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A Markov chain (MC) is a mathematical model used to describe a system where the probability of

moving to the next state depends solely on the current state and not on the sequence of the

preceding states. A Markov blanket (MB) for a node includes its parents, children and other parents

of its children, capturing the minimal set of nodes required to make the node conditionally

independent from the rest of the network. We examined EEG data from healthy individuals to assess

MC and MB connectivity patterns associated with two representative electrodes. The electrode FP1,

associated with cognitive functions, displayed connections predominantly with frontal and central

regions. The electrode C3, located in the primary motor cortex, displayed connections with bilateral

motor and parietal regions. The two electrodes had shared connections, highlighting integration

between cognitive and motor networks, while also retaining distinct connections that underscored

their specialized roles and functions. Temporal analysis demonstrated signi�cant MB �uctuations

across time segments, highlighting phases of increased neural reorganization and stability. Entropy

analysis showed signi�cant variability in MC and MB dynamics over time. FP1 exhibited greater

entropy variability, re�ecting its neural �exibility and involvement in cognitive processes, while C3

showed more stable entropy patterns, aligning with its motor-related functionality. We demonstrate

the utility of MC and MBs in capturing the dynamic complexity of the nervous activity, underscoring

the distinct and overlapping roles of brain regions in balancing dynamic �exibility and functional

specialization. Our �ndings have implications for cognitive neuroscience and brain-computer

interface design.
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Introduction

The human brain is a highly dynamic and interconnected system, characterized by complex

interactions between neural regions[1][2][3]. Electroencephalography (EEG) provides a powerful tool to

assess the temporal and spatial patterns of brain activity. Yet, analyzing EEG data requires robust

methods capable of capturing both the dynamic changes and the underlying relationships between

brain regions. Although EEG analysis techniques like Fourier transforms and time-frequency methods

provide valuable insights into the spectral and temporal characteristics of neuronal signals, they may

fall short in capturing the dynamic transitions between neural states[4][5].

One promising approach involves the application of Markov chains (MC) and Markov blanket (MB)

analysis. It provides a mathematical framework for the assessment of conditional dependencies,

functional connectivity and temporal evolution of brain activity[6]. This analysis models the

probabilistic dynamics of state transitions, where the transition between states is governed by de�ned

probabilities. The likelihood of moving to the next state depends solely on the current state and not on

prior sequences[7][8]. Formally, a Markov chain consists of a set of states and a transition probability

matrix, each element of the matrix representing the probability of transitioning from one state to

another in a single step (Aghababaei Samani, 2022). If the states are denoted as S1 , S2,…, Sn, then the

element Pij   represents the probability of transitioning from state Si to state Sj  . The sum of probabilities

for all transitions from a given state is 1, ensuring a valid probability distribution[9]. The simplicity

and versatility of MB and MCs make them a foundational tool in stochastic modeling, providing

insights into processes governed by randomness and transition dynamics. Applications of MCs and

MBs span diverse �elds, including physics, computer science, biology, medicine and economics[10][11]

[12]. They can be used to model weather patterns, stock market �uctuations, molecular interactions

and even human language in text prediction systems[13]. These methods have also been applied in

neuroscience to evaluate interactions between internal and external components of a system such as

the brain, providing insights, e.g., into the dynamic interplay between active inference and the

environment[14][15]. Based upon the canonical micro-circuitry employed in empirical studies, MB was

also used to assess brain architectures at multiple scales, enabling the partitioning of neural systems

into single neurons, brain regions and brain-wide networks[16].

When MCs are applied to EEG dynamics, each state represents a distinct con�guration of neural

activity and the transitions capture the evolving patterns of brain connectivity over time. In an EEG
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context, MB analysis identi�es the minimal set of variables (i.e., the minimal number of electrodes)

that render a speci�c variable conditionally independent from the rest of the network. This framework

enables researchers to simplify EEG networks by reducing their complexity while retaining the

essential dependencies and interactions critical for understanding neural dynamics. This implies that

the EEG activity of a speci�c electrode can be e�ectively explained by its MB, which encompasses its

direct interactions within the network, including its parents, children and co-parents.

This study aimed to investigate EEG dynamics by integrating MC analysis and MBs. By focusing on the

two speci�c electrodes FP1 and C3, we explored how connectivity di�ers between cognitive and motor

regions. We showed that, by applying MC analysis to EEG data, it is feasible to investigate patterns of

neural state transitions, their temporal dependencies and their potential relevance to cognitive

processes. Further, temporal segmentation of EEG data enabled the examination of how microstates

evolve over time, uncovering periods of stability interspersed with phases of reorganization. By

comparing the average entropy across electrodes, we also identi�ed regional di�erences in brain

dynamics. We conclude that the combination of MB and MC analysis and temporal entropy

calculations might provide a novel framework for investigating the complexity and variability of

neural interactions.

Methods

Participants and EEG Data Acquisition. EEG data were collected from ten right-handed healthy

volunteers (mean age: 20.1 years; SD = 1.1; range = 18–22 years; males: 5). For details regarding the

patients and the EEG techniques used in this study, refer to Jaušovec and Jaušovec[17] and Tozzi et al.

[18]. Signals were recorded using a 64-channel EEG system, following standard electrode placement

guidelines (10-20 system). The data were preprocessed to remove artifacts such as eye blinks and

muscle movements using independent component analysis and band-pass �ltering (0.5-50 Hz).

Markov chain and Markov blanket analysis. The MC analysis of EEG data started with the de�nition of

the state space, which represents the set of all possible con�gurations of neural activity. States were

determined using k-means clustering applied to features extracted from short time windows of the

EEG signals, including power spectral density and signal amplitudes. Next, we estimated the state

transition matrix to capture the probabilities of transitioning from one state to another. To enhance

robustness, the probabilities were computed separately for di�erent datasets and averaged across

participants. Functional connectivity among electrodes was examined by analyzing the co-occurrence
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of states across EEG channels. To identify MBs in EEG data, an analysis of conditional dependencies

among the EEG channels was performed, with each electrode treated as a node in a Bayesian network.

The MB for a target node included its parents, children and other parents of its children, capturing the

minimal set of nodes required to make the target node conditionally independent of the rest. Two

selected representative EEG channels, namely FP1 and C3, were chosen for causal analysis. The

selection of the two channels was based on their well-established roles in executive

functions/decision-making processes for FP1 and in motor planning/execution for C3[19][20]. The

Graphical Lasso algorithm was then employed, i.e., a regularized covariance estimation technique that

infers sparse precision matrices[21][22]. This method computes statistically signi�cant partial

correlations among variables, enabling the identi�cation of direct connections.

Dynamics. To compare the MB dynamics for FP1 and C3, three dynamical metrics were analyzed,

namely MB size, shared/unique connections and network centrality. The size of the MB, determined

by the number of electrodes it encompassed, re�ected the degree of localized functional dependencies

within the network. A larger MB suggested broader integration with surrounding brain regions,

pointing to more extensive involvement in neural processes. Our analysis also quanti�ed the extent of

shared connections involving overlapping electrodes, highlighting potential cross-functional

integration between regions associated with cognitive and motor functions. Conversely, the

examination of unique connections revealed electrodes exclusive to the MB of either FP1 or C3,

providing insights into their functional specialization. Network centrality measures such as degree

centrality assessed the relative importance of nodes within the MBs. Nodes with high centrality in the

FP1 network likely represent core hubs for cognitive control, whereas those in the C3 network may

indicate key regions essential for motor coordination.

Temporal changes in connectivity. To analyze temporal changes in connectivity, the MBs evolution

over time was explored using segmented EEG recordings. This approach revealed how connectivity

patterns shifted dynamically, o�ering insights into neural processes and adaptability during di�erent

time intervals. At �rst, the EEG data were segmented into discrete time windows. Each dataset was

divided into 1-second non-overlapping intervals, providing a temporal resolution that balanced

detailed granularity with computational e�ciency. Next, MB analysis was conducted on each time

segment for the two selected electrodes FP1 and C3.

Entropy. Conditional dependencies, i.e., MB membership, were combined with information-theoretic

measures, i.e., entropy[23]. The entropy within a MB quanti�ed the uncertainty or diversity of
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information exchanged between a target electrode and the local network of its immediate neighbors

within localized brain regions[24]. The reduction in uncertainty represents how e�ciently the activity

of a node is explained by its MB, quanti�ed as

where H(X) is the entropy of the target node and H(X|MB) is the conditional entropy given its MB.

The entropy calculation was derived from the variability of activity over time among the electrodes

within the MB. The EEG time-series data were segmented into �xed-length time windows, each

segment consisting of 1000 data points with no overlap between successive windows. The activity

(signal amplitude) of the constituent electrodes for each identi�ed MB was extracted for the speci�ed

time segment. Subsequently, the variability of each electrode’s activity within the MB was analysed to

estimate its relative contribution to the overall variability. Variance was calculated for each electrode

and a probability distribution was created by normalizing these variances. The normalized variance

for each electrode was determined by dividing its individual variance by the total variance summed

across all electrodes within the MB. Then, Shannon entropy was computed from this probability

distribution to measure the uncertainty or diversity of variability within the MB.

Higher entropy within a MB indicated more evenly distributed activity among the electrodes,

suggesting dynamic and �exible interactions. In turn, lower entropy suggested predictable

interactions, pointing towards stable or rigid connectivity patterns, dominance by fewer electrodes,

more specialized or stable interactions.

Statistics. Chi-squared tests and Fisher’s exact tests were used to assess statistically signi�cant

di�erences in frequencies among electrodes. Statistical tests such as t-tests or Mann-Whitney U tests

were used to analyze transition matrices, connectivity patterns and interaction strengths within the

MBs of FP1 and C3, o�ering insights into their distinct and overlapping roles in neural networks.

Graphical rendering. The direct connections between the two electrodes FP1 and C3 were illustrated by

network graphs visualized over a 2D schematic of the standard 10–20 EEG electrode system. Line

plots, bar plots or heatmaps provided insights in connectivity changes, transient connections and

stable patterns persisting across time.

Software and Tools. All analyses were conducted using Python (v3.8) with libraries including NumPy,

Pandas, SciPy and NetworkX for numerical computations, data manipulation, statistical testing and

network visualization. Preprocessing of EEG data was performed using MNE-Python. Graphical Lasso

(X) − H(X|MB),
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was implemented using the sklearn.covariance module. Visualizations of electrode mountings and MB

networks were generated using Matplotlib and NetworkX.

Results

The Markov blankets identi�ed through Graphical Lasso unveiled distinct connectivity patterns for

the target electrodes FP1 and C3, underscoring the distinct functional networks associated with the

two electrodes and the speci�city of MB connectivity in re�ecting neural processes (Figure 1). For FP1,

a frontal electrode associated with cognitive functions, MB predominantly included connections with

neighboring frontal and central regions such as FP2, F3 and FZ, which aligned with the functional

signi�cance of FP1 in executive functions and decision-making processes. In contrast, C3, located in

the primary motor cortex, exhibited a MB encompassing bilateral motor regions such as C4 and CZ

and parietal areas such as P3, consistent with the well-established role of C3 in motor planning and

execution. These �ndings re�ect the functional specialization of these two regions, with FP1

supporting cognitive integration and C3 focusing on sensorimotor coordination.

Figure 1. Markov blanket connectivity patterns for the electrodes FP1 and C3. The red nodes represent the

EEG electrodes that are part of the respective Markov blankets for FP1 and C3. The blue edges denote

conditional dependencies between FP1, C3 and their associated electrodes, depicted as signi�cant partial

correlations derived from the precision matrix.
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Dynamics, temporal analysis, entropy. A comprehensive analysis of the three dynamical metrics (i.e.,

MB size, shared/unique connections and network centrality) provided a detailed understanding of

functional dynamics and integration within broader brain systems, demonstrating a balance between

integration and specialization (Figure 2A). FP1’s unique connections were linked to cognitive

processes such as executive functioning and decision-making, while C3’s unique connections

emphasized its role in motor planning and execution. The size of the MB showed that FP1 had 13

connections, and C3 had 12 connections, pointing towards comparable levels of localized functional

dependencies. Eight electrodes were shared between FP1 and C3, namely FP2, T4, FZ, O1, P3, F7, T3

and F3. This overlap highlighted functional integration between cognitive regions in the frontal lobe

and motor regions in the central areas, suggesting interconnected processes. The analysis also

revealed unique connections for each electrode. FP1 had �ve unique connections, namely C3, F4, T5,

PZ and T6, which pointed to its role in cognitive functions. In contrast, C3 had four unique

connections, namely C4, F8, CZ and FP1, emphasizing its specialization in motor planning and

execution.

Notable variability in the number of connections was found over time for both FP1 and C3, re�ecting

dynamic shifts in localized functional dependencies (Figure 2B). This variability suggested that the

neural activity associated with the two electrodes was in�uenced by �uctuations in neural states.

Additionally, certain time windows exhibited consistent connectivity patterns re�ecting stable neural

activity, while other time windows displayed signi�cant variability, potentially corresponding to

periods of transitions between distinct neuronal states.

Temporal entropy analysis showed signi�cant variability in MB dynamics over time, underscoring the

specialized functional roles of these electrodes (Figure 2C). For FP1, entropy demonstrated higher

variability, with peaks indicating periods of dynamic reorganization. In contrast, C3 exhibited more

stable entropy patterns, re�ecting its consistent role in motor output. Over time, certain segments

showed peaks in entropy, indicating periods of increased variability, potential network reorganization

and adaptive changes in the underlying neural processes. During the initial time segments, both

electrodes exhibited lower entropy values, indicating a more stable and predictable neural network

con�guration with limited variability in their MB activity.
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Figure 2. Markov Blanket analysis of the two electrodes FP1 and C3. Figure 2A. Comparison of the Markov

Blanket dynamics of FP1 and C3. The shared connections underscore the collaborative interaction between

cognitive and motor regions, while the unique connections re�ect the distinct functional roles of FP1 in

cognitive processing and C3 in motor coordination. Figure 2B. Temporal changes in Markov blankets

connectivity. The line plot illustrates the temporal variations in the number of connections, representing

the size of the Markov blankets, across di�erent time segments. Figure 2C. Entropy dynamics of Markov

blankets over time. The line plot illustrates the entropy dynamics of FP1 and C3 across various time

segments. Frontal regions displayed higher average entropy compared to occipital and motor regions,

suggesting greater neural �exibility and integration in cognitive areas.

Conclusions

The application of MC and MB analysis to EEG traces provides a unique perspective to assess the

temporal dynamics of the brain activity. Its adaptability extends to multimodal data, enhancing its

utility across diverse research and clinical contexts. Graphical Lasso, used to estimate conditional

dependencies and di�erences in connectivity patterns, is computationally e�cient for high-

dimensional data, making it well-suited for EEG datasets. By reducing the complexity of EEG

networks to a minimal set of functionally relevant connections, the MC and MB approach enables

focused analyses of localized dynamics. Temporal segmentation allows tracking changes in

connectivity and entropy over time, capturing state transitions and moments of neural

reorganization. Connectivity variability in EEG MBs may reveal critical aspects of neural dynamics.

High variability points towards a �exible system capable of shifting between states or con�gurations

like task engagement and cognitive load, whereas low variability suggests stability, bene�cial for

sustained attention or repetitive tasks. These patterns also underscore the interplay between

functional segregation and integration in the brain. Peaks in connectivity variability likely represent

moments of heightened integration, while troughs indicate functional segregation where regions

operate independently to perform specialized tasks.

Entropy measures within MBs quantify variability and uncertainty, providing insights into neural

�exibility and stability. Higher entropy in frontal regions suggests diverse interactions supporting

cognitive tasks like attention and decision-making, while lower entropy in motor areas suggests

specialized, predictable interactions essential for precise motor control. Entropy also highlights
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transitions between cognitive states, with increasing entropy signaling reorganization pointing

towards sustained task-speci�c processing. Contributions of individual MBs to global network

entropy link local dynamics to broader organizational principles, enhancing understanding of the

brain's information-theoretic properties. MB provides a way to study limited areas of the brain. For

instance, the MB of electrode C3, critical for sensorimotor functions, provides signi�cant insights into

the network dynamics and functional connectivity of the primary motor cortex. The MB of the

electrode C3 encompasses nodes like C4, F3 and CZ, underscoring interactions related to motor

planning, execution and bilateral coordination. Also, connections to regions like P3 and O1 suggest

sensory feedback integration and visuomotor processing. Enhanced connectivity within the MB may

relate to advanced motor skills, whereas aberrant patterns could suggest impairments.

The localized dynamics detected by the graph-based nature of MC and MBs provide a foundation for

targeted analyses, facilitating applications in neuroscience and clinical contexts. For brain-computer

interfaces (BCIs) this is particularly valuable, as C3 often serves as a critical node for decoding motor

intentions[25]. MBs play a pivotal role in BCIs by structuring and optimizing feature selection from

high-dimensional EEG data[26]. A MB represents the minimal set of variables needed to describe the

target electrode’s activity, enabling BCIs to focus on the most relevant connections while avoiding

redundant or noisy inputs. This e�ciency enhances robustness, training data requirements,

computational performance and decoding accuracy, particularly in motor BCIs, where electrodes like

C3 and C4 are crucial for predicting motor intentions, and in cognitive BCIs, where electrodes such as

FP1 and FZ are key for monitoring attention or mental workload[27][28]. By focusing on the most

informative features, BCIs can monitor changes in C3’s MB during motor tasks to re�ne control or

provide neurofeedback to train users in modulating connectivity. Beyond EEG, MB analysis might

extend to multimodal BCIs, integrating EEG with signals like fMRI or EMG to identify cross-modal

dependencies.

Despite its advantages, the MC and MB analysis has limitations. The accuracy of identifying MBs

depends on statistical models like Graphical Lasso which are sensitive to noise and parameter

selection[29]. EEG’s inherent noisiness and susceptibility to artifacts can a�ect results. The method

primarily relies on linear relationships, potentially overlooking nonlinear dynamics crucial to brain

connectivity. Still, temporal segmentation introduces challenges in selecting appropriate window

sizes, in�uencing resolution and interpretation. Individual variability in brain anatomy and network

organization also complicates generalizations. With a sample size of ten participants, our �ndings
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may lack broader applicability. Further, entropy calculations, while insightful, may not fully capture

higher-order network properties or complex information transfer. Addressing these limitations

through nonlinear modeling, larger samples and multimodal data integration could enhance

robustness and interpretability.

In conclusion, Markov chains and Markov blankets provide a powerful framework for investigating

EEG dynamics, uncovering patterns of state transitions and their modulation by speci�c demands.

This approach reveals the dynamic complexity of brain activity, o�ering localized and temporal

insights into neural connectivity. Our �ndings have implications for the assessment of functional

specialization, cognitive di�erences and clinical requirements, advancing both neuroscience research

and technologies like BCIs.
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