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Abstract

This paper addresses the challenge of fine-grained alignment in Vision-and-Language Navigation (VLN) tasks, where

robots navigate realistic 3D environments based on natural language instructions. Current approaches use contrastive

learning to align language with visual trajectory sequences. Nevertheless, they encounter difficulties with fine-grained

vision negatives. To enhance cross-modal embeddings, we introduce a novel Bayesian Optimization-based adversarial

optimization framework for creating fine-grained contrastive vision samples. To validate the proposed methodology, we

conduct a series of experiments to assess the effectiveness of the enriched embeddings on fine-grained vision

negatives. We conduct experiments on two common VLN benchmarks R2R and REVERIE, experiments on the them

demonstrate that these embeddings benefit navigation, and can lead to a promising performance enhancement. Our

source code and trained models are available at: https://anonymous.4open.science/r/FGVLN.

Corresponding authors: Yuhang Song, sgysong10@liverpool.ac.uk

1. Introduction

In recent years, Transformer[1] based architectures have revolutionized the processing and comprehension of instruction

and path in Vision-and-Language Navigation (VLN) task[2][3][4][5]. For example, VLNBERT[6], aligning the instruction and

path by bringing the embeddings of positive Path-Instruction (PI) pairs closer while pushing those of negative pairs apart.

Prior studies conducted by[6][7][8] highlight the importance of better encoding in VLN and suggest that better-aligned

embeddings generally result in improved representations of both the navigation instructions and the corresponding path

sequences, which can, in turn, enhance overall VLN task performance. The majority of these methods improve the

learned embeddings by pre-training on external augmented data, while limited attention has been given to enhancing

learned embeddings by improving the quality of contrastive samples. Nonetheless, research in the domain of contrastive

learning indicates that sampling negative examples can significantly impact the learned embeddings. More specifically,
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sampling hard negative examples can potentially enhance the quality of these embeddings[9][10][11], which suggests room

for further enhancement in VLN tasks.

Figure 1. An illustration of existing strategies for generating instruction-based and vision-based path-instruction

(PI) pairs, where only coarse-grained negative examples are generated and utilized for vision-based PI

samples. L and V denote the instruction and path, +  represents the positive samples, while −  denotes the

negative samples.

Current VLN approaches[6][7][8] generate negative PI pairs from positive PI pairs by either: (1) altering the positive

instruction to generate instruction negative PI pairs or (2) altering the positive path to generate vision negative PI

pairs. A common method for these alterations involves randomly shuffling the instruction or path sequences. To further

diversify the styles of negative samples and enhance the learned embeddings, previous studies have explored alternative

methods for sampling additional negative pairs. AirBert[7] attempted to create additional instruction negative samples

using a keyword replacement method proposed by[12]. These pairs are fine-grained language-based negatives that differ
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from the positive PI pair in instructions with only minor lexical variations, which has been demonstrated to significantly

benefit the model in training. This finding emphasizes the importance of fine-grained samples. On the other hand, for the

vision negative PI pairs, the authors in[6] employed beam search to collect additional candidate paths for each instruction

with a greedy instruction follower model[13]. Paths that fail to accomplish the instruction are also considered vision

negative PI pairs. Unfortunately, unlike the fine-grained instruction negatives, paths in both random shuffled and beam-

searched vision PI negative pairs significantly differ from the positive path. These vision negative PI pairs can be

considered coarse-grained negatives. Fig. 1 illustrates the sampling methods of negative PI pairs in contemporary

approaches, where only coarse-grained vision negatives are involved.

Generating effective fine-grained vision PI negative pairs can be challenging, particularly when determining the

appropriate key elements to replace in the vision sequence. Considering the aforementioned challenges and the need to

address the difficulty in identifying the most impactful fine-grained negatives for vision sequences, we propose to utilize

Bayesian Optimization (BO). BO-based methods are well-regarded for their efficiency in exploring search spaces, which is

critical in our context for pinpointing vision negatives. Our proposal draws inspiration from[14], which employs adversarial

examples to identify the weaknesses of a model. Building on this concept, our framework is designed to generate vision

fine-grained negative pairs that refine the model’s vision-language alignment capabilities. Our BO-based framework

iteratively locates the frames that would most significantly impact the model’s predictions. Replacing these frames to form

fine-grained vision negatives in training facilitates VLN tasks and results in a tailored training set that includes a balanced

mix of coarse negatives, and fine-grained negatives. To sum up, we propose a Fine-grained VLN (FGVLN) framework that

involves a strategic Bayesian-based optimization via adversarial training to integrate BO into our training process. To

validate our framework we evaluate the resulting learned vision embeddings. Our findings reveal that the encoder trained

with our framework captures more fine-grained visual information. We further perform experiments on the common VLN

discriminative benchmark Room-to-Room (R2R)[2], and adapt our trained backbone into two benchmarks R2R and

REVERIE[15] in generative setting. The results validate the effectiveness of the fine-grained embeddings learned with our

method in enhancing performance in both settings. We further provide an ablation study to validate the BO design choice.

Our contributions are summarized as follows:

We highlight the importance of fine-grained samples for VLN and emphasize that coarse-grained cross-modal features

learned by the encoders result in less accurate PI alignments.

We find that our method results in encoders with uniform attentions across sequences, capturing better fine-grained

details, which allows the model to form complex decision boundaries.

We incorporate the encoders with enhanced embeddings obtained from our method to the VLN tasks and improve the

performance in both discriminative and generative settings.

II. Related Work

VLN[2] has garnered attention, with a range of follow-up studies in recent years[16][17][18][19][20][15][21][22][23][24]. VLN tasks

include discriminative and generative settings, described as follows.
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Discriminative Vision-and-Language Navigation.

Discriminative navigation considers the navigation problem as a path selection task. In this setup, the agent is tasked with

choosing the most appropriate path from a set of candidates based on a given instruction[6][7][8][25][26][27][28][29][30][31][32].

The study in[6] first pre-trained the agent on web image-caption datasets. Nevertheless, alignment issues persisted due to

the out-of-domain nature of the web image-caption datasets, which are not consistent with downstream tasks. This

challenge was tackled by Airbert[7], which used in-domain Airbnb image-caption pairs for more realistic PI sample

generation, supplemented by tasks such as masked language modeling[33]. Further advancements were made by Lily[8], a

technique that incorporated indoor YouTube video data to enhance the alignment more closely with actual navigation

tasks. Although these methods were effective, existing approaches primarily focused on improving the learned

embeddings by data augmentation. In contrast, our work diverges from these traditional methods by investigating the

impact of fine-grained vision negatives on the embeddings, and proposes a BO-based method to produce fine-grained

vision negatives, which enables the encoding of more fine-grained path information.

Generative Vision-and-Language Navigation.

In this setting, the agent’s goal is to predict the action distribution given navigation instructions and observations. Some

prior methods predicted actions using sequential models[2][13][26]. To capture cross-modal relationships, methods based

on the Transformer architecture[1] have been proposed and adapted for agent training[34], with some of them also

leveraging Vision-Language pre-training[28][30][35][36][37][38][39]. Inspired by BERT[40], several works proposed to use

different variants of BERT[40] for large-scale visio-linguistic pretraining[33][6][7][8][41]. Among them, ViLBERT[33] has been

widely adopted and proven effective. Our work thus uses ViLBERT as the backbone. We adapt our trained encoders

into[41] to show that fine-grained vision negatives can improve performance in the generative setup.

III. Preliminaries

Following[6], to train ViLBERT[33] encoders, we formulate the VLN task as a path selection problem, where the navigation

task involves identifying the path that best aligns with the given instructions. Given a set of candidate paths V and an

instruction L, the problem of VLN is defined as finding a trajectory v∗ such that:

v∗ =
argmax

vi∈V Fc(vi, L), Fc(vi, L) = fθ(hvi
⊙ hL) = si,

where Fc is a compatibility function that assesses whether a given trajectory follows the instruction and stops near the

intended goal, which produces a compatibility score si. hvi
 is the embedded representation of the trajectory, and hL is the

embedded instruction, both encoded by encoders parameterized by ϕ. fθ( ⋅ ) denotes learned transformations

parameterized by θ, which maps the embedding into a si of a given trajectory vi with respect to L. ⊙  denotes a dot

product operation.

According to the formulation in[33], VLN tasks can separately encode visual navigation trajectory patches and language
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sequence tokens using two distinct Transformers. Assume a visual navigation trajectory v = (τ1, τ2, …, τK) ∈ RK×W×H×C,

where K denotes the trajectory length (i.e., number of frames τ), and W, H, C represent the frame dimensions. To align

with ViLBERT, the visual trajectory is reshaped such that each frame comprises P visual region patch nodes xk
p, with 

k ∈ K and p ∈ P. The trajectory input is thus represented as Xv = [[IMG], x1
1, …, x1

2, …, [IMG], xK
1 , …, xK

P]. Similarly, given a

language instruction sequence L = (l1, l2, …, lT) ∈ RT×D, where T is the number of tokens and D is the token dimension,

the tokenized text input to the model can be represented as: XL = [[CLS], x1, …, xT, …, [SEP]], where [IMG], [[CLS], [SEP]]

 are special tokens. Based on the above formulation, an aligned positive Trajectory-Instruction pair can be expressed as 

X+ = (X+
v , X+

L ), and the generated negative pair as X− = (X−
v , X−

L ). The output embedding at the location of the first [IMG]

 and the [CLS] is taken as the output of the model for trajectory and instructions, respectively, which can then be utilized

for the two embeddings hvi
 and hL in Eq. (1).

To concentrate on the contrastive learning aspect, in this work, the pre-training stage of Lily[8] is kept unchanged, and the

VLN model is fine-tuned in the downstream path ranking (PR) task using a Bayesian-based optimization framework. PR

aims to minimize a contrastive loss given a positive pair and several negative pairs LPR(X+ , {X−}N), where N generated

negative pairs have either a different trajectory or a different instruction. The negative pairs can be expressed as 

X− = {(X−
v , X+

L )} or X− = {(X+
v , X−

L )}. The PR loss LPR can then be formulated as follows:

min
θ,ϕ LPR(X+ , {X−}N) = − log

exp(fθ(X+))

exp(fθ(X+)) + ∑Nexp(fθ(X−))
,

where fθ( ⋅ ) denotes the learned transformations on the outputs of the backbone encoders as in Eq. (1). The objective is

to minimize LPR with respect to model parameters.

IV. Methodology

In this section, we present in Section IV-A of the proposed FGVLN framwork. Section IV-B elaborates on an encoder

synchronization and optimization strategy.

A. Bayesian-based Optimization by Adversarial Training
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Figure 2. Overview of the proposed Fine-grained VLN (FGVLN). In the Inner Maximization, the Bayesian optimizer evaluates different masks M

 based on Ltarget
PR , this process is repeated several iterations (as denoted by lines in red), and resulting a set of best masks S∗

M . In outer minimization

procedure, the online model is updated given the FGN batch generated based on S∗
M .

Fig. 2 illustrates the proposed adversarial training framework, named Fine-Grained VLN (FGVLN), which utilizes BO to

generate fine-grained vision negative samples. The framework comprises two optimization processes: inner maximization

and outer minimization. The inner maximization process aims to discover the most effective fine-grained vision negatives

that maximize LPR, while the outer minimization procedure employs these negatives to train our model to minimize LPR.

Specifically, during each round of outer minimization, an inner maximization process trains a BO-based sampler to identify

the most impactful frames in the positive trajectory for replacement. The outer minimization then utilizes the trained BO

model to sample fine-grained negative PI pairs and optimize the model’s learning based on these negatives. Since both

processes need to assess LPR, the framework maintains two multilayer Transformer-based ViLBERT[33] models for each

process: an online model for the outer process, parameterized by ϕ, θ, and a target model for the inner process,

parameterized by ϕtarget, θtarget. The target model is a copy of the online model and is periodically updated by it. The loss

from the online model Lonline
PR  is used to update the online model itself, while the loss from the target model Ltarget

PR  is for

evaluating the discovered fine-grained negatives.

In the inner maximization process, a Tree-structured Parzen Estimator (TPE) based BO model[42] is first initialized. Given

a positive trajectory, the BO model samples several frames from the positive trajectory. These sampled frames are then

transformed into replacement frames by a fine-grained negative (FGN) generator, which results in a fine-grained vision

negative PI pair that consists of a fine-grained negative path and a positive instruction. The generated fine-grained

negative PI pairs are concatenated with the PI pairs in the original batch to form a new batch referred to as the FGN

batch. This batch is then passed to the target model to determine their difficulties, quantified through Ltarget
PR . This

procedure is repeated for several iterations to optimize the BO sampler, and the result is an optimized BO model

employed by the outer process. During the outer minimization, based on the sampling results from the BO model, the

generated fine-grained negative PI pairs are concatenated with other PI pairs in the batch to form a final batch, which is
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employed to train the online model.

1. Inner-Maximization

Defining a fine-grained negative PI pair as X−
FG = (X−

FG, X+
L ), the framework aims to select b best fine-grained negative

pairs {X−
FG}b in conjunction with other negative pairs {X−}N to maximize Ltarget

PR . A TPE-based Bayesian optimizer is

employed to select the frames for modification. Given an unprocessed positive path v+  with K frames, the optimizer

samples a mask indicator M = (m1, m2, …, mK) ∈ RK. This binary mask M indicates the frames to be replaced, and 

mk = 1, k ∈ K signifies that frame k is to be replaced. The objective function for this can be written as follows:

max Ltarget
PR (X+ , {X−}N + {X−

FG}b).

This process is iterated R times to maximize Ltarget
PR , after which the optimal M is selected. To produce the fine-grained

negatives, a generation function F(v+ , M, xr) replaces the frames indicated by M in the positive trajectory v+  with a

replacement frame xr to produce X−
FG. The generation flow for the replacement frame is discussed in Section V-D. The

generation function F is defined as:

X−
FG ≜ F(v+ , M, xr) = v+ ⋅ M̂ + xr ⋅ M,

where M̂ represents the complement of M. By selecting b optimal masks to obtain a set of masks SM = {M}b ∈ Rb×K, the

objective can be formulated as maximizing Ltarget
PR  with respect to SM:

max
SM Ltarget

PR (X+ , {X−}N + {X−
FG}b).

After iterations, the inner-maximization process eventually results in a set of b optimal masks S∗
M .

2. Outer-Minimization

The outer-minimization process receives the result from the inner-maximization process, and utilizes the generation

function in Eq. (4) to produce b fine-grained negatives {X−
FG}b. These fine-grained negative PI pairs are concatenated with

other negative PI pairs {X−}N to produce {X−}Ncat = {X−}N + {X−
FG}b. The objective of this process is to minimize Lonline

PR

 given S∗
M , formulated as:

min
θ,ϕ Lonline

PR (X+ , {X−}Ncat) subject to S∗
M .

B. Delayed Updates

Given that the inner optimization process optimizes based on the output from the learned encoders, which are

subsequently updated by the outer optimization stream, employing rapid updates across both processes could potentially

lead to the selection of a suboptimal mask set SM as validated later in Section. V-D. This issue is particularly pronounced

during the initial stages of training, where the outputs of the encoders in both processes may not accurately reflect the
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desired embeddings. This discrepancy could affect the direction of gradient descent in the outer optimization stream, and

potentially lead to a feedback loop that detracts from model performance. To mitigate this issue, we propose maintaining a

separate copy of the model parameters within the inner optimization process, i.e., θt and ϕt. These parameters are

updated after a fixed period of time to align with the model in the outer optimization process every J update steps. This

strategy enables the inner optimization process to perform more stable and reliable frame selections, which reduces the

likelihood of misleading gradients that can adversely impact the outer optimization process.

V. Experiments

In this section, we present the experiments for addressing three key aspects: (1) evaluating the effectiveness of the

embeddings for fine-grained vision negatives after applying the proposed method in comparison to the previous approach,

(2) determining the extent to which these improved embeddings enhance the current model’s performance in both

discriminative and generative settings, and (3) exploring the design space of the BO-based sampler by an ablation study.

A. Experimental Setup

Baselines.

To evaluate the navigation performance of the proposed framework, we compare the navigation results of our framework

to the existing works in the discriminative setting that improve learned embeddings through various types of data

augmentations. In the generative setting, we adapt our encoders into[41] and compare the performance of our framework

to the existing end-to-end generative navigation methods that enrich the embeddings solely through data augmentation.

The baselines for these settings are presented in Tables II, III and IV, respectively.

Benchmark and Metrics.

We first evaluate our proposed method on the common VLN benchmark R2R[2] in discriminative setting, which contains

detailed paired instructions and photo-realistic observations. R2R is based on the Matterport 3D[43] dataset, containing a

total of 21,567 path-instruction pairs from 90 scenes. Following the standard setting presented in[2], we adopt several

representative metrics for evaluating R2R: success rate (SR), success rate weighted by the ratio between the shortest

path length and the predicted path length (SPL), trajectory length (TL), as well as navigation error (NE). We also adapt our

trained backbone into the generative setting on two benchmarks, R2R and REVERIE. For REVERIE, we use four metrics

to evaluate navigation performance: SR, OSR, SPL, and TL as in[7]. Additionally, we assess object grounding

performance using two metrics: remote grounding success (RGS) and RGS weighted by path length (RGSPL). Following

standard settings[8]. The REVERIE dataset uses the same data splits as the R2R dataset, but it additionally requires the

agent to select the bounding box of the target object.

Implementation Details.
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The framework was implemented using the PyTorch framework and followed a two-stage training process: pre-training

and fine-tuning. For pre-training, we utilized the pre-trained model described in Lily[8]. During the fine-tuning phase, we

adhered to the settings outlined in[8] to ensure a fair comparison. This process involved initially training the model with

Masked Language Modeling (MLM)[7] and Masked Vision Modeling (MVM)[7] losses. The training was conducted with a

batch size of 12 across four NVIDIA Tesla V100 GPUs, and a learning rate of 4 × 10−5. Subsequently, the model was

further trained using our framework on LPR, distributed across eight NVIDIA Tesla V100 GPUs, with a learning rate of 

1 × 10−5 and a batch size of 16 for 30 epochs until convergence. The models included in the ablation studies were trained

on subsets using the default settings provided in[8], with a batch size of eight. For adaptation to the generative setting, we

followed the methodology outlined in[7] to adapt recurrent VLN[41]. Our trained FGVLN model served as the backbone

network for the recurrent VLN and was trained using imitation learning and A2C[44] for 300,000 iterations. This training

was conducted on a single NVIDIA GeForce RTX 4080 GPU, with a batch size of eight and a learning rate of 1 × 10−5.

Figure 3. A comparison of the embeddings from the vision encoder trained by different methods.

B. Examination on the Learned Embeddings

We examine the embeddings hvi
 from Eq. (1). These embeddings are derived by the vision encoder trained by different

methods. To demonstrate the impact of our method across different negative PI pairs, we utilize PI pairs sampled from

the R2R validation dataset and plot the embeddings from the positive trajectories and the altered negatives. Fig. 3

presents a comparison of the embeddings generated by Lily[8] and our FGVLN, in which the red dots represent the

embedding entry from the positive trajectory, while the blue dots denote the embedding of negative samples generated

from different approaches, including random shuffling, beam search, and fine-grained replacement. It can be observed

that the negative embeddings generated by both encoders through random shuffling and beam search display diverse and

distinguishable distributions compared to the embeddings of the original positive trajectories. However, when encoding

fine-grained negative vision-based PI pairs, Lily encodes these pairs in a manner highly similar to the positive path, which

results in a significant overlap of the dots. In contrast, our method captures subtle differences in information from fine-

grained negative paths and can produce embeddings with better distinguishability.
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Encoder
Negative Path Generated by Various Method

Beamsearch RandomShuffle Fine-grained

 μ σ μ σ μ σ

Lily[8] 13.47 81.44 74.80 22.12 4.72 95.79

Ours 13.32 131.19 43.25 200.18 7.64 47.35

Table 1. Statistical resuts of L2 distance of

embeddings.

Table 1 further presents a statistical analysis based on 1,000 sampled PI pairs of the L2 distance between the

embeddings of the trajectories encoded by different encoders. The results reveal that negative embeddings generated by

random shuffling diverge the most from the embeddings of the positive trajectories. Negative embeddings generated

through beam search exhibit the second-highest divergence, while fine-grained negative trajectories show the least

divergence. The encoder trained by our approach captures more subtle differences even after fine-grained alteration.

C. Navigation Performance on the R2R Benchmark

Methods
Val Seen Val Unseen

TL NE (↓) SR (↑) SPL (↑) TL NE (↓) SR (↑) SPL (↑)

VLN-BERT[6] 10.28 3.73 70.20 0.66 9.60 4.10 59.26 0.55

Airbert[7] 10.21 3.14 74.12 0.70 9.63 3.95 62.84 0.58

Lily[8] 9.99 3.12 77.45 0.74 9.64 3.37 66.70 0.62

FGVLN (Ours) 10.05 3.08 78.59 0.74 9.79 3.40 67.69 0.64

Table II. Comparison on R2R under the discriminative setting.

Discriminative VLN.

We employ the pre-trained Lily[8] model and fine-tune it with our proposed FGVLN on the complete R2R benchmark under

the discriminative setting. The performance of our model is compared with the previous baseline models. Table II presents

the results of this comparison. Our FGVLN model outperforms all the previous models on the validation unseen datasets.

In the validation unseen dataset, our model achieves a 1.48% improvement in terms of SR and a 3.12% improvement in

terms of SPL compared to the current state-of-the-art (SOTA) Lily model[8] that does not utilize BO for fine-grained

negative sampling. These results confirm that incorporating challenging fine-grained vision negatives produced by BO into

the training process enhances the performance of VLN models in the discriminative setting. Fig. 4 illustrates an example

of the navigation trajectory determined by our framework compared to that determined by Lily[8]. It can be observed that

with the enhanced embeddings, our framework is able to determine a trajectory with better alignment to the given

instruction, which results in fine-grained inferencing.
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Methods
Validation Seen Validation Unseen

TL NE (↓) SR (↑) SPL (↑) TL NE (↓) SR (↑) SPL (↑)

Seq2Seq-SF[2] 11.33 6.01 39 - 8.39 7.81 22 -

Speaker-Follower[26] - 3.36 66 - - 6.62 35 -

PRESS[45] 10.57 4.39 58 55 10.36 5.28 49 45

EnvDrop[13] 11.00 3.99 62 59 10.70 5.22 52 48

PREVALENT[46] 10.32 3.67 69 65 10.19 4.71 58 53

Rec (Airbert)[7] 10.31 2.68 74 66 12.12 4.01 59 54

Rec (FGVLN) 11.42 2.77 73 68 12.74 4.06 61 55

Table III. Comparison on R2R under the generative setting.

Methods
Navigation

RGS RGSPL
SR OSR SPL TL

Random 1.7 11.93 1.01 10.76 0.96 0.56

Rec (OSCAR)[41] 25.53 27.66 21.06 14.35 14.20 12.00

Rec (ViLBert)[33] 24.57 29.91 19.81 17.83 15.14 12.15

Rec (VLN-Bert)[40] 25.53 29.42 20.51 16.94 16.42 13.29

Rec (AirBert)[7] 27.89 34.51 21.88 18.71 18.23 14.18

Rec (FGVLN) 28.71 30.14 22.09 19.10 21.55 14.78

Table IV. Comparison with models with different backbones

on REVERIE dataset under generative setting

Adaptation to Generative VLN.

Following the same adaptation scheme as[7], we further use our trained FGVLN as the backbone of the recurrent

VLN[41] and adapt our model in the R2R and REVERIE under the generative setting. For R2R, we compare the

performance of the models that were only fine-tuned on the original R2R dataset, without any augmented data from[13].

Table III presents the results of the navigation performance comparison of our method against the previous baseline

approaches. It can be observed that FGVLN achieves the highest SPL in the validation seen split while maintaining

comparable performance in terms of SR. In the validation unseen split, the proposed FGVLN outperforms all previous

models, and achieves the best performance in both SR and SPL. The superior performance in the generative setting,

especially in SPL, indicates that our encoders produce more aligned embeddings. This alignment assists the agent in

closely following the designated instructions.

Table IV summarizes the navigation performance on the REVERIE dataset in previouse unseen environments under the

generative setting. Our FGVLN approach demonstrates competitive results, particularly while generating to the unseen

environments. Notably, in the validation unseen split, FGVLN achieves a Success Rate (SR) of 28.71%, and a higher SPL

of 22.09%, indicating more efficient navigation and generalizing ability in unfamiliar environments. This suggests that our

method allows the agent to follow instructions more closely and accurately, despite the complex and unseen scenarios
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presented by the REVERIE dataset. These results validate the robustness of our Bayesian Optimization-based fine-

grained negative sampling approach.

Figure 4. An illustration of an example trajectory determined by our framework for a given instruction compared to that determined by Lily. Each

robot starts at position 0 (marked in blue). Our framework selects a path (marked in green) that stops at the top of the stairs, while the baseline

selects a path (marked in yellow) that only ascends partway up the stairs before stopping in the middle.

Index Model Name

Bayesian Optimizer Configurations Result (SR%)

3
Iters

5
Iters

Delayed 1FGN 2FGNs In-domain Out-domain val_seen val_unseen

1 Baseline Lily[8] - - - - - - - 60.21 51.38

2 FGVLN-Rand - - - - ✓ - ✓ 60.61 50.11

3 FGVLN-w/o-delayed ✓ - - ✓ - ✓ - 60.18 49.52

4 FGVLN-w-delayed ✓ - ✓ ✓ - ✓ - 57.66 51.02

5 FGVLN-outdomain ✓ - ✓ ✓ - - ✓ 61.25 52.36

6 FGVLN-add-FGN ✓ - ✓ - ✓ - ✓ 63.48 53.14

7 FGVLN-add-iter - ✓ ✓ - ✓ - ✓ 61.98 56.45

Table V. Ablation Studies on Bayesian optimization-based sampler.

*Models were tested under various configurations, including (1) -# Iters the different number of BO optimization iterations,

(2) -Delayedthe use of delayed updates (3) -#FGNs the different number of the fine-grained negatives to sample for in

each batch (4) -In-domain/Out-domain the selection of the replacement frame xr, which could be either in-domain, aligning

with the positive trajectory, or out-domain.

D. Ablation Study

To determine the optimal configurations for FGVLN, we conducted a series of design space explorations. We utilized a

subset of the original dataset for this exploration to efficiently explore the design space. Table V presents the comparison

of FGVLN under different configurations, with explanations for each configuration included. This ablation study identifies

FGVLN-add-iter as the best configuration, which outperforms all other settings in unseen environments. As a result, we
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adopt this configuration for our FGVLN in all other experiments presented.

Effectiveness of Delayed Updates

To validate the effectiveness of the proposed delayed updates as described in Section 4.2, the comparisons in Table 4 of

the main manuscript between the model with delayed updates (index 4) and another without updates (index 3) show that

the model with delayed updates exhibited a 3% performance improvement on the unseen validation set. This finding

supports our hypothesis regarding the benefits of delayed updates.

Effectiveness of Out-domain Replacement

To evaluate the impact of using different types of replacement frames xr to generate fine-grained negatives, we assessed

a strategy to generate the replacement frame by sampling a frame from an in-domain trajectory, specifically from the same

room as the positive path, with results detailed in indices 3-4 in Table 4 of the main manuscript. In contrast, we also tested

out-domain replacement frames, which were sampled from a different room (i.e., index 5). The results revealed that out-

domain replacement frames are more effective. Under this setting, the model achieved a 2.6% improvement over the best

in-domain xr approach and a 1.9% improvement compared to the baseline model. We assume that this is due to potential

overfitting caused by the in-domain replacement, which generates negative samples that are overly similar to the positive

path and thus not sufficiently informative.

Effectiveness of Optimizer & Number of Additional Negatives

We assessed the impact of the number of iterations conducted by the Bayesian optimizer on mask selection. In particular,

the configuration of the optimizer to produce two masks, as presented in index 6 of Table 4 in the main manuscript,

resulted in two additional fine-grained negatives and enhanced performance on both the validation seen and unseen

datasets compared to the previous models. This finding highlights the benefits of multiple fine-grained negatives. In

addition, extending the optimizer’s iterations (i.e., index 7) improved performance in the unseen dataset, which

emphasizes the optimizer’s effectiveness. However, for the seen dataset, the model with three iterations (row 5)

performed better. This suggests that while additional iterations aid generalization in new environments, they may not yield

the same benefits in familiar settings. This indicates a need for balanced optimization strategies tailored to various

environmental complexities. As we focus more on the unseen rooms in VLN, we select the model setting with the best

performance in the unseen dataset for all our experiments, which is referred to as FGVLN in the main manuscript.

Random Mask Selector

We also evaluated the model using a random mask selector under the optimal fine-grained negative setting (i.e., two

additional negatives, using out-domain replacement frames) as presented in index 2 of Table 4. It can be observed that all

models employing the selector based on the Bayesian optimization with identical fine-grained negative settings (index 6-7)

demonstrated superior performance compared to the random mask selector. This finding confirms the effectiveness of the

Bayesian optimization component.
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VI. Conclusion

We propose a BO-based approach for generating fine-grained negatives was introduced by presenting the FGVLN

framework. An analysis of the resulting embeddings of our encoders was provided. Experimental results demonstrated

that the proposed framework is capable of capturing better fine-grained correspondence between paths and their

corresponding instructions. This correspondence enables the model to make more informed decisions in VLN tasks. The

performance of the encoders trained by our proposed framework was also assessed on the well-established VLN

benchmark R2R, in both discriminative and generative settings, and a significant navigation performance enhancement

was observed. Finally, an ablation study was provided to validate the design decisions.
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