
Open Peer Review on Qeios

RESEARCH ARTICLE

Sparse Dimensionality Reduction for Analyzing Single-Cell-
Resolved Interactions

Niklas Brunn1,2, Maren Hackenberg1,2, Tanja Vogel3, Harald Binder1,2,4

1 Institute of Medical Biometry and Statistics (IMBI), University of Freiburg, Germany
2 Freiburg Center for Data Analysis and Modeling, Freiburg im Breisgau, Germany
3 Institute of Anatomy and Cell Biology, University of Freiburg, Germany
4 Centre for Integrative Biological Signaling Studies (CIBSS), Freiburg im Breisgau, Germany

Funding: No specific funding was received for this work.

Potential competing interests:  No potential competing interests to declare.

Abstract

Several approaches have been proposed to reconstruct interactions between groups of cells or individual cells from

single-cell transcriptomics data, leveraging prior information about known ligand-receptor interactions. To enhance

downstream analyses, we present an end-to-end dimensionality reduction workflow, specifically tailored for single-cell

cell-cell interaction data. In particular, we demonstrate that sparse dimensionality reduction can pinpoint specific ligand-

receptor interactions in relation to clusters of cell pairs. For sparse dimensionality reduction, we focus on the Boosting

Autoencoder approach (BAE). Overall, we provide a comprehensive workflow, including result visualization, that

simplifies the analysis of interaction patterns in cell pairs. This is supported by a Jupyter notebook that can readily be

adapted to different datasets.

Corresponding author: Niklas Brunn, niklas.brunn@uniklinik-freiburg.de

1. Introduction

Recent enhancements of techniques for measuring gene expression levels of cells along with multiple modalities such as

their spatial localization in the tissue have led to a rapidly evolving research field for computational tools that enable a

detailed study of cell-cell communication[1]. Pioneering approaches integrate prior knowledge about known ligand-receptor

interactions into a computational framework for reconstructing directed cell-cell interactions from transcriptomics data by

leveraging the aggregated ligand expressions in sender cells and the aggregated cognate receptor expressions in receiver

cells, of a specific type respectively[2][3][4].

However, treating cells of the same type as a single entity may overlook potential within-cell type variability of interaction

patterns[1]. More recent approaches thus compute cell-cell interaction scores at the single-cell level[5][6][7][8]. For example,

NICHES1[6] and Scriabin[7] construct cell-cell interaction matrices (CCIMs) based on known ligand-receptor interactions
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using single-cell gene expression data. Such a CCIM consists of the interaction scores for each active ligand-receptor

interaction (features) in pairs of single cells (observations).

In the analysis of interaction patterns in cell pairs, the first step typically is dimensionality reduction, followed by clustering.

Subsequent cluster-dependent differential interaction analysis through post-hoc statistical testing then identifies ligand-

receptor interactions that are specifically active within clusters[6].

Here, we demonstrate a workflow that uses sparse dimensionality reduction to identify characteristic ligand-receptor

interactions for clusters of cell pairs in an end-to-end manner, i.e. with ligand-receptor identification already integrated into

dimensionality reduction. While sparse dimensionality reduction can potentially be obtained by several approaches[9][10],

we focus on the Boosting Autoencoder2 approach (BAE)[11], which we have recently introduced in the context of analyzing

single-cell gene expression data. The BAE provides an interpretable representation of cell pairs in a low-dimensional

latent space, where each latent dimension is linked to a sparse characterizing set of ligand-receptor interactions by model-

selected weights.

However, different signs in the learned weights can make the interpretation challenging. We demonstrate how specifically

the BAE approach can be easily adapted for addressing this by integrating a soft clustering component into the neural

network architecture.

The learned representation of cell pairs, cluster memberships, and selected interactions for the different clusters can be

used to generate easy-to-interpret two-dimensional visualizations using UMAP[12]. Additionally, ranked lists of selected

interactions per cluster, along with their importance scores can be extracted from the model output.

We provide Jupyter notebooks in our GitHub repository to analyze interaction patterns in single-cell pairs, which can be

easily adapted for different datasets and to explore the functionality of the proposed BAE approach.

2. The Boosting Autoencoder

The Boosting Autoencoder (BAE) is a deep learning approach for sparse and interpretable representation learning,

originally designed for the analysis of single-cell RNA sequencing data[11], which we adapt here for the analysis of cell-cell

interactions. A BAE uses an autoencoder architecture comprising two concatenated neural networks, the encoder and the

decoder. In the present setting of cell-cell interactions, the encoder defines a parametric mapping from the feature space

of ligand-receptor interactions to a low-dimensional latent space and the decoder vice versa. The objective of the

optimization is to minimize a reconstruction loss measuring the deviation of the model reconstruction to the input under

the constraint of reducing the dimensionality during the forward pass.

To enable a direct connection of interactions to latent dimensions, the BAE encoder consists of a single-layer linear neural

network that is parameterized solely by a weight matrix. During training, the BAE iteratively updates the encoder weight

matrix based on componentwise boosting[13][14], a stepwise feature selection approach. Specifically, the negative

gradients of the autoencoder reconstruction loss with respect to the latent representation are used to construct
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responses, to which linear models of the input interactions are fitted in a stepwise manner. In each iteration, only the

weight corresponding to the specific interaction that most improves the current linear model fit is updated. For each

dimension of the latent representation, the coefficients of this linear model represent the corresponding row of the

encoder weight matrix. As the encoder weights corresponding to the model coefficients are initialized from zero, model

training results in a sparse weight matrix. The componentwise boosting algorithm is embedded into a gradient-based

optimization framework for jointly finding optimal encoder weights and decoder parameters. It offers the advantage of

incorporating user-defined constraints into the feature selection step, e.g., to obtain disentangled latent dimensions[11].

In our adaptation of the BAE for analyzing single-cell-resolved interaction patterns, we use the BAE with the

disentanglement constraint to learn low-dimensional representations of cell pairs in largely uncorrelated latent dimensions,

each characterized by a specific small set of ligand-receptor interactions. During parameter optimization, the BAE

iteratively links interactions to latent dimensions, where the corresponding encoder weights can have different signs.

Consequently, each latent dimension can capture two distinct groups of cell pairs, represented by opposite signs.

To further enhance the interpretation of learned interaction patterns in latent dimensions, we introduce the split-softmax

 transformation after the encoder. Specifically, this transformation allows to split two different groups of cell pairs

potentially represented in the same latent dimension, while keeping track of the selected characterizing interactions for

each group. The split-softmax transformation first splits the activation in latent dimensions per cell pair into their positive

and negative version, followed by a softmax transformation, to model associations of cell pairs to different latent

dimensions. The split-softmax transformation allows for an equal contribution of positive and negative signals in the latent

representation, whereas direct application of the softmax function would map negative signals towards zero, thus

overlooking potentially meaningful signals. Each output dimension of the split-softmax transformation represents a cluster

to which observations can be assigned with a certain probability. The number of clusters is thereby controlled by the user-

defined number of latent dimensions for the dimensionality reduction. In contrast to frequently used step-by-step

approaches, where dimensionality reduction is followed by clustering and subsequent differential interaction analysis, our

BAE approach smoothly optimizes all model components in an end-to-end manner. An overview of the model architecture

is provided in Figure 1a.
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Figure 1. Schematic overview and application of the BAE. (a) (Left) The input data for training a BAE to learn single-cell interaction patterns is a

CCIM constructed, e.g., by NICHES with standardized features. (Right) The BAE learns a structured and sparse connection of ligand-receptor

interactions to latent dimensions (Encoder). The split-softmax transformation computes the cluster membership probabilities of cell pairs based on

their representation. Each cell pair gets assigned to the cluster with the highest probability. The decoder network maps the split-softmax

representation back into the ligand-receptor interaction space for reconstructing the interaction scores of cell pairs. 2D UMAP embeddings of the

BAE latent representation can be used to visually inspect the results. Plots can be, e.g., colored by the cluster probabilities of cell pairs or scores of

BAE-selected ligand-receptor interactions. (b-e) Result visualization of the BAE application to single-cell cell-cell interaction data computed by

NICHES from rat data. The number of latent dimensions was set to d = 30, resulting in 60 clusters to which the model can assign cells. (b) (From

left to right) 2D UMAP embedding of the latent representation of cell pairs colored by cluster membership. UMAP embedding of cell pairs colored by
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left to right) 2D UMAP embedding of the latent representation of cell pairs colored by cluster membership. UMAP embedding of cell pairs colored by

sender cell type. UMAP embedding of cell pairs colored by receiver cell type. (c) UMAP embedding colored exemplarily by the split-softmax

 representation of cell pairs in dimension 14 corresponding to cluster 26. (d) Scatter plot of the top selected ligand-receptor interactions for cluster 

26. Dots represent min-max normalized positive encoder weights for the latent dimension 14 of the BAE in descending order (from left to right). (e)

Top left/top right/bottom left/bottom right: UMAP embedding of cell pairs colored by interaction scores for the top 1/2/3/4 ligand-receptor interactions

selected by the BAE for cluster 26.

3. Analysis of single-cell interaction patterns

3.1. Analysis workflow

In our proposed workflow for analysing single-cell-resolved interaction patterns, the input to a BAE is a CCIM, e.g.,

constructed by NICHES[6]. NICHES can build a CCIM from either gene expression data from scRNA-seq or from a spatial

transcriptomics experiment, ideally with single-cell resolution (Figure 1a).

After training a BAE on the CCIM, it provides multiple outputs for exploring interaction patterns. First, a 2D UMAP

representation of the data can be computed based on the learned latent representation, to visually explore similarities in

the interaction patterns of cell pairs. Second, cell pairs are assigned to clusters with learned probabilities by the soft

clustering component. Third, sparse lists of ranked ligand-receptor interactions help to pinpoint interactions that

characterize clusters.

The BAE results can be visually inspected by coloring the 2D UMAP representation with the information from the different

result modalities. Complementary metadata, such as cell type information, can thereby enhance the interpretation of the

results.

Our implementation of the workflow can additionally handle spatial data and is accompanied by visualization functions that

enhance the intuitive assessment of the learned latent patterns, making it easier for researchers to interpret and explore

the data. Additionally, we provide Jupyter notebooks that allow users to either reproduce our analysis or to adapt it to

other datasets, as well as to explore the functionality using simulated data.

3.2. Visualization of results

As an examplary application, we considered a NICHES CCIM of scRNA-seq data from rat lungs[15].

We colored cell pairs in the 2D UMAP representation based on their cluster identity with the highest probability, the

previously defined sender cell types, and the receiver cell types respectively (Figure 1b). Comparing the three plots

reveals that cell pairs with similar sender and receiver types have similar interaction profiles.

The individual clusters can be further examined for their specific characteristic interaction profiles (Figure 1c-e). For

example, inspection of the cluster membership probabilities of cell pairs in cluster 26 shows a separation from other cell

pairs based on the latent patterns (Figure 1c). The top characterizing interactions, which were selected by the BAE for
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cluster 26, are shown in Figure 1d. These ligand-receptor interactions can be used to color the cell pair representation in

the UMAP plot to see how well the interaction score patterns match the cluster identity of the cell pairs (Figure 1e).

Selected interactions of interest can be a basis for designing further laboratory experiments to confirm cluster-specific

signaling.

4. Conclusion

We presented a comprehensive workflow for sparse dimensionality reduction of single-cell-resolved interaction data,

facilitated by the Boosting Autoencoder (BAE). To enhance the interpretability of the resulting low-dimensional

embedding, we integrated a soft clustering component into the end-to-end approach. This integration enables the model

to pinpoint specific interactions in relation to clusters of cell pairs, facilitating deeper insights into the underlying biological

processes. With our workflow implementation, researchers can perform the analysis in a customizable Jupyter notebook

with their own data and visualize the results.
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Footnotes

1 https://github.com/msraredon/NICHES

2 https://github.com/NiklasBrunn/BoostingAutoencoder

References

1. a, bErick Armingol, Hratch M. Baghdassarian, Nathan E. Lewis. (2024). "The diversification of methods for studying

cell–cell interactions and communication." Nature Reviews Genetics. :1–20.

2. ^Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. (2020). "CellPhoneDB: Inferring cell–cell

communication from combined expression of multi-subunit ligand–receptor complexes." Nature Protocols. 15(4):1484–

1506.

3. ^Cabello-Aguilar S, Alame M, Kon-Sun-Tack F, Fau C, Lacroix M, et al. (2020). "SingleCellSignalR: Inference of

intercellular networks from single-cell transcriptomics." Nucleic Acids Research. 48(10):e55–e55.

4. ^Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, et al. (2021). "Inference and analysis of cell-cell

communication using CellChat." Nature Communications. 12(1):1088.

5. ^Li R, Yang X. (2022). "De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data

with DeepLinc." Genome Biology. 23(1):124.

6. a, b, c, dRaredon MSB, Yang J, Kothapalli N, Lewis W, Kaminski N, et al. (2023). "Comprehensive visualization of cell–

cell interactions in single-cell and spatial transcriptomics with NICHES." Bioinformatics. 39(1):btac775.

7. a, bWilk AJ, Shalek AK, Holmes S, Blish CA. (2024). "Comparative analysis of cell–cell communication at single-cell

resolution." Nature Biotechnology. 42(3):470–483.

8. ^Bafna M, Li H, Zhang X. (2023). "CLARIFY: Cell–cell interaction and gene regulatory network refinement from

spatially resolved transcriptomics." Bioinformatics. 39(Supplement_1):i484–i493.

9. ^Boileau P, Hejazi NS, Dudoit S. (2020). "Exploring high-dimensional biological data with sparse contrastive principal

component analysis." Bioinformatics. 36(11):3422–3430.

10. ^Song D, Li K, Hemminger Z, Wollman R, Li JJ. (2021). "scPNMF: Sparse gene encoding of single cells to facilitate

gene selection for targeted gene profiling." Bioinformatics. 37(Supplement_1):i358–i366.

11. a, b, cHackenberg M, Brunn N, Vogel T, Binder H. (2024). "Infusing structural assumptions into dimension reduction for

single-cell RNA sequencing data to identify small gene sets." bioRxiv. :2024–02.

12. ^McInnes L, Healy J, Melville J. (2018). "Umap: Uniform manifold approximation and projection for dimension

reduction." arXiv preprint arXiv:180203426.

13. ^Tutz G, Binder H. (2006). "Generalized additive modeling with implicit variable selection by likelihood-based boosting."

Biometrics. 62(4):961–971.

14. ^Tutz G, Binder H. (2007). "Boosting ridge regression." Computational Statistics & Data Analysis. 51(12):6044–6059.

Qeios, CC-BY 4.0   ·   Article, December 3, 2024

Qeios ID: 0J5T9X   ·   https://doi.org/10.32388/0J5T9X 7/8

https://github.com/msraredon/NICHES
https://github.com/NiklasBrunn/BoostingAutoencoder


15. ^Raredon MSB, Adams TS, Suhail Y, Schupp JC, Poli S, et al. (2019). "Single-cell connectomic analysis of adult

mammalian lungs." Science Advances. 5(12):eaaw3851.

Qeios, CC-BY 4.0   ·   Article, December 3, 2024

Qeios ID: 0J5T9X   ·   https://doi.org/10.32388/0J5T9X 8/8


	Sparse Dimensionality Reduction for Analyzing Single-Cell-Resolved Interactions
	Abstract
	1. Introduction
	2. The Boosting Autoencoder
	3. Analysis of single-cell interaction patterns
	3.1. Analysis workflow
	3.2. Visualization of results

	4. Conclusion
	Statements and Declarations
	Data availability
	Conflicts of interests
	Funding
	Author contributions

	Footnotes
	References


