the evaluation phase. This e�cient
processing is a key feature for road anomaly detection
in dashcam footage applications, instilling con�dence
in the model’s applicability.

A precision versus recall (PR) curve is called out to
illustrate the trade-o� between precision and recall
for di�erent thresholds. A perfect PR curve would
achieve a precision of 1 and a recall of 1, which are at
the top right of the plot. For instance, the “pothole”
class achieves high precision but at the cost of lower
recall. This means the model is very accurate when
predicting a pothole, but it might miss some actual
one. mAP is a metric that summarizes the PR curve by
averaging the precision across di�erent recall
thresholds. The value “0.632 mAP@0.5” indicates the
mean Average Precision (mAP) at a recall level of 0.5,
as shown in Figure 3.
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Figure 3. Precision versus Recall Curve

Figure 4 illustrates the training and validation
performance of an object detection model. The
training loss curves for box loss, classi�cation loss,
and distribution focal loss show a steady decrease
over epochs, indicating e�ective learning during the
training phase. Similarly, the precision and recall
metrics improve consistently before stabilizing,
re�ecting the model’s ability to correctly identify
positive cases while reducing false positives and
capturing more true positives over time.

For the validation metrics, the losses decrease initially
but exhibit some �uctuations, particularly the box
loss, which may suggest potential over�tting or
challenges in generalizing to unseen data in later
epochs. However, the mAP metrics (mean Average
Precision at 50% IoU and across IoUs from 50% to
95%) improve and plateau, highlighting strong
detection accuracy and consistency. Despite the
validation loss oscillations, the overall performance
trends indicate the model is achieving decent results.
To further enhance the model, it may be bene�cial to
investigate the causes of validation loss �uctuations
and apply regularization techniques such as dropout
or data augmentation. Additionally, using early
stopping could help mitigate over�tting. Finally,

testing the model on a separate dataset would con�rm
its ability to generalize e�ectively.

Figure 4. Overall Results for YOLOv8 Model Training

The model has been deployed on cloud infrastructure
hosted by Digital Ocean to ensure scalability and
accessibility. Users need to enter their username and
password to access the system. Once logged in, they
can upload videos to the cloud. The deployed model
will then begin detecting potholes, cracks, fatigue,
and patches in the videos. After detection, users can
download the results, which will include the latitude
and longitude of the road defects stored in a CSV �le,
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as well as the frames of the detections stored in a ZIP
�le. To export the results, users can click on the
export button for speci�c video �les.

4. Conclusion
The study introduces a cloud-based method for
assessing road surface quality, o�ering the potential
to signi�cantly reduce the time required for road
defect detection, improve accuracy, and lower
associated costs. By utilizing GIS technology, defect
locations are accurately recorded using latitude and
longitude coordinates, minimizing errors in the
process. The research presents a deep learning model
capable of accurately detecting and classifying road
surface defects such as cracks, patches, potholes, and
fatigue. Model performance was assessed based on
accuracy, accuracy per epoch, and loss per epoch, with
the YOLOv8 framework employed to identify and
classify road surface defects. Video data was processed
by extracting frames and converting them to JPG
format for input. The sample data, labelled with the
correct defect types using Robo�ow, was utilized for
model training to ensure accuracy and reliability.

The dataset for this research comprised 4,000 images
collected from various sources, including Google, and
on-site images from the Johor area. Preprocessing of
the images involved enhancement, resizing, and
annotation through Robo�ow, which was pivotal in
standardizing the images, ensuring accurate
annotations, and addressing class imbalance issues.
Once the pre-trained model was developed, it was
applied to detect and classify road surface defects in
real-world scenarios. The model’s performance was
evaluated using the F1-score, recall-precision graph,
and confusion matrix. The �ndings revealed that
YOLOv8 demonstrated high accuracy in detecting and
classifying defects for the "patch," "fatigue," and
"potholes" classes. However, its performance was less
accurate for the "crack" class, displaying lower
accuracy in detection and classi�cation.

This research stands to bene�t local government
departments and enhance public safety by enabling
timely and reliable identi�cation of road surface

defects, subsequently reducing the time required for
maintenance and repairs. This improvement could
signi�cantly enhance road safety, minimizing the
likelihood of accidents due to undetected defects.
Furthermore, by improving overall road conditions,
the research enhances the safety and comfort of
drivers and passengers, potentially reducing vehicle
damage and associated repair costs for the public.
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