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Detecting anomalies in crowded video scenes is critical for public safety, enabling timely

identi�cation of potential threats. This study explores video anomaly detection within a Functional

Data Analysis framework, focusing on the application of the Magnitude-Shape (MS) Plot.

Autoencoders are used to learn and reconstruct normal behavioral patterns from anomaly-free

training data, resulting in low reconstruction errors for normal frames and higher errors for frames

with potential anomalies. The reconstruction error matrix for each frame is treated as multivariate

functional data, with the MS-Plot applied to analyze both magnitude and shape deviations,

enhancing the accuracy of anomaly detection. Using its capacity to evaluate the magnitude and shape

of deviations, the MS-Plot o�ers a statistically principled and interpretable framework for anomaly

detection. The proposed methodology is evaluated on two widely used benchmark datasets, UCSD

Ped2 and CUHK Avenue, demonstrating promising performance. It performs better than traditional

univariate functional detectors (e.g., FBPlot, TVDMSS, Extremal Depth, and Outliergram) and several

state-of-the-art methods. These results highlight the potential of the MS-Plot-based framework

for e�ective anomaly detection in crowded video scenes.

1. Introduction

Anomaly detection in video sequences is a critical task in computer vision, particularly in scenarios

involving crowded environments such as public spaces, events, transportation hubs, and

marketplaces[1][2][3]. The goal is to identify unusual or potentially dangerous events that deviate from

expected crowd behavior, such as sudden dispersals, confrontations, or individuals engaging in
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atypical activities[4][5]. Early detection of such anomalies is crucial for ensuring public safety,

managing emergencies, and preventing incidents. In crowded areas, the task of anomaly detection

becomes especially challenging due to the complexity and high dimensionality of spatiotemporal data.

Video sequences in these environments consist of continuous frames with numerous individuals and

objects interacting, creating intricate patterns of motion and behavior[6]. This complexity requires the

use of advanced methods capable of capturing not only spatial features within individual frames, but

also temporal and contextual dependencies that characterize typical crowd dynamics[7][8].

Over the past two decades, researchers have developed numerous methods to e�ectively identify

abnormal events in video data[9]. Trajectory-based approaches track moving objects to detect

deviations from typical patterns[10][11][12]. For instance, the study in[13]  explored anomaly detection

through trajectory analysis using a single-class support vector machine (SVM) clustering approach,

e�ectively identifying unusual trajectories without prior knowledge of outlier distributions. In[14],

snapped trajectories are introduced as a high-level representation that reduces computational load

and identi�es key scene regions. This combined approach detects anomalies in speed, direction, and

�ner motion details with fewer false alarms. Trajectory-based methods rely on accurate detection and

tracking but are limited by crowd density, resolution, motion, and occlusion, making them more

suitable for sparse crowds. However, in crowded scenes, frequent occlusions, intersecting paths, and

the challenge of distinguishing similar individuals[15]  reduce their e�ectiveness, and they lack

contextual awareness for identifying anomalies.

Alternatively, other techniques use spatiotemporal features to represent events in videos without

requiring trajectory analysis. These methods capture motion dynamics by analyzing changes in pixel

intensities and patterns over time[16]. Techniques such as spatiotemporal gradients[17], Histograms of

Oriented Gradients (HOG)[18], 3D spatiotemporal gradient[19], and Histograms of Optical Flow (HOF)

[20]  help detect collective crowd behaviors and abnormalities at the pixel or region level, enhancing

anomaly detection in dense and dynamic scenes. For example, in[21], an SVM classi�er trained on HOG

features is proposed to automatically detect violent activities in surveillance videos, distinguishing

actions like kicking and punching. This system triggers alerts for detected violence and monitors

loitering duration to �ag suspicious behavior in real-time, thus enhancing traditional surveillance

e�ectiveness. In[22], a method is introduced for recognizing overlapping and multi-dimensional

actions using a spatiotemporal representation and enhanced Motion History Image (MHI). It employs
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Speeded-Up Robust Features (SURF) to capture key motion features, gradient-based optical �ow for

motion representation, and RANSAC (Random Sample Consensus) for outlier removal. The nearest

neighbor classi�er with leave-one-out cross-validation achieves improved recognition rates for

complex actions in outdoor scenes compared to traditional MHI approaches. The study

in[23]  introduces a hierarchical framework for video anomaly detection that integrates multi-level

features, including 3D-SIFT (scale-invariant feature transform), HOF, and HOG, with Gaussian

process regression. However, these low-level visual features (e.g., motion or texture) may still

struggle to fully capture higher-level semantic information or complex contextual interactions in

crowded scenes, limiting their e�ectiveness in more challenging anomaly detection scenarios[6].

While e�ective in some cases, these methods often face limitations in generalizing across diverse

environments and in capturing complex and subtle deviations from normal patterns.

To address these limitations, deep learning-based methods have emerged as advanced alternatives for

video anomaly detection, leveraging their capacity to capture high-level semantic information and

complex interactions in crowded and dynamic environments[6]. Unlike traditional techniques, deep

learning models such as Convolutional Neural Networks (CNNs)[24][25][26], Recurrent Neural

Networks (RNNs), and Long Short-Term Memory networks (LSTMs) can automatically learn and

extract relevant spatial and temporal features directly from the data[27][28]. These models are

particularly e�ective in modeling nuanced deviations from normal patterns, enabling them to

generalize better across diverse scenarios. Moreover, autoencoders and Generative Adversarial

Networks (GANs) are commonly used to reconstruct normal patterns in video frames, with deviations

in reconstruction used as indicators of potential anomalies[29][30][31]. The ability of deep learning

models to handle complex feature representations has signi�cantly improved the performance and

adaptability of video anomaly detection systems across various application settings[4][6][8][32]. The

study in[24]  presents a method for anomaly detection in crowded scenes using fully convolutional

networks (FCNs) with temporal data. The model enhances feature extraction by combining a pre-

trained CNN (a modi�ed AlexNet) with a custom convolutional layer tailored to speci�c video data.

In[33], a spatial-temporal CNN model is proposed for anomaly detection and localization using

spatial-temporal volumes with motion information from static camera scenes. By capturing both

appearance and motion features through spatial-temporal convolutions, the model enhances

robustness. Evaluated on four benchmark datasets, it outperforms state-of-the-art methods,

especially on challenging pixel-level criteria. In[34], a video anomaly detection approach leverages a
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frame-to-label and motion (F2LM) generator to intentionally reduce the quality of abnormal regions,

followed by a Destroyer that transforms these areas into zero vectors, making anomalies more

prominent. This technique surpasses state-of-the-art performance on the UCSD Ped2, CUHK Avenue,

and Shanghai Tech datasets. The study[35] proposes an e�cient frame-level video anomaly detection

(VAD) method that utilizes transfer learning and �ne-tuning on 20 CNN-based deep learning models,

including variants of VGG, Xception, MobileNet, and ResNet.

Over the past decade, numerous reconstruction-based methods for video anomaly detection have

emerged, leveraging models that learn to reconstruct normal video frames or sequences and using

reconstruction errors to identify anomalies[36][37][38]. The core idea of these approaches is that the

model trained exclusively on anomaly-free data will struggle to accurately reconstruct anomalous

events, resulting in higher reconstruction errors for frames with unusual or abnormal content. This

discrepancy between normal and abnormal reconstructions provides a basis for detecting anomalies

e�ectively. In[39], Zhao et al. tackle the challenge of detecting anomalies in complex video scenes by

introducing a spatiotemporal AutoEncoder (STAE) that uses deep neural networks with 3D

convolutions to learn spatial and temporal features. It incorporates a weight-decreasing prediction

loss for future frame generation, improving motion feature learning beyond standard reconstruction

loss. In[40], a residual spatiotemporal autoencoder (STAE) is proposed for video anomaly detection,

where anomalies are identi�ed as deviations from normal patterns using reconstruction loss. Residual

connections enhance model performance, e�ectively reconstructing normal frames with low cost

while detecting irregularities as abnormal frames. Another study in[41]  proposed a sparse coding-

inspired Deep Neural Network (DNN) for video anomaly detection, known as Temporally-coherent

Sparse Coding (TSC). TSC maintains frame similarity using a temporal coherence term optimized via

the Sequential Iterative Soft-Thresholding Algorithm (SIATA). The enhanced stacked Recurrent

Neural Network Autoencoder (sRNN-AE) model introduces data-dependent similarity, reduced model

depth for real-time detection, and temporal pooling for e�ciency. The study in[42]  considered a

Residual Variational Autoencoder (RVAE) for unsupervised video anomaly detection, which captures

complex patterns and minimizes reconstruction error through low-dimensional latent encoding and

decoding. The model incorporates a ConvLSTM layer for improved spatiotemporal learning and uses

residual connections to address the vanishing gradient problem. Recently, in[43], a deep multiplicative

attention-based autoencoder (DeMAAE) was introduced for video anomaly detection. DeMAAE applies

a global attention mechanism at the decoder to enhance feature learning, leveraging an attention map
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created from encoder-decoder hidden states to guide decoding via a context vector. In[38], a spatial-

temporal network achieved 97.4% AUC on UCSD Ped2. A Multivariate Gaussian Fully Convolutional

Adversarial Autoencoder in[44] scored 91.6% AUC on UCSD Ped2. The spatiotemporal 3D Convolutional

Auto-Encoder (ST-3DCAE) in[45]  achieved 85.3% on UCSD Ped2 and 75.8% on UCF-Crime. OF-

ConvAE-LSTM in[46] reached 92.9% on UCSD Ped2 and 89.5% on Avenue. Finally,[47] achieved 86.4%

on UCSD Peds1 and 88.9% on Avenue using a deep autoencoder with regularity-based thresholding.

While deep learning models have signi�cantly advanced video anomaly detection, statistical methods,

particularly functional data analysis (FDA), remain underexplored in this area. FDA o�ers unique

advantages by treating each frame’s reconstruction error as a continuous, multivariate function over

time, enabling the capture of both temporal and spatial dependencies and allowing for a more

e�ective distinction between typical �uctuations and true anomalies by analyzing the shape and

magnitude of deviations[48]. Despite these bene�ts, only a few studies have investigated statistical

approaches in video anomaly detection. For example, Raymaekers et al. introduced a measure of

directional outlyingness speci�cally applied to image and video data[49], using a statistical method for

anomaly detection based on directional outlyingness. However, this approach has only been validated

on images and non-crowded video sequences, emphasizing the need for further testing in more

complex, crowded environments. Another statistical approach for anomaly detection in high-

dimensional data is the Depthgram method by Aleman et al.[50], designed for functional data

visualization in fMRI. Depthgram uses depth-based 2D representations to identify outliers,

variability, and sample composition, supporting the exploration of neuroscienti�c patterns across

individuals and brain regions. However, it is limited to static images, such as fMRI data, and has not

been explored for video applications.

This study explores video anomaly detection in crowded scenes within a Functional Data Analysis

framework, o�ering a statistical perspective to enhance the detection process. Many statistical video

anomaly detection methods[51][52][53][38][54][55][56][34][57]  often rely on thresholds determined in a

non-automatic and non-systematic manner, focusing primarily on anomalies in the mean or variance

of reconstructed residuals. To mitigate these limitations, this work explores the application of the

Magnitude-Shape (MS) Plot, a Multivariate Functional Data Visualization and Outlier Detection

approach, for video anomaly detection[48]. The MS-Plot provides a statistically principled and

interpretable framework by treating reconstruction errors as multivariate functional data. It

e�ectively captures both magnitude (amplitude deviations) and shape (pattern deviations), allowing

qeios.com doi.org/10.32388/0N1EBC 5

https://www.qeios.com/
https://doi.org/10.32388/0N1EBC


for the detection of subtle anomalies and complex patterns indicative of abnormal behavior. By

simultaneously monitoring amplitude and shape deviations, this approach provides a comprehensive

statistical methodology to analyze and understand reconstruction errors in video anomaly detection.

In addition, the approach trains solely on normal data, making it e�ective in scenarios with scarcely

labeled anomalies by learning typical patterns and identifying deviations during evaluation. To

illustrate, this study investigates two reconstruction-based models: a simple autoencoder and the

advanced MAMA autoencoder[34]. These models learn and reconstruct normal behavior from

anomaly-free datasets, producing low reconstruction errors for normal frames and signi�cantly

higher errors for anomalous frames during testing. The integration of the MS-Plot enhances this

approach by jointly analyzing magnitude and shape deviations, o�ering a comprehensive framework

for anomaly detection. This approach was evaluated on two publicly available datasets, UCSD Ped2 and

CUHK Avenue, demonstrating superior performance compared to traditional univariate functional

detectors, including Functional Boxplot (FBplot)[58], Total Variation Depth with Modi�ed Shape

Similarity (TVDMSS), Extremal Depth (ED)[59], and Outliergram (OG)[60]. Unlike these univariate

approaches, which focus on either shape or mean deviations, MS-Plot captures complex, multivariate

outliers, proving more sensitive to both subtle and signi�cant anomalies in video data. Also, the

proposed approach surpassing state-of-the-art techniques.

The remaining sections of this paper are organized as follows. Section 2 provides a brief overview of

the MS-Plot approach and its application in anomaly detection, along with a recap of the simple

autoencoder and other variants utilized in this study. Section 3 details the proposed approach based on

MS-Plot. Section 4 discusses the datasets employed and presents the evaluation results that validate

the e�ectiveness of our method. Finally, Section 5 concludes the study.

2. Materials and methods

2.1. Problem statement

Video anomaly detection aims to identify frames with abnormal behavior by learning normal patterns

during training and detecting deviations during testing. Frame-level detection evaluates each frame

for anomalies, such as unexpected objects, irregular behaviors, or environmental changes, without

relying on object- or scene-based approaches. Let    denote a video consisting of multiple frames X
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, where    represents the total number of frames. Each frame    at time    is

represented as:

where    and    are the height and width of the frame, and    denotes the intensity of the pixel

located at   in frame  .

The goal is to develop a model   that assigns a binary label   to each frame   such that:

Here,    indicates a normal frame, while    indicates an anomalous frame. This detection is

performed at the frame level.

Frame-level anomaly detection in videos presents challenges such as diverse anomaly types and

limited labeled data. Anomalies range from sudden lighting changes to unexpected behaviors,

complicating model generalization. The scarcity of labeled data necessitates unsupervised or semi-

supervised methods focused on normal patterns. This study employs autoencoder models combined

with the MS-Plot to enhance video anomaly detection. The following sections elaborate on the MS-

Plot and its role in this process.

2.2. MS-Plot for Functional Data Outlier Detection

The MS-Plot, introduced by Dai and Genton (2018)  [48], detects outliers in functional data by

evaluating magnitude and shape deviations from a central region. Extending the concept of functional

directional outlyingness, it measures both the extent and direction of deviations. This measure allows

the MS-Plot to e�ectively capture two components of outlyingness: magnitude (distance from the

central region) and shape (direction of deviation), making it suitable for both univariate and

multivariate functional data.

Mean Directional Outlyingness (MO): This quanti�es the average magnitude of a function’s

deviation from the central region across its domain, e�ectively identifying anomalies in overall

amplitude or intensity. For a function   with distribution  , it is de�ned as [48]:

where   represents the directional outlyingness at each point   in the domain  , and 

 is a weight function.

X = { , , … , }X1 X2 XT T Xt t

= { (t) ∣ 1 ≤ i ≤ H, 1 ≤ j ≤ W},Xt pij (1)

H W (t)pij

(i, j) t

f yt Xt

= f( ) where ∈ {0, 1}yt Xt yt (2)

= 0yt = 1yt

X(t) FX

MO(X, ) = O(X(t), )w(t)dt,FX ∫
I

FX(t) (3)

O(X(t), )FX(t) t I

w(t)

qeios.com doi.org/10.32388/0N1EBC 7

https://www.qeios.com/
https://doi.org/10.32388/0N1EBC


Variation of Directional Outlyingness (VO): This measures the variability in directional

outlyingness across the domain, capturing deviations in the shape or structure of the function. By

assessing this variability, VO enables the detection of shape anomalies or irregular patterns within

the data [48].

Functional Directional Outlyingness (FO) quanti�es the overall outlyingness of a function, de�ned

as [48]:

In Equation (5), FO combines magnitude outlyingness  , representing deviation extent, and

shape outlyingness  , re�ecting structural variability. This decomposition enhances the ability to

quantify centrality and identify abnormal patterns in functional data.

The MS-Plot technique classi�es observations as normal or anomalous by applying a threshold to the

FO measure, which combines magnitude and shape deviations. Dai and Genton[48]  proposed

calculating FO using MO and VO. Assuming normal data distribution and using random projection

point-wise depth, they compute functional directional outlyingness. The method utilizes the squared

robust Mahalanobis distance (SRMD) for  , where the covariance matrix is determined

using the Minimum Covariance Determinant (MCD) algorithm[61]. The SRMD’s tail distribution is

approximated with a Fisher’s F distribution[62], and curves with SRMD values exceeding the threshold

are �agged as outliers.

2.3. Autoencoder-Based Video Anomaly Detection

An autoencoder is a neural network framework that learns to compress input data into a latent

representation and then reconstruct it back to its original form[63]. This process is facilitated by two

key components: an encoder, which reduces the data’s dimensionality, and a decoder, which restores

it[64].

Encoder: transforms the input data into a compact latent space, preserving critical features and

�ltering out noise and unnecessary details.

Decoder: Reconstructs the input data from the latent representation, aiming to reduce the

reconstruction error by aligning the output closely with the original input.

V O(X, ) = ∥O(X(t), ) − MO(X, ) w(t)dt.FX ∫
I

FX(t) FX ∥2 (4)

FO(X, ) = ∥MO(X, ) + V O(X, ).FX FX ∥2
FX (5)

∥MO∥

V O

(MO,V O)T
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Let   represent an input frame. The encoder function   transforms   into a latent representation  ,

and the decoder function   reconstructs the original frame as  :

During training, the autoencoder is optimized to minimize a reconstruction loss, commonly the Mean

Squared Error (MSE) between the input   and its reconstruction  :

where   is the total number of pixels in the frame.

Figure 1 presents a �owchart of an autoencoder for video anomaly detection. Trained solely on normal

frames, the autoencoder minimizes reconstruction errors for normal patterns. Anomalous frames

deviating from these patterns result in higher reconstruction errors, forming the basis for anomaly

detection.

Figure 1. Basic Autoencoder for Video Anomaly Detection.

The process of using an autoencoder for video anomaly detection is summarized as follows.

1. Training Phase: The autoencoder is trained on a dataset of normal video frames, optimizing it to

reconstruct typical, expected frames.

2. Testing Phase: For each test frame  , the autoencoder reconstructs the frame as    and

computes the reconstruction error:

X E X Z

D X̂

Z = E(X), = D(Z).X̂ (6)

X X̂

L(X, ) = ( − ,X̂
1

N
∑
i=1

N

Xi X̂i)
2 (7)

N

Xt X̂t
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where   denotes the overall reconstruction error for frame  .

3. Anomaly Detection: A frame is identi�ed as an anomaly when the reconstruction error 

 surpasses a speci�ed threshold  .

Here,   indicates an anomalous frame, while   indicates a normal frame.

Autoencoders e�ectively detect video anomalies by learning compact representations of normal

patterns, highlighting subtle deviations through reconstruction errors[65]. Trained exclusively on

normal data, they excel in unsupervised settings, making them suitable for applications like

surveillance and tra�c monitoring[6]. Their ability to �ag deviations without labeled anomalies is

especially valuable in scenarios with limited anomaly data[37]. Various enhancements have been

proposed to improve their detection capabilities[66][39][34][57].

3. MS-Plot for Video Anomaly Detection with Reconstruction

Models

This study introduces a framework that integrates the MS-Plot with reconstruction-based models for

anomaly detection. Residuals (reconstruction errors) generated by these models are treated as

multivariate functional data and analyzed using the MS-Plot to identify anomalies. Frame-level

anomaly detection involves learning normal behavior patterns, calculating reconstruction errors, and

applying the MS-Plot for multivariate functional outlier analysis. This enhances detection accuracy

and versatility, enabling the identi�cation of diverse anomalies in video sequences. For simplicity, the

MS-Plot framework is demonstrated with an autoencoder model, but it can be extended to other

reconstruction-based models.

This approach consists of three steps: training a reconstruction-based model on anomaly-free data to

learn normal patterns, generating residuals by comparing input and reconstructed frames during

testing, and analyzing these residuals with the MS-Plot to detect anomalies based on magnitude and

shape outlyingness. This integration of reconstruction learning and multivariate analysis ensures

e�ective anomaly detection.

= ∥ − ∥,et Xt X̂t (8)

et Xt

et τ

= {yt
1
0

if  > τet
otherwise.

(9)

= 1yt = 0yt
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3.1. Training Phase - Learning Normal Behavior

During training, only normal frames are provided to the model. The model is typically an autoencoder

comprising an encoder function   and a decoder function  . The model aims to reconstruct the input

frame   as  :

The autoencoder is trained to minimize a reconstruction loss function  , which measures the

di�erence between the original frame   and the reconstructed frame  . A common choice for   is

the mean squared error (MSE):

where   represents the intensity of the reconstructed pixel at location  .

3.2. Testing Phase - Residual Generation and Anomaly Detection

In the testing phase, the model receives frames from unseen video sequences. For each frame  , it

computes the reconstruction   and the corresponding reconstruction error matrix:

where   denotes the absolute di�erence between the original and reconstructed

pixel intensities.

To enhance anomaly detection, the reconstruction error matrices    are treated as multivariate

functional data. For each frame  , the MS-Plot calculates MO and VO to detect deviations from

normal patterns. The directional outlyingness    quanti�es the extent to which the error

matrix   deviates from a reference distribution  :

The MS-Plot visualizes    against    to distinguish normal from anomalous frames, with the

relationship de�ned as:

The MS-Plot applies a threshold on functional outlyingness   to classify each frame   as normal

or anomalous. The decision rule is:

E D

Xt X̂t

= D(E( ))X̂t Xt (10)

L( , )Xt X̂t

Xt X̂t L

L( , ) = ( (t) − (t)Xt X̂t
1

HW
∑
i=1

H

∑
j=1

W

pij p̂ ij )2 (11)

(t)p̂ ij (i, j)

Xt

X̂t

= { (t) ∣ 1 ≤ i ≤ H, 1 ≤ j ≤ W}Et eij (12)

(t) = | (t) − (t)|eij pij p̂ ij

Et

Xt

O( ,F)Et

Et F

MO( ,F) = O( , )w(t)dt, V O( ,F) = ∥O( , ) − MO( ,F) w(t)dt.Et ∫
I

Et FEt
Et ∫

I

Et FEt
Et ∥2 (13)

|MO| V O

FO = ∥MO + V O.∥2 (14)

FO Xt
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Algorithm 1 summarizes the steps for using the MS-Plot to analyze residuals and detect frame-level

anomalies.

3.3. Evaluation Metrics for Anomaly Detection in Videos

In video anomaly detection, evaluation metrics like True Positive Rate (TPR), False Positive Rate

(FPR), Precision, F1 Score, and Accuracy are essential for assessing the e�ectiveness of identifying

anomalies while minimizing false detections. These metrics quantify detection e�ectiveness by

comparing model predictions against ground truth labels. The mathematical de�nitions of these

metrics are summarized in Table 1, where TP, FP, TN, and FN represent True Positives, False Positives,

True Negatives, and False Negatives, respectively.

= {yt
1
0

if FO( ) >Et τFO
otherwise.

(15)
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Metric Equation

True Positive Rate (TPR)

False Positive Rate (FPR)

Precision

F1 Score

Accuracy

Table 1. Summary of Evaluation Metrics for Video Anomaly Detection.

TPR measures the proportion of actual anomalies correctly identi�ed, while FPR indicates the rate of

normal frames misclassi�ed as anomalies, a critical factor in reducing false alarms in video data.

Precision evaluates the accuracy of predicted anomalies, re�ecting the proportion of correctly

identi�ed anomalies among all �agged instances. Accuracy captures the overall proportion of

correctly classi�ed frames, encompassing both normal and anomalous ones. Finally, the F1-score

provides a balanced assessment by combining Precision and Recall, particularly useful in scenarios

with class imbalance.

4. Results and discussion

4.1. Data discription

In this section, the investigated anomaly detection methods are tested on two widely-used benchmark

datasets: the UCSD Pedestrian (Ped2) dataset[67]  and the CUHK Avenue dataset[17], summarized in

Table 2.

TPR = TP

TP+FN

FPR = FP

FP+TN

Precision = TP

TP+FP

F1 = 2 ⋅ Precision⋅Recall

Precision+Recall

Accuracy = TP+TN

TP+FP+TN+FN
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Dataset Total Frames Training Frames Testing Frames Resolution (pixels)

UCSD Ped2 4,560 2,550 2,010 360×240

CUHK Avenue 30,652 15,328 15,324 640×360

Table 2. Details of the UCSD Ped2 and CUHK Avenue Datasets.

UCSD Ped2 dataset: The UCSD Ped2 dataset[67]  is a widely-used benchmark for video anomaly

detection, particularly in surveillance contexts. It captures video sequences of a pedestrian-only

walkway, where anomalies such as bicycles, skateboards, and vehicles disrupt typical pedestrian

activity. The dataset is divided into a training set with 16 clips (2,550 frames) containing only normal

pedestrian behavior and a testing set with 12 clips (2,010 frames) featuring both normal events and

anomalies. This structure allows models to learn typical patterns during training and evaluate their

ability to detect anomalies. Figure  2 illustrates examples from the dataset, highlighting various

anomalies, including cyclists, vehicles, and skaters, which challenge models to accurately

di�erentiate normal and abnormal events.
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Figure 2. Sample frames from the UCSD Ped2 dataset showing anomalies: (a) Cyclist, (b) Van and cyclist,

(c) Cyclist and skater, and (d) two cyclists. Red boxes highlight anomalous regions.

The UCSD Ped2 dataset is recorded at a resolution of 240×360 pixels with a frame rate of 10 frames per

second (fps). It includes frame- and pixel-level annotations in the test set, marking anomalies,

anomalies timing and location, and facilitating detailed performance evaluation. Frame-level

annotations assess a model’s ability to detect anomalies within a frame, while pixel-level annotations

enable precise localization of anomalous events. Its controlled environment and clear distinction

between normal and anomalous events make it a widely accepted standard for evaluating video

anomaly detection models. This dataset is essential for benchmarking new methods, assessing model

accuracy in anomaly detection, and comparing performance across established metrics. Table 3

outlines the anomalous frames and total video lengths in the UCSD Ped2 dataset, focusing on videos

with both normal and anomalous events for MS-Plot analysis.
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Test Video Anomalous Frame Range Total Frames

Video 1 61–180 180

Video 2 95–180 180

Video 3 1–146 150

Video 4 31–180 180

Video 5 1–129 150

Video 6 1–159 180

Video 7 46–180 180

Video 8 1–180 180

Video 9 1–120 120

Video 10 1–150 150

Video 11 1–180 180

Video 12 88–180 180

Table 3. Anomalous Frame Ranges and Total Frame Count for Each Test Video in the UCSD Ped2 Dataset.

CUHK Avenue dataset: The CUHK Avenue dataset[17]  is a widely used benchmark for video anomaly

detection. Captured by a �xed camera overlooking an avenue at the Chinese University of Hong Kong,

it o�ers consistent scene composition, varied lighting conditions, and interactions among multiple

pedestrians. The dataset contains 37 video sequences, recorded at 25 frames per second (fps) with a

resolution of 640 × 360 pixels, comprising approximately 30,652 frames. It includes 16 training videos

featuring normal pedestrian activities, such as walking and entering or exiting the scene, and 21

testing videos containing both normal and abnormal events. Abnormal behaviors include running,

throwing objects, loitering, walking in unusual directions, and abandoning items. Figure  3 presents

examples from the CUHK Avenue dataset, showcasing a range of anomalies, such as running, walking

in unconventional directions, and loitering.
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Figure 3. Sample frames from the CUHK Avenue dataset showing anomalies: (a) running, (b) walking in

unconventional directions, and (c) loitering.

4.2. Detection results using UCSD2 Ped2 dataset

In the �rst experiment, the potential of the MS-Plot technique as an e�ective detection framework is

demonstrated by employing three distinct reconstruction-based models: a simple autoencoder and

the MAMA-based model[34]. Each model is trained exclusively on anomaly-free data to establish a

baseline representation of normal behavior. The autoencoder architecture used in this study features

an encoder with three convolutional blocks, each comprising a 3×3 Conv2D layer with ReLU activation

followed by a 2×2 MaxPooling layer. The encoder’s convolutional layers include 32, 16, and 8 �lters.

The decoder mirrors this structure, using 3×3 Conv2D layers with ReLU activation and 2×2

upsampling, concluding with a 3×3 Conv2D layer (three �lters) and a Sigmoid activation function for

output generation. Input images are resized to 64×64 pixels, normalized to [0, 1], and processed in

batches of 32. The model is trained for 50 epochs using the Adam optimizer and a Mean Squared Error

(MSE) loss function to measure reconstruction error.

The second approach combines the MAMA reconstruction-based model[34]  with the MS-Plot for

anomaly detection. The MAMA model operates in two stages: the F2LM generator processes video

frames through three parallel streams—raw frames, semantic labels (DeepLabv3), and motion data

(FlowNet2)—using a Feature Transform Convolutional (FTC) block to generate high-quality

reconstructions for normal events and degraded outputs for anomalies. In the second stage, the

Destroyer network enhances these distinctions by suppressing low-quality regions in the F2LM

output. To enhance temporal context and motion evolution, the model processes �ve consecutive

frames at each time point. The residuals generated by the two considered reconstruction-based

models are analyzed using the MS-Plot, which takes the residual matrix as input and evaluates

anomalies through a multidimensional assessment of magnitude and shape outlyingness. By treating

qeios.com doi.org/10.32388/0N1EBC 17

https://www.qeios.com/
https://doi.org/10.32388/0N1EBC


the residual matrix as functional data, the MS-Plot detects subtle and complex anomalies, leveraging

its nuanced analysis of deviations and the models’ ability to handle diverse normal patterns, thereby

improving sensitivity and accuracy in video anomaly detection.

Tables 4 and 5 summarize the detection performance of the investigated models on the UCSD Ped2

testing set, using the MS-Plot to analyze reconstruction errors. Table 4 highlights the results for the

AE-MS-Plot method, demonstrating varying performance across the testing videos. The method

achieves perfect TPR and AUC scores for certain videos (e.g., Videos 9–11), re�ecting accurate

detection of anomalies. However, its performance falters in scenarios like Video 8, where cyclists and

skaters move in di�erent directions, leading to notably low TPR and Accuracy scores. Similarly, Videos

1 and 5, where a bike appears in crowded areas, show higher false positive rates, indicating di�culty

in distinguishing anomalies in complex scenes. These results suggest that while the AE-MS-Plot

method can e�ectively detect clear deviations, it faces challenges in scenarios involving subtle

anomalies or overlapping movements, emphasizing the need for models capable of handling diverse

anomaly patterns.
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Video TPR FPR Accuracy Precision F1-score AUC

1 100.00 46.67 84.44 81.08 89.55 78.09

2 18.60 0.00 61.11 100 31.37 77.53

3 95.89 0.00 96.00 100 97.90 98.18

4 95.33 0.00 96.11 100 97.61 97.90

5 100.00 33.33 95.33 94.85 97.36 84.66

6 98.74 9.52 97.78 98.74 98.74 95.06

7 63.70 0.00 72.78 100 77.83 83.13

8 23.33 0.00 23.33 100 37.84 63.41

9 100 0.00 100 100 100 100

10 100 0.00 100 100 100 100

11 100 0.00 100 100 100 100

12 98.92 0.00 99.44 100 99.46 99.52

Table 4. Detection performance of AE-MS-Plot on UCSD Ped2 test videos.
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Dataset TPR FPR Accuracy Precision F1-score AUC

1 97.50 1.79 97.73 99.15 98.32 98.08

2 97.67 1.11 98.30 98.82 98.25 98.43

3 98.59 0.00 98.63 100.00 99.29 99.38

4 98.00 0.00 98.30 100.00 98.99 99.24

5 97.60 4.76 97.26 99.19 98.39 96.60

6 97.42 4.76 97.16 99.34 98.37 96.53

7 97.71 0.00 98.30 100.00 98.84 98.97

8 98.86 0.00 98.86 100.00 99.43 99.66

9 97.41 0.00 97.41 100.00 98.69 98.87

10 98.63 0.00 98.63 100.00 99.31 99.47

11 98.30 0.00 98.30 100.00 99.14 99.32

12 95.70 1.20 97.16 98.89 97.27 97.40

Table 5. Detection performance of MAMA-MS-Plot on UCSD Ped2 test videos.

The results in Table 5 demonstrate the superior performance of the MAMA-MS-Plot method in

detecting di�erent types of anomaly in crowded videos within the UCSD Ped2 dataset. The method

consistently achieves high TPR, Precision, F1-scores, and AUC values across most videos,

demonstrating its capability to identify both clear and subtle anomalies e�ectively. Compared to the

AE-MS-Plot method, the MAMA-MS-Plot provides enhanced accuracy and maintains low false

positive rates, emphasizing its e�ectiveness in handling diverse testing conditions and crowded

environments. This indicates that the sophisticated reconstruction mechanisms in these models

generate residuals sensitive enough for the MS-Plot to detect subtle deviations that a simpler

autoencoder might miss. Overall, the MS-Plot framework enhances anomaly detection by analyzing

magnitude and shape deviations in residuals over time, capturing subtle anomalies, and reducing false

positives in complex scenarios.
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4.3. Comparison of MS-Plot and univariate functional anomaly detection methods

The second experiment compares the MS-Plot-based approach with established univariate functional

anomaly detection methods, including Functional Boxplot (FBPlot)[58], Total Variation Depth with

Modi�ed Shape Similarity (TVDMSS)[68], Extremal Depth (ED)[59], and Outliergram (OG)[60]. To apply

these methods, residual matrices from the autoencoder models were reshaped into one-dimensional

vectors. A brief overview of each method is provided for context before comparing their performance

with the MS-Plot.

The FBPlot, introduced by Sun and Genton (2011)[58], extends the traditional boxplot for functional

data by using depth measures, such as modi�ed band depth (MBD), to detect outliers. It centers on

the median curve and constructs an envelope representing the central 50% of data, identifying

outliers as curves that deviate beyond 1.5 times the interquartile range.

The TVDMSS method[68], proposed by Huang and Sun (2019), identi�es functional outliers using

total variation depth (TVD) for magnitude deviations and modi�ed shape similarity (MSS) for

shape anomalies. Thresholds on TVD and MSS scores allow detection of outliers in magnitude,

shape, or both.

The ED[59], proposed by Narisetty and Nair (2016), ranks functional data based on "extremeness"

to detect both boundary and central outliers. Curves with ED values below a threshold are �agged as

outliers.

The OG[60], introduced by Arribas-Gil and Romo (2014), identi�es shape outliers in functional data

using Modi�ed Band Depth (MBD) for centrality and Half-Region Depth (HRD) for spread. Outliers

are visualized as points deviating from the main cluster in an MBD-HRD plot, emphasizing unusual

shapes.

Table  6 presents the comparative results of the proposed MS-Plot-based approaches (AE-MS-Plot

and MAMA-MS-Plot) against traditional univariate functional anomaly detection methods (FBPlot,

TVDMSS, ED, and OG) on the UCSD Ped2 dataset. The analysis highlights notable di�erences in

performance, with MS-Plot-based methods, particularly MAMA-MS-Plot, demonstrating superior

results across all evaluated metrics. These �ndings underscore the e�ectiveness of MS-Plot in

capturing both magnitude and shape deviations, o�ering a more comprehensive detection framework

compared to univariate techniques. For example, MAMA-MS-Plot achieves an AUC of 98.74%, along

with high TPR and precision values (97.90% and 99.68%, respectively), demonstrating strong
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detection accuracy with a minimal false positive rate (FPR of 1.45%). In comparison, AE-MS-Plot

achieves a moderate AUC of 88.3%, with a TPR of 82.46%, precision of 94.11%, and an FPR of 23.48%.

These results highlight the MS-Plot’s e�ectiveness, with MAMA-MS-Plot excelling in accuracy and

sensitivity. In contrast, univariate methods applied to autoencoder residuals perform poorly

compared to MS-Plot-based approaches (Table 6). For instance, AE-FBPlot and AE-TVDMSS achieve

an AUC of 52.41% with a TPR of 27.19%, re�ecting low sensitivity to anomalies. Even the best

univariate method, AE-ED, attains an AUC of 60.16%, far below the performance of MS-Plot-based

techniques. Additionally, ED and OG methods applied to vectorized residuals show inconsistent TPR

and FPR values, further highlighting their limitations.

Approach TPR FPR Accuracy Precision F1-score AUC

AE-MS-Plot 82.46 23.48 81.39 94.11 87.90 88.3

MAMA-MS-Plot 97.90 1.45 98.01 99.68 98.78 98.74

AE-FBPlot 27.19 22.38 36.39 84.48 41.14 52.41

AE-TVDMSS 27.19 22.38 36.39 84.48 41.14 52.41

AE-ED 48.40 28.07 52.50 89.09 62.72 60.16

AE-OG 0.00 0.00 17.60 0.00 0.00 50.00

MAMA-FBPlot 3.09 0.00 19.98 100.00 12.76 51.54

MAMA-TVDMSS 3.77 0.00 20.54 100.00 15.14 51.88

MAMA-ED 4.69 1.75 21.00 92.68 8.93 51.47

MAMA-OG 0.00 0.00 17.60 0.00 0.00 50.00

DMAD-FBPlot 0.19 0.00 17.58 100.00 0.37 50.09

DMAD-TVDMSS 0.19 0.00 17.58 100.00 0.37 50.09

DMAD-ED 11.05 17.84 23.45 74.58 19.25 46.61

DMAD-OG 49.81 55.56 48.88 80.94 61.67 47.13

Table 6. Comparison of average performance: MS-Plot vs. univariate methods on UCSD Ped2 test videos.
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This comparison reveals the superiority of MS-Plot-based methods over univariate approaches. By

analyzing both magnitude and shape outlyingness, MS-Plot e�ectively detects anomalies in

functional residuals data. Unlike univariate methods like FBPlot and ED, which rely on single-

dimensional measures, MS-Plot captures nuanced deviations in reconstruction errors, critical for

frame-level video anomaly detection. Its ability to handle variability in residuals and assess both the

level and direction of outlyingness enables the detection of subtle shifts missed by univariate

methods, improving overall detection accuracy.

4.4. MS-Plot Visualization Results based on UCSD Ped2 Testing Set

This study utilizes the UCSD Ped2 testing set to demonstrate the MS-Plot’s ability to visually

represent frame-level anomaly detection, as illustrated in Figure 4. The 3D MS-Plot, with ( ) on

the x-axis, ( ) on the y-axis, and frame numbers on the z-axis, highlights anomalies (red dots) and

normal frames (blue dots) using residuals from the MAMA-based autoencoder. By excluding videos

with solely anomalous frames (Table  3), the analysis highlights the MS-Plot’s ability to distinguish

anomalies from normal behavior in mixed-event scenarios and track their progression over time.

|MO|

V O
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Figure 4. 3D MS-Plot representation for videos in the UCSD Ped2 testing set.

Figure  4 illustrates the MS-Plot’s capability to distinguish normal frames (blue points) from

anomalies (red points) using magnitude outlyingness ( ) and shape outlyingness ( ). Normal

frames cluster at lower    and    values, while anomalies show higher values, often forming

distinct clusters. Elevated    values highlight unusual shape variations, such as those caused by

cyclists or skaters. The z-axis, representing frame numbers, tracks the temporal progression of

anomalies, e�ectively visualizing their persistence and separation from normal behavior.

4.5. MS-Plot results based on CUHK Avenue data

We extend the evaluation of the two investigated models, the AE-MS-Plot and MAMA-MS-Plot

approaches, to the CUHK Avenue dataset to further analyze their performance. The CUHK Avenue

dataset is particularly challenging due to its diverse set of anomalous behaviors, such as running,

|MO| V O

|MO| V O

V O
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loitering, and abandoning objects, captured in a dynamic and semi-structured environment. By

examining the performance of the MS-Plot-based methods on individual videos, the analysis provides

insights into the robustness and sensitivity of these approaches to varying anomaly patterns and

complexities within the dataset. Following the same protocol as the UCSD Ped2 dataset, both models

are trained exclusively on anomaly-free data to learn typical behavioral patterns and subsequently

applied to the test set for anomaly detection. This methodology ensures that the models generalize

e�ectively from normal data without prior exposure to anomalous events. The results from univariate

functional detectors on the CUHK dataset were excluded due to their poor performance. The

performance of the AE-MS-Plot and MAMA-MS-Plot models on the CUHK Avenue dataset is detailed

in Tables 7 and 8. From Tables 7, the AE-MS-Plot performs well on simpler anomalies (e.g., Videos 1,

4, and 12 with AUC > 97%) but struggles with complex or predominantly anomalous frames (e.g.,

Videos 3, 10, and 19 with AUC of 50%), highlighting its limitations in handling diverse scenarios. The

unsatisfactory AE-based results may stem from dataset imbalances, particularly in CUHK Avenue,

where the dominance of normal frames ampli�es the impact of false negatives. Moreover, frames

containing partial abnormal events, such as a small portion of a bike or an object at the start of a

video, further complicate detection, revealing the limitations of the AE-based approach.
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Video TPR FPR Accuracy Precision F1-score AUC

1 94.90 0.00 98.40 100.00 97.38 97.70

2 40.29 10.01 84.27 34.36 37.09 65.40

3 100.00 100.00 9.35 9.35 17.10 50.00

4 94.62 0.00 99.47 100.00 97.24 97.50

5 92.14 0.00 97.51 100.00 95.91 96.30

6 91.92 0.00 97.27 100.00 95.79 96.20

7 67.62 0.00 94.35 100.00 80.68 84.00

8 100.00 0.00 100.00 100.00 100.00 100.00

9 15.92 0.00 76.11 100.00 27.46 58.20

10 100.00 100.00 19.21 19.21 32.23 50.00

11 100.00 0.00 100.00 100.00 100.00 100.00

12 100.00 0.00 100.00 100.00 100.00 100.00

13 92.59 0.00 98.90 100.00 96.15 96.50

14 72.60 0.00 96.03 100.00 84.13 86.50

15 84.44 20.04 80.36 29.46 43.68 82.40

16 91.92 12.07 88.47 54.17 68.16 90.10

17 79.61 0.00 82.74 100.00 88.65 90.00

18 83.02 0.00 84.54 100.00 90.72 91.70

19 100.00 100.00 53.88 53.88 70.03 50.00

20 44.06 0.00 58.15 100.00 61.17 72.20

21 64.15 10.00 71.23 94.44 76.40 77.30

Table 7. Performance of AE-MS-Plot on CUHK Test Videos.
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Video TPR FPR Accuracy Precision F1-score AUC

1 84.92 3.15 93.11 92.51 88.55 91.21

2 84.89 3.18 95.45 77.63 81.10 91.18

3 95.35 3.36 96.52 74.55 83.67 96.32

4 93.55 1.65 97.88 86.14 89.69 96.27

5 82.70 1.02 93.82 97.41 89.46 91.16

6 89.15 1.18 95.55 97.47 93.12 94.30

7 80.95 1.01 95.85 94.44 87.18 90.29

8 90.00 0.00 96.97 100.00 94.74 95.32

9 76.88 0.72 92.92 97.71 86.05 88.40

10 93.79 0.30 98.57 98.69 96.18 97.07

11 81.42 0.00 92.75 100.00 89.76 91.03

12 79.92 0.79 95.43 96.14 87.28 89.89

13 95.06 0.00 99.27 100.00 97.47 97.85

14 90.41 2.09 96.83 88.00 89.19 94.48

15 96.67 2.75 97.19 77.68 86.14 97.28

16 91.92 1.25 97.83 91.92 91.92 95.65

17 77.93 0.00 81.32 100.00 87.60 89.29

18 78.49 0.00 80.41 100.00 87.95 89.57

19 80.30 1.77 88.57 98.15 88.33 89.59

20 78.71 0.00 84.07 100.00 88.09 89.68

21 79.25 0.00 84.93 100.00 88.42 89.94

Table 8. Performance of MAMA-MS-Plot on CUHK Test Videos.
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The MAMA-MS-Plot performs well on the CUHK Avenue dataset, achieving high AUC values above

95% in videos like 1, 4, 8, 10, and 13 (Table  8). However, it faces challenges in videos with complex

anomalies, such as 9 and 18, where AUC scores drop but remain above 88%. These results indicate the

method’s overall reliability while highlighting areas for potential improvement in detecting

anomalies in highly skewed scenarios.

The overall AUC results show an improvement with the MAMA-MS-Plot (91.43%) over the AE-MS-

Plot (81.40%), demonstrating enhanced anomaly detection performance through its advanced

residual analysis combined with the MS-Plot framework.

4.6. Comparison with SOTA methods

Table  9 provides an overall comparison of AUC scores for the proposed MS-Plot-based approaches

and state-of-the-art (SOTA) methods on the UCSD Ped2 dataset. The MAMA-MS-Plot achieves an

impressive AUC of 98.74%, while the AE-MS-Plot records 88.30%, showcasing the overall

e�ectiveness of the MS-Plot framework in accurately identifying video anomalies. Speci�cally,

compared to other detection methods, the MAMA-MS-Plot demonstrated the highest performance,

achieving the best AUC score among the evaluated approaches.
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Method AUC (%)

MPPCA[10] 77.00

Motion-appearance model[69] 90.00

Spatial Temporal CNN[33] 86.00

Conv-AE[66] 90.00

AMDN[70] 90.80

GMFC-VAE[71] 92.20

StackRNN[72] 92.20

MGFC-AAE[44] 91.60

ST-CaAE[73] 92.90

MemAE[37] 94.10

DAW[74] 96.40

MPN[75] 96.90

ConvLSTM[76] 88.10

spatiotemporal AE (STAE)[39] 91.20

Conv2D[66] 90.00

TMAE[77] 94.10

MAMC[78] 96.70

Cascade Reconstruction[79] 97.70

MAMA[34] 98.20

AE-MS-Plot 88.30

MAMA-MS-Plot 98.74

Table 9. Comparison of AUC (%) with SOTA methods on the UCSD Ped2 dataset.
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The MAMA-MS-Plot method demonstrates improved performance over the original MAMA-based

approach, achieving an AUC of 98.74% compared to 98.20%. This improvement highlights the

bene�ts of using the MS-Plot framework for anomaly detection, particularly in its ability to enhance

the interpretability and precision of detection outcomes. In the original MAMA model, anomaly

detection is based on empirically determined thresholds primarily based on abnormal changes in the

magnitude of residuals. These thresholds, while functional, lack a systematic foundation, which can

lead to inconsistencies when addressing diverse anomaly patterns or capturing more nuanced

deviations in behavior. The integration of the MS-Plot framework addresses this limitation by treating

the residuals of the MAMA model as multivariate functional data. The MS plot evaluates outlyingness

(amplitude deviations) and shape (pattern deviations), providing a multidimensional analysis of

residual patterns. This capability is particularly bene�cial in video anomaly detection, where

anomalies often exhibit subtle or complex deviations that may not be e�ectively captured by simpler

thresholding techniques. Using the MS-Plot framework, the MAMA-MS-Plot approach o�ers a

statistically principled method to analyze residuals, enhancing the consistency and reliability of

anomaly detection. The framework’s capacity to capture both amplitude and shape deviations allows

for a more comprehensive understanding of anomalies, ultimately improving detection performance

in complex and dynamic video environments.

We compare the proposed MS-Plot-based methods with several state-of-the-art anomaly detection

techniques in the CUHK Avenue dataset, as detailed in Table  10. The MAMA-MS-Plot approach

achieves an AUC of 91.43%, demonstrating its strong competitiveness among SOTA methods. In

particular, the previous highest reported AUC was 91.30%, achieved by SD-MAE[56]. The MAMA-MS-

Plot exceeds this by a small but meaningful margin of 0.13%, setting a new benchmark for anomaly

detection performance in this data set.
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Method AUC (%)

Unmasking[80] 80.60

StackRNN[72] 81.70

MemAE[37] 83.3

FastAno[55] 85.30

STemGAN[53] 86.00

EVAL[81] 86.02

MESDnet[82] 86.3

Any-Shot Sequential[83] 86.40

AMMC-Net[84] 86.60

ASTNet[38] 86.70

Context Pre[85] 87.10

Learning not to reconstruct[86] 87.10

Siamese Net[87] 87.20

Object-centric AE[88] 87.40

AKD-VAD[89] 88.30

AnomalyRuler[52] 89.70

Two-stream[54] 90.80

MAMA[34] 91.20

SD-MAE[56] 91.30

AE-MS-Plot 81.40

MAMA-MS-Plot 91.43

Table 10. Comparison of AUC (%) with SOTA methods on the CUHK Avenue dataset.
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This improvement, while incremental, underscores the value of integrating the MS-Plot framework,

which provides a systematic and statistically principled approach to anomaly detection. By treating

residuals as multivariate functional data, the MAMA-MS-Plot captures both magnitude and shape

deviations, enabling more precise di�erentiation between normal and anomalous frames. In contrast,

traditional methods often rely on empirically determined thresholds or univariate analyses, which

may miss subtle or multidimensional patterns indicative of anomalies. The MS-Plot’s ability to

enhance the performance of already strong models like MAMA highlights its potential as a

generalizable and e�ective addition to video anomaly detection pipelines. This advantage is

particularly signi�cant given the challenging nature of the CUHK Avenue dataset, which features

diverse and complex anomalous behaviors.

5. Conclusion

This study demonstrates the e�cacy of the Magnitude-Shape (MS) Plot framework for video anomaly

detection, combining statistical functional data analysis with reconstruction-based models. By

treating reconstruction errors as multivariate functional data, the MS-Plot captures both magnitude

and shape deviations, enabling accurate identi�cation of anomalies in complex, crowded video scenes.

The integration of autoencoders with the MS-Plot enhances anomaly detection by leveraging their

capacity to model normal behavior and identify deviations with statistical rigor. Experimental results

on benchmark datasets, including UCSD Ped2 and CUHK Avenue, highlight the advantages of the

proposed framework over traditional univariate functional detectors and several state-of-the-art

methods. Speci�cally, the MAMA-MS-Plot approach achieves consistently high AUC scores,

showcasing its capability to generalize across diverse scenarios and detect both subtle and

pronounced anomalies e�ectively.

The �ndings emphasize the potential of MS-Plot-based frameworks to address the challenges of

video anomaly detection, such as the variability of anomalies and limited labeled data. An important

direction for future work is to focus on developing unsupervised and robust statistical methods that do

not rely on anomaly-free training data. Such methods would further enhance the practicality of video

anomaly detection by eliminating the dependence on curated normal datasets and addressing the

inherent challenges of real-world applications, such as data scarcity and variability in anomaly types.
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