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One of the possible representations of three-valued instantaneous noise-based logic is proposed. The 

third value is an uncertain bit value, which can be useful in artificial intelligence applications. There is 

a forth value, too, that can represent a non-existing bit (vacuum-state) that is the same (1 numeric 

value) for all bits, however that is a squeezed state common for all bits. Some logic gates are explored. 

A ternary Universe has a significant advantage compared to the standard binary one: its amplitude is 

never zero during any clock period. All the known binary logic gates work for the binary bit values in 

the same way as earlier therefore the former binary algorithms can be run in the ternary system with no 

change and without the problems posed by zero values of the Universe. 
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Annihilation/Creation gate; never-zero universe amplitude. 

 

1. Introduction 

 

1.1. On noise-based logic 

 

Noise-based logic (NBL) [1,2], is a deterministic scheme where the logic information is 

represented by truly random, stationary, orthogonal stochastic processes (noises with zero 

mean). In binary NBL, a pair of noises represents the High (H, 1) and Low (L, 0) bit values 

of the noise-bit. For M noise-bits, 2M orthogonal noises are required. The 2M noise-bit 

values are provided by the Reference Noise System (RNS) and they are distributed all over 
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the NBL processor (see Figure 1). With the received input logic information (noises) and 

the reference noises, the NBL gates create their output signals, which are also noises. It can 

be: any of the reference signals; their arbitrary superposition; their products; or the 

arbitrary superposition of their products. The products of noises, which are strings 

representing binary numbers, makes an exponentially large, 2M dimensional Hilbert space 

(hyperspace) [1,2].  

 

 

 
 

Figure 1. Generic noise-based logic hardware scheme [13]. Logic operations can be executed by the gates or by 

operations on the reference signals. The Reference Noise System is based on a truly random number generator.  

 

 

1.2 On binary instantaneous noise-based logic 

 

Instantaneous noise-based logic (INBL, [3-16]) does not require time averaging to create 

the output of the logic gate. It has many sub-types depending on the kind of the noise 

utilized. In the present paper, the reference noises have a periodic clocking and they are 

independent two-state noises, called random telegraph waves (RTW), with 
  
R(t) = ±1 

amplitudes (each one with probability 0.5) for both the H (1) and the L (0) bit values, 

respectively, of a given noise bit [3,4]. The value is determined at the beginning of the 

clock period by a truly random coin. Such an RTW can be viewed as the binary fingerprint 

of the corresponding logic value of the given bit. As an example, see Figure 2. 
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Figure 2. Example [11] of random telegraph wave (RTW) carrying a bit value of a chosen noise-bit in the 

asymmetric INBL scheme. The clock is periodic. At the beginning of each clock period, an unbiased, truly 

random coin generates the choice between the two possible amplitude levels. An M-noise-bit system requires 2M 

such RTWs. 

 

The RNS of an M-noise-bits system with the 2M truly random noise generators is given as: 

 

 
  
R

10
(t),R

11
(t),R

20
(t),R

21
(t),..., R

M 0
(t),R

M1
(t)  ,    (1) 

 

where the first index is the bit significance index and the second one represents the 0 (L) or 

1 (H) values of that noise-bit. The reference noises (in the infinite-time limit) can also be 

viewed as orthogonal vectors: 

 

  
R

ij
(t)R

pq
(t) = 0      for    i ¹ p   and/or   j ¹ q ,    (2) 

 

where  means infinite time average. 
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Thus, the superpositions of these signals represent a 2M dimensional geometrical space.  

 

However, product operations between the reference noises and their superpositions can 

lead out from this original space and form a hyperspace [1] which is also a Hilbert space, 

with exponentially high (N=  2
M ) dimensions representing an exponentially large number 

(N) of classical bits [2]. Figure 3 shows a circuit-block illustration of an INBL processor, 

which can be realized by a PC that can handle O(M) long words (that is, having O(M) bit 

resolution), and a truly random noise generator. 

 

 

 

Figure 3. Circuit-block illustration of the logic structure of the generic superposition synthesizer for 

instantaneous NBL (INBL). The RNS contains 2M independent RTW generators representing the M noise-bits. 

The Hilbert Space Synthesizer is an algorithm that is typically containing multiplications, additions and 

subtractions. The output signal Y(t) can represent a logic state with an exponentially large number of, O(N), 

classical bit values. For examples, see the text. 
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Some examples: 

 

In the INBL systems, binary numbers are M-bit long product-strings formed by the noises 

of the corresponding reference signals. For example, in a 3 noise-bit system, M = 3, the 

signal 
  
W6(t)  of the number 6 and its binary version, 110, is carried by the noise product 

 

  
W

6
(t) = R

10
(t)R

21
(t)R

31
(t) ,      (3) 

 

where bit-1 is the bit of the lowest significance, and bit-3 is of the highest significance. 

 

In a 4 noise-bit system, the signal 
  
Y

7,4,1
(t)  of the superposition of the numbers 7 (111); 4 

(100); and 1 (001) is: 

 

  

Y
7,4,1

(t) = W
7
(t) +W

4
(t) +W

1
(t) =

                    =R
11

(t)R
21

(t)R
31

(t) + R
10

(t)R
20

(t)R
31

(t) + R
11

(t)R
20

(t)R
30

(t)  .
         (4) 

 

The product strings belonging to different numbers are orthogonal due to Equation (2), so 

this system is a Hilbert space with   2
M   dimensions. 

 

Some of the exponentially large, O(N=2M) superpositions of product strings can be set up 

by polynomial-in-M complexity in INBL. For example, the Universe U(t), which is the 

superposition of all the binary numbers in the M noise-bit system, can be created by 

putting into superposition the L (0) and the H (1) bit values of each noise-bit and then 

multiplying these sums (Achilles heel operation [2,5,11,13]): 

 

  
U(t) = R

10
(t) + R

11
(t)éë ùû R

20
(t) + R

21
(t)éë ùû  ... R

M 0
(t) + R

M1
(t)éë ùû    (5) 
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The time function U(t) of the Universe is set up by M additions and M-1 multiplications. 

When Equation (5) is expanded, it forms an exponentially large superposition, 

representing the superposition of all the binary numbers which this M noise-bit system can 

form. For example, in the 3 noise-bit case (N=8), it is: 

 

  

U
M=3

(t) = R
10

(t)R
20

(t)R
30

(t) + R
11

(t)R
20

(t)R
30

(t) + R
10

(t)R
21

(t)R
30

(t) +

                 + R
11

(t)R
21

(t)R
30

(t) + R
10

(t)R
20

(t)R
31

(t) +

                  +R
11

(t)R
20

(t)R
31

(t) + R
10

(t)R
21

(t)R
31

(t) + R
11

(t)R
21

(t)R
31

(t)  .   

(6)

 

 

 

1.3 On ternary (trinary) logic 

 

Ternary logic [17,18] is a form of logic that allows for three bit values instead of the 

two classical values (false and true; or Low and High) used in binary logic. For example 

the three values used in ternary logic can be represented as Low (L, 0), High (H, 1), or 

Uncertain (X, 2).  

 

The feature that ternary logic can represent uncertainty can be useful in applications 

where it is important to represent the possibility of error or uncertainty, such as in artificial 

intelligence. 

 

In ternary logic, logical operations such as AND, OR, and NOT are defined to work 

with the three values. For example, the AND operation in ternary logic returns H only if 

both inputs are H, and L if either input is L. However, if an input is H and the other one is 

indeterminate (X), the result is also X. 

 

Finally, ternary logic can be used to represent more complex relationships than binary 

logic. This is because there are more possible combinations of values in ternary logic than 

in binary logic. For example, in binary logic, the only possible relationship between two 

values is that they are either equal or unequal. In ternary logic, there are three possible 

relationships between two values: they can be equal, unequal, or unknown. This additional 
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complexity can be useful in applications where it is important to represent relationships 

that are not simply equal or unequal, such as in natural language processing. 

 

In conclusion, ternary logic is a useful tool that can be used in a variety of applications. It 

offers several advantages over binary logic, including the ability to represent values more 

precisely, uncertainty, and more complex relationships. However its classical hardware is 

more complex than that of Boolean logic. In the rest of the paper we introduce an INBL 

version of ternary logic that does not require significantly more complex hardware than 

that of binary INBL. 

 

 

2. A ternary Instantaneous Noise-based Logic 

 

Below, we show one of the possible realizations of ternary INBL (TINBL). It is a simple 

generalization of the binary INBL (BINBL). 

 

2.1 The basis of the TINBL 

 

The possible values of the i-th bit are: 

 

(a) High: Hi is the same as in BINBL, it is represented by an RTW, denoted as
  
R

i1
(t)  

 

(b) Low: Li is the same as in BINBL, it is represented by another RTW, denoted as 
  
R

i0
(t)  

 

(c) Uncertain: Xi is represented by the product of the above RTWs: 

 

  
R

ix
(t) = R

i1
(t)R

i0
(t)          (7) 

 

Note, because 
  
R

ix
(t)  is an unknown bit value, it has 1 bit information entropy.  
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(d) Non-existent bit: The amplitude value 1 instead of 
  
R

ix
(t)  or 

  
R

i0
(t)R

i1
(t) at bit i is a 

nonexistent bit (vacuum-state). This is a 4th bit value, however the vacuum state is the 

same for all bits thus it is a squeezed logic state [3,4]. BINBL has also a vacuum state that 

represents a 3rd bit value there however, because it is squeezed, we do not normally count 

it. 

 

2.2 Some superpositions in TINBL 

 

(e) Universe without vacuum-states: 
 

  

U
nv

(t) = R
10

(t) + R
11

(t) + R
10

(t)R
11

(t)éë ùû R
20

(t) + R
21

(t) + R
20

(t)R
21

(t)éë ùû

              R
30

(t) + R
31

(t) + R
30

(t)R
31

(t)éë ùû... R
M0

(t) + R
M1

(t) + R
M0

(t)R
M1

(t)éë ùû

           (8) 

 

  
U

nv
(t)  has 3M product strings. Its advantage is that its amplitude is never zero. Thus the 

disadvantage of other solutions [6,7,11] for avoiding the zero amplitudes of the Universe 

can be avoided. 
 

 

(f) The total Universe including vacuum-states: 
 

 
  
U

tot
(t) = R

10
(t) + R

11
(t) + R

10
(t)R

11
(t) +1éë ùû... R

M0
(t) + R

M1
(t) + R

M0
(t)R

M1
(t) +1éë ùû          (9) 

 

  
U

tot
(t)  has 4M elements in the superposition. Out of all the possible product strings, it 

contains also the single basic RTW elements, too. Such a universe can be useful in some 

special-purpose applications (traveling salesmen problems, graph coloring problems, etc.). 
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2.3 Examples for logic gates in TINBL 

 

Here we show a few simple examples to illustrate the differences between the BINBL and 

TINBL systems. For binary inputs the TINBL gates function in the same way as in the 

BINBL system. 

 

 

2.3.1 The NOT/Annihilation/Creation gate 

 

The NOT gate is the same as in BINBL: 

 

  
NOT

i
 Y(t)éë ùû = R

i0
(t)R

i1
(t)Y(t)   ,        (10) 

where Y(t) is the signal of the input state. 

 

The gate works for the binary values of the logic states in the same way, as earlier: 

 

 
  
NOT

i
 H

i
éë ùû º R

i0
(t)R

i1
(t)R

i1
(t) = R

i0
(t) º L

i
 ,    (11) 

 
  
NOT

i
 L

i
éë ùû º R

i0
(t)R

i1
(t)R

i0
(t) = R

i1
(t) º H

i
 .    (12) 

 

This fact implies that, when the TINBL system is running a BINBL algorithm, the CNOT 

and XOR gates also function in the same way as earlier because these gates are based on 

the NOT gate. The same is true for BINBL algorithms with the old gates (e.g. 

[9,11,13,15,16]). 

 

The NOT gate is an Annihilation gate for the relevant bit with the uncertain bit value: 

 

 
  
NOT

i
 X

i
éë ùû º NOT

i
 R

i0
(t)R

i1
(t)éë ùû = R

i0
(t)R

i1
(t)R

i0
(t)R

i1
(t) =1ºV  ,   (13) 
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where the output value the vacuum V (=1) indicates that the i-th bit with uncertain value is 

removed from the string.  

 

On the other hand, when the bit does not exist in the string, which means its value is a 

steady 1 amplitude within the product, the NOT gate acts a Creation gate as it creates the 

missing bit and provides an uncertain value for it:  

 

  
NOT

i
 Véë ùû º NOT

i
 1éë ùû = R

i0
(t)R

i1
(t) º X

i
 .      (14) 

 

 

2.3.2 The XOR and XNOR (also Creation and Annihilation) gates for single bit output 

 

This versions work only in a single bit system, not on multi-bit product strings: 

 

  
XOR A, Béë ùû º A(t)B(t)L(t) ,      (15)  

  
XNOR A, Béë ùû º A(t)B(t)H(t)  .      (16)  

 

The related truth tables are shown in Tables 1 and 2, respectively. It is apparent that these 

gates can also act as Annihilation and Creation gates when the one or both inputs contain X 

and/or V values. For classical binary input values they act as the classical XOR and XNOR 

gates, respectively  

 

 L H X V 

L L H X V 

H H L V X 

X X V L H 

V V X H L 

 

Table 1. Ternary single-output bit XOR gate truth table. Bold: input values. Plain: output 

values. 
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 L H X V 

L H L V X 

H L H X V 

X V X H L 

V X V L H 

 

Table 2. Ternary single-output bit XNOR gate truth table. Bold: input values. Plain: output 

values. 

 

 

3. Conclusion 

A three-valued instantaneous noise-based logic is proposed. The third value is an uncertain 

bit value that can be useful in artificial intelligence applications. There is a forth value, too, 

that can represent a non-existing bit (vacuum-state) that is the same (1 steady amplitude) 

for all bits, however that is a squeezed state which is common for all bits. The same 

vacuum state exists also in binary INBL.  

Some simple logic gates are shown to illustrate the differences between the BINBL and 

TINBL systems. All the known binary logic gates work for the binary bit values in the 

ternary system in same way as earlier.  

The ternary Universe without the vacuum states has an important advantage compared 

to the standard binary one: its amplitude is never zero during any clock period.  

 

In summary, the former binary algorithms (e.g. 9,11,13,15,16]) can also be run in the 

ternary system with no change and without the problems posed by zero values of the 

Universe. Future works will explore the applicability of TINBL to create new logic gates 

and to solve special purpose problems. 
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