
Review of: "Channeling the Flow — A Metaphor for
Computer Programs"

Valeriy Mygal1

1 National Aerospace University Kharkov Aviation Institute

Potential competing interests: No potential competing interests to declare.

Dear Attila Egri-Nagy

 The article provides interesting analogies, comparisons, and visions of problems, which truly enrich the experience of

computer programming and deepen its understanding. Therefore, the main goal of the work has been achieved. It is

important to note that the author develops three ideas, the complementarity of which has heuristic and cognitive value.

 The first idea is the relationship between dynamics and statics. Shifting the perspective from the creation of a computing

process to the formation of an existing one, the author views software as a static entity. This philosophical approach

allows us to focus on the dynamic aspect and draw attention to the fact that by running code on program launch, we limit

capabilities and reduce the degree of freedom. The author imagines limitation as an attempt to control something that is

already in motion. There are two interrelated aspects of calculations here. On the one hand, the dynamics of the physical

system matter, and on the other hand, the final result (software) determines the static essence. Therefore, a program is a

set of restrictions that act as barriers to a previously existing aimless process, and programming is the ability to correctly

place obstacles or the “art” of removing unnecessary things.

 In my opinion, the choice of the main example is good - artificial waterways. This is a visual and physical example of how

we think metaphorically about programming.

 Conceptual metaphors organically organize our everyday human experience, and the author uses these cognitive tools

explicitly as tools for transferring knowledge between different domains and searches for a functor (Conservation of

Structure) between two categories by studying the extent to which the internal structure and dynamics of one domain

correspond to another domain.

The second idea is to expand the concept of universality through everyday experience, because there is mathematical

evidence to establish the equivalence of different models of calculations and this universality. If a computer can do

something computable, then there is no directionality in computing. After all, program execution is also a form of

movement: a running processor takes a kind of walk in the space of dynamic states of the computer, which is determined

by the totality of all possible memory configurations and internal registers of the processor. Technically, the dynamic state

space would be a graph with cycles, but we can model it using a tree for input-output computations that ensure steady

progress toward achieving results. This tree structure, with its extremely high branching ratio, can represent all possible

processor state transition dynamics starting from a given reset state.

Qeios, CC-BY 4.0 · Review, June 6, 2024

Qeios ID: 077UZ2 · https://doi.org/10.32388/077UZ2 1/2

https://www.qeios.com/profile/22835

The second idea is to expand the concept of universality through everyday experience, because there is mathematical

evidence to establish the equivalence of different models of calculations and this universality. If a computer can do

something computable, then there is no directionality in computing. After all, program execution is also a form of

movement: a running processor takes a kind of walk in the space of dynamic states of the computer, which is determined

by the totality of all possible memory configurations and internal registers of the processor. Technically, the dynamic state

space would be a graph with cycles, but we can model it using a tree for input-output computations that ensure steady

progress toward achieving results. This tree structure, with its extremely high branching ratio, can represent all possible

processor state transition dynamics starting from a given reset state.

The third idea is the complementarity of inversion and cognitive metaphor. The author writes, “We used channels,

engineering artifacts, as a metaphor for programming. However, the cognitive metaphor can be reversed. Civil

engineering precedes software engineering, and nothing prevents us from using the latter to understand the former,

reversing the chronological order. Perhaps someone trained as a programmer used their knowledge of computers to

project it onto the physical world to understand engineering. Thus, we have the metaphor of engineering as programming

the physical world."

 In programming, optimization is aimed at removing unnecessary calculations or trying to reduce the amount of data

transferred.

 When the abstract computational meets the physical world, the general principle of efficiency is important.

 The author points out that “Given the similarities between design in the physical world and software development in the

abstract, there is an interesting middle ground between virtual worlds. Sandbox-style video games like Minecraft define a

virtual world with its own “physical” laws. Players use these laws by placing blocks in a discrete world."

 Overall, the article is quite well structured and contains three new ideas. The conclusions are clear and consistent with

the main text. The manuscript is written clearly and may be of interest to researchers in this field, and I recommend

publishing it in its current form. The article is a good approach for teaching and learning basic programming.

 When developing new ideas, I recommend that the author use heuristic and cognitive metamodeling to improve

understanding and reinforce key concepts. I note that cognitive visualization effectively complements the text and is a

visual anchor for abstract ideas and improves the overall learning process (see https://doi.org/10.26855/er.2022.04.001.),

and also promotes creative activity (https://doi.org/10.32388/GIJ3RI)

 Sincerely, V. Mygal.

Qeios, CC-BY 4.0 · Review, June 6, 2024

Qeios ID: 077UZ2 · https://doi.org/10.32388/077UZ2 2/2

https://doi.org/10.26855/er.2022.04.001
https://doi.org/10.32388/GIJ3RI

	Review of: "Channeling the Flow — A Metaphor for Computer Programs"

