

TERNARY INSTANTANEOUS NOISE-BASED LOGIC

LASZLO B. KISH 1,2

1 Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843-3128,

USA

2 Óbuda University, Budapest, Bécsi út 96/B, Budapest, H-1034, Hungary

One of the possible representations of three-valued instantaneous noise-based logic is proposed. The

third value is an uncertain bit value, which can be useful in artificial intelligence applications. There is

a forth value, too, that can represent a non-existing bit (vacuum-state) that is the same (1 numeric

value) for all bits, however that is a squeezed state common for all bits. Some logic gates are explored.

A ternary Universe has a significant advantage compared to the standard binary one: its amplitude is

never zero during any clock period. All the known binary logic gates work for the binary bit values in

the same way as earlier therefore the former binary algorithms can be run in the ternary system with no

change and without the problems posed by zero values of the Universe.

Keywords: Noise-based logic; trinary logic; uncertain bit value; vacuum-state; NOT gate;

Annihilation/Creation gate; never-zero universe amplitude.

1. Introduction

1.1. On noise-based logic

Noise-based logic (NBL) [1,2], is a deterministic scheme where the logic information is

represented by truly random, stationary, orthogonal stochastic processes (noises with zero

mean). In binary NBL, a pair of noises represents the High (H, 1) and Low (L, 0) bit values

of the noise-bit. For M noise-bits, 2M orthogonal noises are required. The 2M noise-bit

values are provided by the Reference Noise System (RNS) and they are distributed all over

https://doi.org/10.32388/0PPLHD

TERNARY INSTANTANEOUS NOISE BASED LOGIC

2

the NBL processor (see Figure 1). With the received input logic information (noises) and

the reference noises, the NBL gates create their output signals, which are also noises. It can

be: any of the reference signals; their arbitrary superposition; their products; or the

arbitrary superposition of their products. The products of noises, which are strings

representing binary numbers, makes an exponentially large, 2M dimensional Hilbert space

(hyperspace) [1,2].

Figure 1. Generic noise-based logic hardware scheme [13]. Logic operations can be executed by the gates or by

operations on the reference signals. The Reference Noise System is based on a truly random number generator.

1.2 On binary instantaneous noise-based logic

Instantaneous noise-based logic (INBL, [3-16]) does not require time averaging to create

the output of the logic gate. It has many sub-types depending on the kind of the noise

utilized. In the present paper, the reference noises have a periodic clocking and they are

independent two-state noises, called random telegraph waves (RTW), with

R(t) = ±1

amplitudes (each one with probability 0.5) for both the H (1) and the L (0) bit values,

respectively, of a given noise bit [3,4]. The value is determined at the beginning of the

clock period by a truly random coin. Such an RTW can be viewed as the binary fingerprint

of the corresponding logic value of the given bit. As an example, see Figure 2.

Laszlo B. Kish

 3

Figure 2. Example [11] of random telegraph wave (RTW) carrying a bit value of a chosen noise-bit in the

asymmetric INBL scheme. The clock is periodic. At the beginning of each clock period, an unbiased, truly

random coin generates the choice between the two possible amplitude levels. An M-noise-bit system requires 2M

such RTWs.

The RNS of an M-noise-bits system with the 2M truly random noise generators is given as:

R

10
(t),R

11
(t),R

20
(t),R

21
(t),..., R

M 0
(t),R

M1
(t) , (1)

where the first index is the bit significance index and the second one represents the 0 (L) or

1 (H) values of that noise-bit. The reference noises (in the infinite-time limit) can also be

viewed as orthogonal vectors:

R

ij
(t)R

pq
(t) = 0 for i ¹ p and/or j ¹ q , (2)

where means infinite time average.

TERNARY INSTANTANEOUS NOISE BASED LOGIC

4

Thus, the superpositions of these signals represent a 2M dimensional geometrical space.

However, product operations between the reference noises and their superpositions can

lead out from this original space and form a hyperspace [1] which is also a Hilbert space,

with exponentially high (N= 2
M) dimensions representing an exponentially large number

(N) of classical bits [2]. Figure 3 shows a circuit-block illustration of an INBL processor,

which can be realized by a PC that can handle O(M) long words (that is, having O(M) bit

resolution), and a truly random noise generator.

Figure 3. Circuit-block illustration of the logic structure of the generic superposition synthesizer for

instantaneous NBL (INBL). The RNS contains 2M independent RTW generators representing the M noise-bits.

The Hilbert Space Synthesizer is an algorithm that is typically containing multiplications, additions and

subtractions. The output signal Y(t) can represent a logic state with an exponentially large number of, O(N),

classical bit values. For examples, see the text.

Laszlo B. Kish

 5

Some examples:

In the INBL systems, binary numbers are M-bit long product-strings formed by the noises

of the corresponding reference signals. For example, in a 3 noise-bit system, M = 3, the

signal

W6(t) of the number 6 and its binary version, 110, is carried by the noise product

W

6
(t) = R

10
(t)R

21
(t)R

31
(t) , (3)

where bit-1 is the bit of the lowest significance, and bit-3 is of the highest significance.

In a 4 noise-bit system, the signal

Y

7,4,1
(t) of the superposition of the numbers 7 (111); 4

(100); and 1 (001) is:

Y
7,4,1

(t) = W
7
(t) +W

4
(t) +W

1
(t) =

 =R
11

(t)R
21

(t)R
31

(t) + R
10

(t)R
20

(t)R
31

(t) + R
11

(t)R
20

(t)R
30

(t) .
 (4)

The product strings belonging to different numbers are orthogonal due to Equation (2), so

this system is a Hilbert space with 2
M dimensions.

Some of the exponentially large, O(N=2M) superpositions of product strings can be set up

by polynomial-in-M complexity in INBL. For example, the Universe U(t), which is the

superposition of all the binary numbers in the M noise-bit system, can be created by

putting into superposition the L (0) and the H (1) bit values of each noise-bit and then

multiplying these sums (Achilles heel operation [2,5,11,13]):

U(t) = R

10
(t) + R

11
(t)éë ùû R

20
(t) + R

21
(t)éë ùû ... R

M 0
(t) + R

M1
(t)éë ùû (5)

TERNARY INSTANTANEOUS NOISE BASED LOGIC

6

The time function U(t) of the Universe is set up by M additions and M-1 multiplications.

When Equation (5) is expanded, it forms an exponentially large superposition,

representing the superposition of all the binary numbers which this M noise-bit system can

form. For example, in the 3 noise-bit case (N=8), it is:

U
M=3

(t) = R
10

(t)R
20

(t)R
30

(t) + R
11

(t)R
20

(t)R
30

(t) + R
10

(t)R
21

(t)R
30

(t) +

 + R
11

(t)R
21

(t)R
30

(t) + R
10

(t)R
20

(t)R
31

(t) +

 +R
11

(t)R
20

(t)R
31

(t) + R
10

(t)R
21

(t)R
31

(t) + R
11

(t)R
21

(t)R
31

(t) .

(6)

1.3 On ternary (trinary) logic

Ternary logic [17,18] is a form of logic that allows for three bit values instead of the

two classical values (false and true; or Low and High) used in binary logic. For example

the three values used in ternary logic can be represented as Low (L, 0), High (H, 1), or

Uncertain (X, 2).

The feature that ternary logic can represent uncertainty can be useful in applications

where it is important to represent the possibility of error or uncertainty, such as in artificial

intelligence.

In ternary logic, logical operations such as AND, OR, and NOT are defined to work

with the three values. For example, the AND operation in ternary logic returns H only if

both inputs are H, and L if either input is L. However, if an input is H and the other one is

indeterminate (X), the result is also X.

Finally, ternary logic can be used to represent more complex relationships than binary

logic. This is because there are more possible combinations of values in ternary logic than

in binary logic. For example, in binary logic, the only possible relationship between two

values is that they are either equal or unequal. In ternary logic, there are three possible

relationships between two values: they can be equal, unequal, or unknown. This additional

Laszlo B. Kish

 7

complexity can be useful in applications where it is important to represent relationships

that are not simply equal or unequal, such as in natural language processing.

In conclusion, ternary logic is a useful tool that can be used in a variety of applications. It

offers several advantages over binary logic, including the ability to represent values more

precisely, uncertainty, and more complex relationships. However its classical hardware is

more complex than that of Boolean logic. In the rest of the paper we introduce an INBL

version of ternary logic that does not require significantly more complex hardware than

that of binary INBL.

2. A ternary Instantaneous Noise-based Logic

Below, we show one of the possible realizations of ternary INBL (TINBL). It is a simple

generalization of the binary INBL (BINBL).

2.1 The basis of the TINBL

The possible values of the i-th bit are:

(a) High: Hi is the same as in BINBL, it is represented by an RTW, denoted as

R

i1
(t)

(b) Low: Li is the same as in BINBL, it is represented by another RTW, denoted as

R

i0
(t)

(c) Uncertain: Xi is represented by the product of the above RTWs:

R

ix
(t) = R

i1
(t)R

i0
(t) (7)

Note, because

R

ix
(t) is an unknown bit value, it has 1 bit information entropy.

TERNARY INSTANTANEOUS NOISE BASED LOGIC

8

(d) Non-existent bit: The amplitude value 1 instead of

R

ix
(t) or

R

i0
(t)R

i1
(t) at bit i is a

nonexistent bit (vacuum-state). This is a 4th bit value, however the vacuum state is the

same for all bits thus it is a squeezed logic state [3,4]. BINBL has also a vacuum state that

represents a 3rd bit value there however, because it is squeezed, we do not normally count

it.

2.2 Some superpositions in TINBL

(e) Universe without vacuum-states:

U
nv

(t) = R
10

(t) + R
11

(t) + R
10

(t)R
11

(t)éë ùû R
20

(t) + R
21

(t) + R
20

(t)R
21

(t)éë ùû

 R
30

(t) + R
31

(t) + R
30

(t)R
31

(t)éë ùû... R
M0

(t) + R
M1

(t) + R
M0

(t)R
M1

(t)éë ùû

 (8)

U

nv
(t) has 3M product strings. Its advantage is that its amplitude is never zero. Thus the

disadvantage of other solutions [6,7,11] for avoiding the zero amplitudes of the Universe

can be avoided.

(f) The total Universe including vacuum-states:

U

tot
(t) = R

10
(t) + R

11
(t) + R

10
(t)R

11
(t) +1éë ùû... R

M0
(t) + R

M1
(t) + R

M0
(t)R

M1
(t) +1éë ùû (9)

U

tot
(t) has 4M elements in the superposition. Out of all the possible product strings, it

contains also the single basic RTW elements, too. Such a universe can be useful in some

special-purpose applications (traveling salesmen problems, graph coloring problems, etc.).

Laszlo B. Kish

 9

2.3 Examples for logic gates in TINBL

Here we show a few simple examples to illustrate the differences between the BINBL and

TINBL systems. For binary inputs the TINBL gates function in the same way as in the

BINBL system.

2.3.1 The NOT/Annihilation/Creation gate

The NOT gate is the same as in BINBL:

NOT

i
 Y(t)éë ùû = R

i0
(t)R

i1
(t)Y(t) , (10)

where Y(t) is the signal of the input state.

The gate works for the binary values of the logic states in the same way, as earlier:

NOT

i
 H

i
éë ùû º R

i0
(t)R

i1
(t)R

i1
(t) = R

i0
(t) º L

i
 , (11)

NOT

i
 L

i
éë ùû º R

i0
(t)R

i1
(t)R

i0
(t) = R

i1
(t) º H

i
 . (12)

This fact implies that, when the TINBL system is running a BINBL algorithm, the CNOT

and XOR gates also function in the same way as earlier because these gates are based on

the NOT gate. The same is true for BINBL algorithms with the old gates (e.g.

[9,11,13,15,16]).

The NOT gate is an Annihilation gate for the relevant bit with the uncertain bit value:

NOT

i
 X

i
éë ùû º NOT

i
 R

i0
(t)R

i1
(t)éë ùû = R

i0
(t)R

i1
(t)R

i0
(t)R

i1
(t) =1ºV , (13)

TERNARY INSTANTANEOUS NOISE BASED LOGIC

10

where the output value the vacuum V (=1) indicates that the i-th bit with uncertain value is

removed from the string.

On the other hand, when the bit does not exist in the string, which means its value is a

steady 1 amplitude within the product, the NOT gate acts a Creation gate as it creates the

missing bit and provides an uncertain value for it:

NOT

i
 Véë ùû º NOT

i
 1éë ùû = R

i0
(t)R

i1
(t) º X

i
 . (14)

2.3.2 The XOR and XNOR (also Creation and Annihilation) gates for single bit output

This versions work only in a single bit system, not on multi-bit product strings:

XOR A, Béë ùû º A(t)B(t)L(t) , (15)

XNOR A, Béë ùû º A(t)B(t)H(t) . (16)

The related truth tables are shown in Tables 1 and 2, respectively. It is apparent that these

gates can also act as Annihilation and Creation gates when the one or both inputs contain X

and/or V values. For classical binary input values they act as the classical XOR and XNOR

gates, respectively

 L H X V

L L H X V

H H L V X

X X V L H

V V X H L

Table 1. Ternary single-output bit XOR gate truth table. Bold: input values. Plain: output

values.

Laszlo B. Kish

 11

 L H X V

L H L V X

H L H X V

X V X H L

V X V L H

Table 2. Ternary single-output bit XNOR gate truth table. Bold: input values. Plain: output

values.

3. Conclusion

A three-valued instantaneous noise-based logic is proposed. The third value is an uncertain

bit value that can be useful in artificial intelligence applications. There is a forth value, too,

that can represent a non-existing bit (vacuum-state) that is the same (1 steady amplitude)

for all bits, however that is a squeezed state which is common for all bits. The same

vacuum state exists also in binary INBL.

Some simple logic gates are shown to illustrate the differences between the BINBL and

TINBL systems. All the known binary logic gates work for the binary bit values in the

ternary system in same way as earlier.

The ternary Universe without the vacuum states has an important advantage compared

to the standard binary one: its amplitude is never zero during any clock period.

In summary, the former binary algorithms (e.g. 9,11,13,15,16]) can also be run in the

ternary system with no change and without the problems posed by zero values of the

Universe. Future works will explore the applicability of TINBL to create new logic gates

and to solve special purpose problems.

Acknowledgements

TERNARY INSTANTANEOUS NOISE BASED LOGIC

12

Useful comments by Walter Daugherity are appreciated.

References

[1] L.B. Kish, Noise-based logic: binary, multi-valued, or fuzzy, with optional superposition of

logic states, Physics Letters A 373 (2009) 911–918 ; arXiv:0808.3162.

[2] L.B. Kish, S. Khatri, S. Sethuraman, Noise-based logic hyperspace with the superposition of

2^N states in a single wire, Physics Letters A 373 (2009) 1928–1934 ; arXiv:0901.3947.

[3] L.B. Kish, S. Khatri, F. Peper, Instantaneous noise-based logic, Fluct. Noise Lett. 9 (2010)

323–330 ; arXiv:1004.2652

[4] F. Peper, L.B. Kish, Instantaneous, non-squeezed, noise-based logic, Fluct. Noise Lett. 10

(2011) 231–237. Open access.

[5] H. Wen, L.B. Kish, Noise-based logic: Why noise? A comparative study of the necessity of

randomness out of orthogonality, Fluct. Noise Lett. 11 (2012) 1250021/1–1250021/7 ;

arXiv:1204.2545

[6] H. Wen, L.B. Kish, A. Klappenecker, F. Peper, New noise-based logic representations to

avoid some problems with time complexity, Fluct. Noise Lett. 11 (2012) 1250003/1–

1250003/8 ; arXiv:1111.3859.

[7] H. Wen, L.B. Kish, A. Klappenecker, Complex noise-bits and large-scale instantaneous

parallel operations with low complexity, Fluct. Noise Lett. 12 (2013) 1350002.

[8] L.L. Stachó, Fast measurement of hyperspace vectors in noise-based logic, Fluct. Noise Lett.

11 (2012) 1250001.

[9] L.B. Kish, S. Khatri, T. Horvath, Computation using noise-based logic: efficient string

verification over a slow communication channel, European Journal of Physics B 79 (2011)

85–90 ; arXiv:1005.1560.

[10] L.B. Kish, C.G. Granqvist, T. Horvath, A. Klappenecker, H. Wen, S.M. Bezrukov,

"Bird's-eye view on noise-based logic,” International Journal of Modern Physics:

Conference Series 33 (2014) 1460363. Open access:

 http://www.worldscientific.com/doi/pdfplus/10.1142/S2010194514603639

[11] B. Zhang, L.B. Kish, C.G. Granqvist, "Drawing from hats by noise-based logic,”

International Journal of Parallel, Emergent and Distributed Systems 32 (2017), 244-251;

http://dx.doi.org/10.1080/17445760.2016.1140168 ; arXiv:1511.03552.

Laszlo B. Kish

 13

[12] L.B. Kish, W. Daugherity, “Noise-based logic gates by operations on the reference system”,

Fluct. Noise Lett. 17 (2018) 1850033 ; arXiv:1803.09671.

[13] L.B. Kish, ""Quantum supremacy" revisited: Low-complexity, deterministic solutions of the

original Deutsch-Jozsa problem in classical physical systems", R. Soc. Open Sci. 10 (2023)

221327 ; DOI: rsos.221327.

[14] M.B. Khreishah, W.C. Daugherity, L.B. Kish, "XOR and XNOR gates in instantaneous

noise-based logic", Fluct. Noise Lett., accepted for publication; arXiv:2302.06449.

[15] L.B. Kish, W.C. Daugherity, "Entanglement, and Unsorted Database Search in Noise-Based

Logic", Applied Sciences 9 (2019) 3029; open access:

https://www.mdpi.com/2076-3417/9/15/3029/htm

[16] W. Daugherity, L.B. Kish, "More on the Reference-Grounding-Based Search in Noise-Based

Logic", Fluct. Noise Lett. 21 (2022) 2250023; DOI: 10.1142/S0219477522500237

[17] A.P. Dhande, V.T. Ingole, V.R. Ghiye, Ternary Digital System: Concepts and Applications.

SM Online Publishers LLC, Oct 1, 2014.

[18] X.Y. Wang, C.T. Dong, Z.R. Wu, and Z.Q. Cheng, "A review on the design of ternary logic

circuits", Chin. Phys. B 30 (2021) 128402.

	Ternary instantaneous Noise-based Logic
	1. Introduction
	3. Conclusion
	References

