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ABSTRACT
The laws of chance are often subtle and deceptive. This is why games of chance work.
People are convinced that they obey seemingly intuitive laws, while the underlying
mathematical structure reveals a di↵erent and more complex reality. This article is
a brief and rigorous journey through the implications that the mathematical laws
governing stochastic processes have on gambling. It addresses a specific process, the
random walk, and analyze some instances of fair and unfair games by highlighting
the fallacy of many of our intuitions and beliefs. The paper gradually moves from
the analysis of the random walk properties to a comprehensive description of the
ruin problem. The introduction of the idea of transient and persistent states con-
cludes the discussion. Much emphasis is placed on concrete examples and on the
numerical values, in particular of the involved probabilities, and the interpretation
of the results is always more central than the demonstrative technical details, which
are nevertheless available to the reader.
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1. Introduction

The simplest game of chance between two players is to flip a coin so that one wins
on heads and the other wins on tails. Suppose the two players repeat the toss many
times, and each time one loses, he or she gives the other a dollar. Of course, a player
is considered a winner at some stage of the game if he has won more than he has lost.
Now consider the question: What fraction of the total game time do we imagine one
player will spend in the role of the winner, and what fraction in the role of the loser?

Most people will probably respond that, being tossing a coin a ’50%-50%’ game,
each player will spend about half the time leading and half the time losing. Indeed we
are more or less convinced that we will spend part of the time as winners and part of
the time as losers, and that this distribution will be somehow balanced. We also know
that we cannot expect a 50% and 50% net split and that there will be some kind of
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fluctuation. Maybe we can expect to be in the lead 55% of the time and our opponent
45% of the time, or 48% against a 52%. In short, although we do not know what the
exact split will be, we think it is most likely to be around half the playing time.

In the same way we are led to think that, if we start to loose, sooner or later we
will break even and regain what we lost. But how many times can we a↵ord to lose
and come back to zero? Are we sure that this can happen as often as we would like?

Furthermore, what if the coin is rigged and it is no longer a fair game? how should
we adjust our expectations? in a sense, in this case, it is easier for us to imagine some
kind of asymmetric behavior that makes us in the game more favorable or unfavorable
depending on the point of view.

Let us mention here only one example that will be discussed in the text. Suppose
our strategy is to quit the game when our total winnings reach a certain value A, or,
alternatively, when we completely deplete the budget B that we decide to allocate to
this game. We will see that if even the probability of winning at each step is only
5% below the 50% which is typical of a fair game, and the probability of losing is
5% higher, then the probability of winning A before losing all of B is substantially
less than the probability of losing all of B before winning A. Suppose A and B are 3
dollars. Then the probability of losing all our small 3 dollars budget before winning
other 3 dollars would be 65%, as opposed to 35% of winning all 3 dollars before losing
them. If it were 10 dollars, this probability would rise to 89%, and the probability of
losing would go up even more for higher bets.

This article will attempt to shed light on these and some other similar questions
and to show that issues are more subtle than they appear on the surface. It is designed
for anyone who wants to get a clearer idea of the mechanisms that govern gambling
and games of chance in their mathematical implications, which, as paradoxical, also
become psychological. We begin with a seemingly unrelated problem, counting votes
in an election between two candidates, and then describe the properties of the random
walk in the case of a fair game. We then introduce the ruin problem and compute the
probabilities mentioned above in both the fair and unfair cases. Finally, we conclude
with some remarks on the persistence of the random walker’s return to the origin.

Reading requires a certain amount of patience. The text deliberately aims for max-
imum accessibility combined with minimum mathematical rigor, so that there are no
logical or narrative leaps. The mathematics used is essentially combinatorics and ele-
mentary probability. The reader will not find any ’it is clearly seen that’ or ’it is left
to the reader to demonstrate immediately’ except in one or two places at most where
things are really obvious. However, the reader will not find any proofs in the text. It
was simply felt that all proofs should be placed in the appendix, so that the text is
direct and aimed at understanding the ideas rather than analyzing the demonstrative
details. The reader who wants to go deeper is thus directed to the appendix. Only one
proof is kept in the text since it is very instructive.

2. The Ballot Problem

Let us imagine that, during the ballot for the election to an institutional o�ce, there
are two candidates P and Q and that the ballot proceeds by examining the voting
records one by one. Of course, during the counting process, one candidate may be first
in the lead and then the other may move ahead, and this switch may occur several
times. The question we want to focus on is: What is the probability that, throughout
the counting, there have always been more votes for P than for Q?
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A good way to list the votes for each candidate, at each step n of the counting
process, is as follows. We can mark on a blackboard a +1 when the vote is assigned
to P and a �1 when the vote is assigned to Q. After n steps, we have a list where we
filled in imaginary cells with a sequence of +1 or �1. The value assigned to each cell
is completely random. We call the empty cells random variables and denote them by
Xi. We have n random variables that get the value +1 if the vote is assigned to P and
the value �1 if the vote is assigned to Q:

Xi =

⇢
+1 if vote assigned to P
�1 if vote assigned to Q

(1)

We are left with a sequence {X1, . . . , Xn} given by the votes we get from the ballot
at each step. Suppose that in the sequence we have p plus one (+1) and q minus one
(�1), and that n is the last step, or, equivalently, that we are interested only in what
happened before step n. Of course, the partial sum

Sk =
kX

i=1

Xi (2)

is the number of votes by which P leads or trails just after the k�vote is cast. Clearly
we have Sn = p · (+1) + q · (�1) = p � q and Sk � Sk�1 = Xk = ±1 with S0 = 0,
for any k = 1, . . . , n. Conversely, an arrangement {S1, . . . , Sn} of integers satisfying
Sk � Sk�1 = ±1 can represent a potential voting record.

Now the idea is to represent such an arrangement by a polygonal line whose k�th
vertex has ordinate Sk and whose k�th side has slope Xk. This line is called path.
Consider the simple example illustrated in Fig. 1: after the counting of five votes, that
is n = 5, we have Sn = 1. Therefore p+ q = n = 5 and p� q = Sn = 1, which means
p = 3 and q = 2. The figure represents the path of the counting process, or, in other
terms, of the random process.

Figure 1.: A simple example of possible outcome of the ballot counting.

More in general, a path {S1, . . . , Sn} from the origin to the point (x, y) = (n, Sn) is
a polygonal line whose vertices are (k, Sk) with Sk � Sk�1 = Xk and y = Sn.

Since at each of the n steps we have two possible directions, up or down, there
exist 2n di↵erent paths coming out from the origin in n steps to the end point (n, y),
for an arbitrary, that is not fixed, integer y. If, on the other hand, the value of y is
constrained to be of the type p � q when x is equal to p + q, the number of possible
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paths is significantly reduced. In fact, if exactly p among the Xk are +1 and q are �1,
so that x = n = p + q and y = Sn = p � q, then the p places in which we can put
the +1, can be chosen from the total n = p+ q available places in

�n
p

�
=

�n
q

�
di↵erent

ways. Therefore, this number is equal to

Nx,y =

✓
p+ q

p

◆
=

✓
p+ q

q

◆
=

✓
x

x+y
2

◆
=

✓
x

x�y
2

◆
, (3)

and Nx,y = 0 if x and y are not of the form x = p + q and y = p � q. This means
that there are exactly Nx,y di↵erent paths from the origin to the point (x, y) = (p +
q, p � q). Now, the condition that there have always been more votes for P than for
Q is equivalent to the fact that S1 > 0, S2 > 0, . . . , Sn�1 > 0 and Sn = y > 0, i.e.
that the path is always positive. The fraction of all the Nx,y paths, from the origin
to point (x, y) = (p+ q, p� q), that are always positive is quantified in a well-known
result, named after J. L. F. Bertrand (1887, see [2]), also called the Ballot Theorem:

Proposition 2.1. If x > 0 and y > 0, i.e. n > 0 and Sn > 0, the expected number
of paths from the origin to the point (x, y) that are always positive, i.e. of the kind
{S1, S2, . . . , Sn = y} with Si > 0, 8i = 1, . . . n equals

p� q

p+ q
Nx,y =

y

x
Nx,y (4)

This lemma provides the probability that, if P is leading at step n, then it has always
led at all previous steps. The complete proof of the Proposition 2.1 can be found in the
appendix. Here we make a few remarks. First, let us consider again the example in Fig.
1. We said that x = n = 5, and y = Sn = 1, so that p = 3 and q = 2. Then there are
Nx,y =

�5
3

�
= 10 possible paths from (0, 0) to (5, 1), but only y

xNx,y = 1
5 · 10 = 2 paths

are always positive and they are the two sequences (0, 1, 2, 1, 2, 1) and (0, 1, 2, 3, 2, 1).
Note that 1

5 is the slope of the straight line from (0, 0) to (5, 1) and it is the probability
that P it has always led at the previous steps if he or she is leading at step n = 5.
In general, the total number of possible paths from the origin to the point (x, y) is
multiplied by the mean slope of the polygonal line, that is the slope of the straight
line from the origin to that point.

A reverse journey. Proposition 2.1 can be re-formulated in an interesting way in
terms of reversed path. It is in a sense a dual formulation of that statement. First of
all, we define reversed path the path obtained by reversing the order of the Xi’s. In
the example in Fig. 2, the actual sequence of random variables in the blue path S is
(+1,+1,�1,�1,+1,�1,�1,+1,+1,+1,+1,+1). The reversed path S⇤ is given by the
sequence (+1,+1,+1,+1,+1,�1,�1,+1,�1,�1,+1,+1).

The reversed path is then described by the partial sums of the Xi’s in the reversed
order, that is

S⇤
1 = Xn = Sn � Sn�1

S⇤
2 = Xn +Xn�1 = Sn � Sn�2

S⇤
3 = Xn +Xn�1 +Xn�2 = Sn � Sn�3

...

S⇤
n = Xn +Xn�1 +Xn�2 + · · ·+X1 = Sn
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Figure 2.: A simple example of reversed path. Blue line is the path S and red line
(when non overlapping with S) is the reversed path S?.

As can be seen in Fig. 2, the two paths are congruent, join the same endpoints and
are obtained from each other by a rotation of 180�. Now proposition 2.1 can be re-
formulated in this way. If x, y > 0, the number of reversed paths {S⇤

1 , . . . , S
⇤
n} joining

the point (0, 0) to (x, y) such that S⇤
i > 0 for i = 1, 2, . . . , n is equal to y

xNx,y. Note
that asking for S⇤

i > 0 is equivalent to asking for Sn � Sn�i > 0, i.e. Sn > Sn�i, for
i = 1, 2, . . . , n. Explicitly, this means S1 < Sn, S2 < Sn, . . . , Sn�1 < Sn. Geometrically
speaking, we can say that the original version of the theorem is concerned with paths
whose left endpoint is the lowest vertex, whereas the dual version of the theorem is
concerned with paths whose right endpoint is the highest.

Back to the origin. Before concluding this section, we want to make some remarks
about the special case where the endpoint is y = 0, i.e. where the two candidates receive
the same number of votes p = q after n rounds of voting. This is equivalent to a path
that returns to the origin after its random walk above or below the axis. Since it
is impossible to return to the x-axis in an odd number of steps, or equivalently, we
cannot have an odd vertex on the x-axis, from now on we will denote this point as
(2n, 0) and we will be interested in paths that connect (0, 0) to a point (2n, 0) on the
x-axis. With this choice p+ q = 2n and p = q = n. Of course, the number of all these
paths is N2n,0 =

�2n
n

�
. Let us first define L2n the following number

L2n =
1

n+ 1
N2n,0 =

1

n+ 1

✓
2n

n

◆
(5)

Proposition 2.2. The following statements hold

a) The number of paths such that S1 � 0, S2 � 0, . . . , S2n�1 � 0 and S2n = 0 is
equal to L2n;

b) The number of paths such that S1 > 0, S2 > 0, . . . , S2n�1 > 0 and S2n = 0 is
equal to L2n�2.

Now the question is: Is it truly as easy as it might seem to return to the origin?
What is the likelihood of this happening after a candidate has been in the lead for the
entire ballot count? We will see that such an event is indeed extremely unlikely. To
show this, we move from the problem of a runo↵ between two candidates to a more
abstract game that reproduces the same conditions.
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3. Tossing coins

Let us now focus on a fair game, like flipping a coin to get heads or tails. Imagine that
two friends P and Q decide to play the following game for a given period, let’s say
N = 20 days. Every day they toss a coin. If it comes up heads, P wins and Q loses;
if it comes up tails, P loses and Q wins. The value of the random variable is then
assigned day by day, and each of the two friends constructs his own random walk.

Indeed, compared to the votes cast for candidates P and Q, in this case we can
make a a priori assumption about the probability of getting one or the other result.
If we call p and q the two probabilities of getting head or tail, they will be the same:
p = q = 1

2 . Suppose we decide that a particular random variable Xi takes on the value
+1 if heads comes out and the value �1 if tails comes out, then we can say that the
probabilities of the random variable taking on either value are given by

P(Xi = 1) =
1

2
P(Xi = �1) =

1

2
(6)

Therefore, we can represent any possible outcome of the N successive tosses of a
coin-and so any possible path followed by the two players in the N days of their game-
by a path of N sides starting at the origin. If we get heads, P goes up and Q down;
if we get tails, P goes down and Q up. Conversely, each such path can be seen as
representing the outcome of N tosses of a coin. We have already said that the total
number of possible paths of this type is 2N . The set of all these paths is called sample
space. The sample space is the collection ⌦ of the 2N paths {S1, . . . , SN} starting at
the origin. Since we have no reason to think that one of the paths is preferred over the
others, we can attribute probability 2�N to each one.

An event such as E = {two heads at the first two trials} must be interpreted as the
aggregate of all sequences starting with S1 = 1 and S2 = 1. There are 2N�2 such
sequences, since the first two steps are predetermined. The probability of the event
E is then P(E) = 2N�2/2N = 2�2 = 25%. More generally, if k < N there exist
exactly 2N�k di↵erent paths such that their first k vertices lie on a preassigned path
{S1, . . . , Sk}.

Now let us imagine the motion of a particle along a vertical axis as an indicator that
shows the cumulative gain at all times of the two players: for P , one unit step upward
if the coin lands on head, one unit step downward if the coin lands on tail, and the
opposite for Q. This particle performs a real random walk and its path {S1, . . . , SN}
represents the space-time diagram of its motion. In particular, we shall say that

• at time i we have a return to the origin if Si = 0,
• at time i we have a first return to the origin if {S1 6= 0, . . . , Si�1 6= 0, Si = 0},
• at time i we have a first passage through A if {S1 < A, . . . , Si�1 < A,Si = A}.

Since we will be primarily interested in a possible return to the origin and a return
can occur only at even times, as we said, we set N = 2n. The following proposition
lists the probabilities of some possible events we could be interested in.
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Proposition 3.1. The following equalities hold:

a) P(S2n = 0) =
1

22n

✓
2n

n

◆

b) P(S1 6= 0, . . . , S2n 6= 0) =
1

22n

✓
2n

n

◆

c) P(S1 � 0, . . . , S2n � 0) =
1

22n

✓
2n

n

◆

d) P(S1 6= 0, . . . , S2n�1 6= 0, S2n = 0) =
1

n · 22n�1

✓
2n� 2

n� 1

◆

e) P(S1 � 0, . . . , S2n�2 � 0, S2n�1 < 0) =
1

n · 22n�1

✓
2n� 2

n� 1

◆

In words: the three events a) a return to the origin takes place at time 2n, b) no
return occurs up to and including time 2n, and c) the path is non-negative between
0 and 2n have all the same probability 1

22n

�2n
n

�
; whereas, the two events d) the first

return to the origin takes place at time 2n, and e) the first passage through �1 occurs
at time 2n� 1, have both the same probability 1

n·22n�1

�2n�2
n�1

�
.

We introduce this notation that will come in very handy in what comes next:

u2n =

✓
2n

n

◆
pnqn (7)

which for p = q = 1
2 becomes

u2n =
1

22n

✓
2n

n

◆
. (8)

In this section, we always refer to the specific case in Eq. (8). The probabilities of
the cases a), b), and c) are then exactly u2n and the probabilities of the cases d), and
e) can be expressed as 1

2nu2n�2 = u2n�2 � u2n = 1
2n�1u2n.

The proof of this proposition is in the appendix. Here we want to use this result to
analyze one of the main statements of this reading. To do that, we need this definition:
we shall say that the particle that moves according to the random walk spends the
time from k � 1 to k on the positive side if the k�th side of its path lies above the
x-axis, i.e. if at least one of the two vertices Sk�1 and Sk is positive.

Here it is our main theorem.

Proposition 3.2. Let p2k,2n be the probability that in the time interval from 0 to 2n
the particle spends 2k time units on the positive side and 2n � 2k time units on the
negative side. Then

p2k,2n = u2k · u2n�2k (9)

Again the reader can find the complete proof in the appendix. By Eq. (8), p2k,2n can

7



be given the following equivalent expression

p2k,2n =
1

22k

✓
2k

k

◆
· 1

22n�2k

✓
2n� 2k

n� k

◆
=

1

22n

�n
k

�2�2n
n

�
�2n
2k

� (10)

We want to stress now the importance of this result by means of the following remarks.

Remark 1. We intuitively feel that the fraction k
n of the total time spent on the

positive side is most likely close to 1
2 , i.e. that the particle spends half its time above

the axis and half its time below it. But will this be true? It may seem paradoxical,
but we will see that it is not, and that the opposite is true.

In fact, have a look at the following Table 1 which lists the values of the probabilities
p2k,2n as a function of 2k for 2n = 20 and at the Fig. 3 which represents the same
probabilities for 2n = 20 and 2n = 100.

2k 0 2 4 6 8 10 12 14 16 18 20

p2k,2n 0.176 0.093 0.074 0.065 0.062 0.061 0.062 0.065 0.074 0.093 0.176

Table 1.: Values of the probabilities p2k,2n that a particle spends a fraction k/n of its
time on the positive side, as a function of 2k for 2n = 20.

(a) (b)

Figure 3.: Plot of the probabilities p2k,2n that a particle spends a fraction k/n of its
time on the positive side, as a function of 2k, (a) for 2n = 20 and (b) for 2n = 100.

As we can see, values close to k
n = 1

2 are the least probable, whereas the highest

probability is assigned to the extreme values k
n = 0 and k

n = 1. What does it mean? If
we toss a coin 20 times, the probability p10,20 that the particle spends half of its time
in the positive side is 0.06 = 6%, whereas the probability that the particle spends all
time on the positive side or all time on the negative side is 0.18 = 18%, three times
the previous one. In general, the two extreme probabilities p0,2n = p2n,2n and pn,2n are
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given by

p0,2n = p2n,2n =
1

22n

✓
2n

n

◆
=

1

22n
(2n)!

(n!)2

pn,2n =
1

22n

✓
n

n/2

◆2

=
1

22n
(n!)2

(n2 !)
4

(11)

and their ratio is given by

p0,2n
pn,2n

= (2n)!

✓ n
2 !

n!

◆4

(12)

We can use an important approximation of the factorials for very large values of n,
called the Stirling approximation, by which we can observe that

p0,2n
pn,2n

⇠
p
⇡n

2
⇠

p
n for n ! +1 (13)

The ratio between the two extreme probabilities increases with the number of trials asp
n, which means, for example, that for 2n = 200 trials, the probability of the particle

spending all of its time on the positive side is ten times the probability of an equally
distributed position above and below the axis. So we begin to realize that if we start
winning, we will keep winning, but also that if we start losing, we will keep losing! and
this with much greater probability than a more or less balanced alternation of wins
and losses! Let us try to restate the same idea in a slightly di↵erent way.

Remark 2. The quantity p2k,2n returns the probability that the particle spends ex-
actly k/n of its time on one side, positive or negative. Now let us consider the prob-
abilities that the particle spends at most or at least ↵/n, for a given ↵ 2 N, of its
time on one side. The so called cumulative distribution function P(2k  2↵), ↵ 2 N,
0  ↵  n returns this probability and it is defined as

P(2k  2↵) =
↵X

k=0

p2k,2n =
↵X

k=0

1

22n

✓
2k

k

◆✓
2n� 2k

n� k

◆

=
1

22n

✓
2n

n

◆ ↵X

k=0

�n
k

�2
�2n
k

� = p0,2n

↵X

k=0

�n
k

�2
�2n
k

�
(14)

It represents precisely the probability that the particle spends up to 2↵ time units
in the positive side, i.e. at most 2↵ time units in the positive side and at least 2n� 2↵
time units in the negative side. For instance, for the previous set of 2n = 20 trials the
distribution function P(2k  2↵) is given in the following Table 2

2↵ 0 2 4 6 8 10 12 14 16 18 20

P(2k  2↵) 0.176 0.270 0.342 0.408 0.470 0.530 0.592 0.658 0.730 0.824 1.000

Table 2.: Values of the cumulative probabilities P(2k  2↵) as a function of 2k for
2n = 20.

Data in Table 2, and the analogous ones for 2n = 100, are depicted in the Fig. 4.
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(a) (b)

Figure 4.: Cumulative distribution function P(2k  2↵) as a function of 2k (a) for
2n = 20 and (b) for 2n = 100.

The behavior shown in these plots is not coincidental, but represents a very general
property of cumulative probability. In fact, these cumulative distribution functions
follow a recurrent arcsin law, as stated by the following proposition.

Proposition 3.3. For 2n ! +1, the cumulative distribution function P(2k  2↵)
can be approximated by

P(2k  2↵) ⇡ 2

⇡
arcsin

r
↵

n
(15)

This formula returns with good approximation the probability that the time spent
on the positive side is at most, or, equivalently, less than 2↵ with 0  2↵  2n. The
following Fig. 5 compares exact results with results expected by the arcsin model:

(a) (b)

Figure 5.: Comparison between exact data (red circle points) and arcsin law (blue
square points) (a) for 2n = 20 and (b) for 2n = 100.
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Let’s be clear about the meaning of formula (15). Consider the case 2n = 20 and
the value 2↵ = 6. The cumulative probability is approximately P(2k  6) ⇡ 40%.
This is the probability that the particle spends at most ↵/n = 6/20 = 30% of its time
on the positive side and at least 1 � ↵/n = 14/20 = 70% of its time on the negative
side. In other words, if the particle were a gambler, with a 40% probability it would
spend no more than 30% of its time in the game in a winning role. It is a fairly high
probability compared to the small fraction of time he plays as a winner! In this case,
the gambler-let’s say P -would be the less fortunate of the two, spending less than half
of the game time in a winning role, i.e. he would lose more than he wins.

Remark 3. Let us consider the event E1 ={The player P is in lead less than 2↵
days}. This event can be reformulated as E1 ={P is in lead for ⇢  x } where ⇢ = 2k

2n
and x = 2↵

2n are interpreted as fractions of the game time. This event has probability

P(E1) =
2

⇡
arcsin

p
x (16)

This is the approximate probability that player P spends less time than x in the
positive region above the axis, i.e. in the role of winner. Suppose he is the less fortunate
of the two players, so that x < 1

2 . The same can be said of course by swapping the
roles of the two players: E2 ={The player Q is in lead for less than 2↵ days}={Q is
in lead for ⇢  x }. The latter event has the same probability as the former

P(E2) =
2

⇡
arcsin

p
x (17)

We cannot know a priori who is the unluckiest player. Consider the event E = E1[E2,
that is {One of the players is in lead for less than 2↵ days}. We are assuming that x
is less than half of the playing time so we are precisely considering the point of view
of the least fortunate player, whoever he or she may be. The probability of event E is
then

P(E) = 2 · 2
⇡
arcsin

p
x =

4

⇡
arcsin

p
x (18)

Suppose P and Q decide to extend the game for a whole year, 2n = 365 days! During
this year, we don’t know which of the two, but one of the two players is the less
fortunate one and is in lead for a fraction x < 1

2 of the year. Call this probability
P(E) = p. We have

p =
4

⇡
arcsin

p
x (19)

and x, that is the maximum fraction of year in which the less fortunate player is in
lead with probability p, is given by

x = sin2
⇣⇡
4
p
⌘

(20)

Let’s try to give some numbers: if p = 0.05, then x = 0.00154 = 0.5625 d = 13.50 h.
This means that, with probability 0.05, i.e. 1 out of 20 cases, the less fortunate player
will be in lead at most for 13.50 hours and the more fortunate player will be in lead

11



for at least 364 days and 10.5 hours. There is a not inconsiderable probability that
the unluckiest player will be in the lead for only a tiny fraction of the year! Table 3
collects similar results for x, expressed in days or hours, for di↵erent values of p.

p 0.99 0.95 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01
x 179,6 168,2 154,0 126,1 99,6 75,2 53,5 34,9 19,9 8,9 2,2 13,5 h 2,2 h 0,5 h

Table 3.: Values of the probability p as a function of the fraction of year x, expressed
in days.

For example, there is a 50% chance that the least lucky player will be in the lead for
a maximum of 53 days. Let us notice that, when p ! 0, x ! 0, and, when p ! 1,
x ! 1

2 .

Remark 4. What was shown in the previous remark has an interesting implication.
It says that frequently enormously many trials are required before the particle returns
to the origin, or that it takes an enormous number of attempts for the less fortunate
player to at least break even. This means that the path crosses the x-axis very rarely.
If we toss a coin for 2n times, the number of ties will be proportional to

p
2n. It can

be proved that the probability that, within the time 2n, the particle returns to zero
exactly r times is given by

P0(r, 2n) =
1

22n�r

✓
2n� r

n

◆
(21)

In particular, u2n = P0(0, 2n) = P0(1, 2n) > P0(2, 2n) > P0(3, 2n) > . . . . For in-
stance, for 2n = 100, we have P0(0, 100) = P0(1, 100) = 7.96%, P0(5, 100) = 7, 17%,
P0(10, 100) = 4.84%, P0(20, 100) = 0.73%, and P0(30, 100) = 0.014%.

We have hitherto assumed that the two probabilities p and q were equal. This is
indeed the case in a coin toss but we can imagine a random walk produced by a process
in which the two choices are not equiprobable. We now want to extend our argument
to the case in which p 6= q but, in order to do that, we need some further results about
the so called ruin problem, which is the topic of the next section.

4. The Ruin Problem

In the fair game of the previous section, p and q were interpreted as the probabilities
of getting heads or tails on a coin flip. All in all, this idea is fairly intuitive because the
two events are reasonably equiprobable. In the ballot problem p and q were numbers,
the number of actual outcomes of a ballot on N repeated trials. However, the ratios
p/N and q/N are frequencies, and, if N is large enough, they are the probabilities
of the two di↵erent outcomes. From now on, p and q will directly represent the two
probabilities that one of two possible results will come out at each repeated trial, that
is, that a given random variable will symbolically take on the value +1 or �1. If each
draw or roll is independent of the previous one, then in no way does one result a↵ect
the next. Technically, it is said that we have a set of N independent and identically
distributed random variables.

We are now in a position to give a more general and more formal definition of the
classical random walk. The random walk in one dimension is the stochastic process
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described by the motion of a particle whose position, at each step, is

Sn = S0 +
nX

k=1

Xk (22)

where Xk are independent and identically distributed (i.i.d.) random variables such
that P(Xk = 1) = p and P(Xk = �1) = q, with p + q = 1. We can assume S0 = 0,
without losing anything in our reasoning.

What we’re going to study now is the behavior of the random walk in the presence
of two barriers, that is, two di↵erent values of Sn, let’s say a positive y = A and a
negative y = �B, so that the random walk stops when it reaches one of these two
values. For example, suppose one of two players P and Q stops gambling when he or
she gets A wins or B losses in two-outcome game. This is called ruin problem and
we want to find out the probability to reach y = A before y = �B or viceversa and
the mean duration of this process. We will start from the case p = q = 1

2 which
is called unbiased since there is no drift toward the positive values or the negative
values. Then, we will move to the biased, and more general, case, in which the two
probabilities are di↵erent, p 6= q. In both cases, we will study similar propositions but
their consequences will be very di↵erent.

The unbiased random walk. Let us immediately state the following proposition.

Proposition 4.1. Let A,B 2 R, A,B > 0 and ⌧ = min{n � 0 : Sn = A or Sn = �B}
be the first passage time through A or �B. Then

P(S⌧ = A) =
B

A+B
, P(S⌧ = �B) =

A

A+B
and E[⌧ ] = AB (23)

The quantity P(S⌧ = A) represents the probability that the random walk reaches
A before �B and similarly for P(S⌧ = �B); E[⌧ ] is the expected mean value of the
time or of the number of steps needed to reach one of the two barriers. Let’s have a
look at the Fig. 6, where A = 5 and B = 3.

Figure 6.: An illustrative example of the ruin problem for an unbiased random walk,
with A = 5 and B = 3.

According to Proposition 4.1, the upper barrier in A is reached before the lower one
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in B with probability P(S⌧ = A) = 3
8 = 37.5%; similarly, P(S⌧ = �B) = 5

8 = 62.5%.
The expected mean time is E[⌧ ] = 10 units time or steps.

This is a well-known result and it can be easily extended to the case in which the
particle does not start from (0, 0) but from a point (0, k), with k 2 [�B,A]. For
instance, the expected duration becomes E[⌧ ] = (A� k)(B + k).

The biased random walk. Now, let us change the game. Suppose we roll a die
and we take one step forward if we get 5 or 6 and one step back if we get 1 or 2 or 3 or
4, so that p = 1

3 and q = 2
3 . In technical language we should say that we are extending

the previous argument to the case of a sequence of Bernoulli trials with probability p
of success and a probability q of failure, with in general p 6= q, i.e. p, q 6= 1

2 , p+ q = 1.
In other terms, we have Xk i.i.d. random variables such that

P(Xk = 1) = p P(Xk = �1) = q (24)

and we want to consider the biased random walk defined by

Sn = S0 +
nX

k=1

Xk (25)

Let us assume again S0 = 0. In general we call unbiased the random walk if p = q and
symmetric if A = B. Here now is the extension of Proposition 4.1 to the biased case.

Proposition 4.2. Let Sn be a biased classical random walk, A, B 2 R, A, B � 0 and
⌧ = min{n � 0 : Sn = A or Sn = �B} be the first passage time through A or �B.
Then we have

P(S⌧ = A) =
1�

� q
p

�B

1�
� q
p

�A+B
, P(S⌧ = �B) =

1�
�p
q

�A

1�
�p
q

�A+B
(26)

and

E[⌧ ] = B

q � p
� A+B

q � p
·

1�
� q
p

�B

1�
� q
p

�A+B

=
1

q � p

2

4A
1�

� q
p

�B

1�
� q
p

�A+B
�B

1�
�p
q

�A

1�
�p
q

�A+B

3

5
(27)

The proof of propositions 4.1 and 4.2 is not elementary, and the reader who is
not interested in rather technical details may omit their study. However, we want to
bring attention to a substantial set of consequences, which we gather in the following
remarks.

Remark 5. First, the unbiased random walk is a limiting case of the biased one for
p, q ! 1

2 . This is proved in the appendix.

Remark 6. If q = 0 and p = 1, we have P(S⌧ = A) = 1, P(S⌧ = B) ⇠
⇣
q
p

⌘B
! 0

and E[⌧ ] = (A + B) · 1 � B = A. This means that we get A in A steps. Similarly,
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if q = 1 and p = 0, we have P(S⌧ = A) ⇠
⇣
p
q

⌘A
! 0, P(S⌧ = B) = 1 and E[⌧ ] ⇠

(�1)


A
⇣
p
q

⌘A
�B

�
! B. That is, we get �B in B steps.

Remark 7. Let’s go back to the P(S⌧ = A) and P(S⌧ = �B). They are given by
Eqs. 26, and, written as functions of ⇢ = q/p, they become

P(S⌧ = A) =
1� ⇢B

1� ⇢A+B
, P(S⌧ = �B) =

1� ⇢�A

1� ⇢�(A+B)
(28)

In the symmetric case, i.e. for A = B, they are simply

P(S⌧ = A) =
1

1 + ⇢A
, P(S⌧ = �A) =

1

1 + ⇢�A
(29)

It is easy to show that they are equal only for ⇢ = 1; more in general, their behavior
as functions of ⇢ is shown in the Fig. 7 for two di↵erent values of A = B.

(a) (b)

Figure 7.: Plot of the function P(S⌧ = A) = 1
1+⇢A in red circle points and of the

function P(S⌧ = �A) = 1
1+⇢�A in blue square points (a) for A = B = 3 and (b) for

A = B = 10.

The farthest are the barriers with respect to the origin, the quickest is the change
in probabilities. For instance, for A = B = 3 we need roughly speaking a ratio ⇢ = 4
to be almost sure not to get the gain at +3, whereas for A = B = 10 it is enough
a ratio ⇢ = 1.5 to be almost sure not to reach our success at +10. Let us stress this
point. A high value of ⇢ means that the probability q of a move down predominates.
So when ⇢ is high, it becomes increasingly di�cult to win. In fact, if ⇢ is about 4 in
the case A = B = 3, it becomes practically impossible to win. In the case A = B = 10
a lower ratio ⇢ between q and p is enough to make it practically impossible to win. In
fact, it is reduced to ⇢ = 1.5.

If our strategy is to stop when we win 10 dollars or when we lose 10 dollars, then
the probability of reaching the win first before losing our budget becomes very very
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small as soon as the game becomes unfavorable to us. For example, it only takes a
⇢ = 2 to be virtually certain of losing $10 before winning $10! The following Table 4
can give us a deeper insight in the numbers involved.

A = 3 A = 10

P(S⌧ = 3) P(S⌧ = �3) P(S⌧ = 10) P(S⌧ = �10)

⇢ = 51
49 47% 53% 40% 60%

⇢ = 55
45 35% 65% 11% 89%

⇢ = 60
40 23% 77% 2% 98%

Table 4.: Values of the functions P(S⌧ = A) = 1
1�⇢A and P(S⌧ = �A) = 1

1+⇢�A for
A = 3 and A = 10.

As we can see from Table 4, the probability of win for a gambler in an unfair game
depends on the value of A. Suppose that A also represents the final payout if it is
reached. If ⇢ = 51

49 , i.e. if he has only the 1% more to loose than to win, the probability
to win 3 dollars is 47%, whereas the probability to loose 3 dollars is 53% but the
probability to win 10 dollars decreases to 40%, whereas the probability to loose 10
dollars increases to 60%. This is much more conspicuous if we reduce the probability
of win of the 10%, that is for ⇢ = 60

40 . In this case, the probability to win 3 dollars is
23%, whereas the probability to loose 3 dollars is 77% and the probability to win 10
dollars decreases to 2%, whereas the probability to loose 10 dollars increases to 98%.
An imbalance of only 10% in favor of the casino counter produces a collapse in the
value of the odds of winning to 2%!

Figure 8.: Values of P(S⌧ = A) = 1
1�⇢A as a function of A for three di↵erent values

of ⇢: green triangle points ⇢ = 51/49; (b) blue square points ⇢ = 55/45; (c) red circle
points ⇢ = 40/60.

It must always be kept in mind that in an unfair game, the probability of losing
a given amount of money is much higher than the probability of winning the same
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amount of money, and the larger the amount, the more noticeable the di↵erence be-
tween these probabilities. Fig. 8 shows clearly how the probability of win decreases
with A for di↵erent values of ⇢.

Remark 8. Let us focus now on the expected duration E[⌧ ] and study its behavior
as a function of ⇢ = q/p and of the barrier values A and B. When A = B, i.e. with a
symmetric barrier, the expected duration becomes

E[⌧ ] = A
1 + ⇢

1� ⇢
· 1� ⇢A

1 + ⇢A
(30)

and the Fig. 9 shows its shape as a function of ⇢ for three di↵erent values of A:

Figure 9.: E[⌧ ] as a function of ⇢ for three di↵erent values of A in the symmetric case:
green triangle points A = 4, blue square points A = 3, and red circle points A = 2.

It can be observed from the figure–and can also be proved–that each plot has a
maximum for ⇢ = 1, i.e. p = q, and that its value, as expected, is A2. Of course, the
plot has an intercept at the origin at A and goes asymptotically to A as ⇢ ! +1. In
the asymmetric case, the expected duration takes the form

E[⌧ ] = ⇢+ 1

⇢� 1


A

1� ⇢B

1� ⇢A+B
�B

1� ⇢�A

1� ⇢�(A+B)

�
(31)

The behavior is not very dissimilar to the previous one. The intercept at the origin
still coincides with the value of A and the asymptotic value with the value of B. The
curve attains a maximum at a value of ⇢ > 1 if A < B and ⇢ < 1 if A > B. The
value of the maximum expected duration grows with A and with B. Let us finally
observe that the value of the expected duration is perfectly symmetric with respect to
an exchange of the values of A and B.

5. Back again to the origin

In the previous discussion, we gained more insight into the biased case, where the
probabilities of winning and losing are generally di↵erent. What we want to do now
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is to go back to the problem of returning to the origin for a random walk, analyzed
in the section 2, in the case P(Xk = 1) = p 6= q = P(Xk = �1). Studying the
return to the origin of our random particle equals focusing on the event E ={The
cumulative number of successes and failures are equal}. Of course, if at the k-th trial
the cumulative numbers of successes and failures are equal, then k must be an even
number, k = 2n and n trials must have resulted in success, the other n in failure.

The event E occurs at the 2n-th trial when S2n = 0. Moreover, as before, the
event E ={The first return to the origin occurs at the 2n-th trial} is defined by the
aggregate of sequences such that S1 6= 0, S2 6= 0, . . . , S2n�1 6= 0, S2n = 0. In this case,
the probability of the first few terms can be easily found by direct computation:

P(S1 6= 0, S2 = 0) = 2pq

P(S1 6= 0, S2 6= 0, S3 6= 0, S4 = 0) = 2p2q2

P(S1 6= 0, S2 6= 0, . . . , S5 6= 0, S6 = 0) = 4p3q3

P(S1 6= 0, S2 6= 0, . . . , S7 6= 0, S8 = 0) = 10p4q4

P(S1 6= 0, S2 6= 0, . . . , S9 6= 0, S10 = 0) = 28p5q5

and so on. For example, if S2 = 0, the first step could take us up with probability p
and down with probability q, but if we want to get back to 0 immediately, we need a
second step down with probability q or up with probability p, respectively. Summing
up the probabilities of two paths we get 2pq. It is a useful exercise to attempt to obtain
the other probabilities listed above. Here we want to generalize Proposition 3.1, that
we studied in the unbiased case, to the case p 6= q.

Proposition 5.1. The following equalities hold:

a) P(S2n = 0) =

✓
2n

n

◆
pnqn

b) P(S1 6= 0, . . . , S2n�1 6= 0, S2n = 0) =
2

n

✓
2n� 2

n� 1

◆
pnqn

In other words, by Eq. (8) u2n =
�2n
n

�
pnqn, the two events a) a return to the origin

takes place at time 2n, and b) the first return to the origin takes place at time 2n,
have probabilities given by

a) P(S2n = 0) = u2n

b) P(S1 6= 0, . . . , S2n�1 6= 0, S2n = 0) =
2pq

n
u2n�2

= 4pq u2n�2 � u2n =
1

2n� 1
u2n

For instance, when p = 1
3 and q = 2

3 and we take 2n = 20, the values of the two
probabilities are P(S20 = 0) = 5, 43% and P(S1 6= 0, . . . , S19 6= 0, S20 = 0) = 0, 29%.
Let us notice that the last probability is 1/19 of the first one.

A matter of transient or persistent states. We now want to focus on a subtle
issue. The event E related to a return of the random walk to the origin in any of the
2n-trials is interpreted as the fact the we loose all what we gained or viceversa we
re-gain all what we lose. This event could happen a number of times after we started
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the game. Let us try to formulate the issue in simple words. How many times do we
expect the event E to occur if the number of repeated trials increases? If we imagine
repeating the trials ad infinitum, what can we say about the expected number of times
E will occur? Although it may seem strange, we want to show that the event E will
occur a finite number of times even if we repeat the trials ad infinitum. The return to
the origin cannot happen infinitely many times.

We now state a theorem. This theorem could appear di�cult to understand at first
reading. What is more important to us is the subsequent argument, which is more of
a proof of the theorem and, for this reason, we do not postpone to the appendix.

Let us denote E2n={A return to origin occurs at time 2n}= {S2n = 0}. Then

Proposition 5.2. The probability that infinitely many events E2n occur is 0, or, equiv-
alently, P(lim supn!1E2n) = 0.

We will explain the meaning of this proposition gradually.
In Eq. (8) we defined u2n which is exactly the probability that a return to the

origin occurs at time 2n. Here we are interested in a great number of repeated trials,
so we suppose 2n big enough. Let us start by using Stirling’s formula

�2n
n

�
⇠ 4n

p
⇡n

, for

n ! +1, in order to write

u2n ⇠ (4pq)np
⇡n

(32)

Let us notice that1, if p 6= q, then 4pq < 1 so that u2n ! 0 and
P

n u2n converges
faster than the geometric series with ratio 4pq. When p = q = 1

2 , u2n ! 0 but
P

u2n
diverges as it is asymptotic to a divergent generalized harmonic series.2 In the first
case, when it converges, we can compute the value of the sum of the series. In fact, by
setting x = �4pq and ↵ = �1

2 , and by using the following combinatorial identity

✓
2n

n

◆
=

✓
�1

2

n

◆
· (�4)n (33)

and the classical expansion

(1 + x)↵ = 1 +

✓
↵

1

◆
x+

✓
↵

2

◆
x2 +

✓
↵

3

◆
x3 + . . . (34)

we have

+1X

n=0

u2n =
+1X

n=0

✓
2n

n

◆
pnqn =

+1X

n=0

✓
�1

2

n

◆
(�4pq)n =

1p
1� 4pq

=
1

|p� q| (35)

The last equality is justified by: (p+q)2 = 1 ) (p�q)2 = 1�4pq. So we have just proved
that, if p 6= q, u :=

P+1
n=0 u2n < +1, which equals saying u :=

P+1
n=0 P(E2n) < +1.

1This is related to the fact that the product of two numbers whose sum is constant is maximum if the two
numbers are equal.
2Let us observe that {u2n} is not a probability distribution since

P
u2n can be greater than 1. For instance,

in our previous example, we have
P

u2n = 3. Instead, we can interpret u2n as the expectation of a random
variable which equals 1 or 0 according to weather a return to the origin does or does not occur at 2n-trial.
Hence

P2n
j=0 uj is the expected number of occurrences of such a return in 2n trials.
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We now invoke a celebrated theorem, named first Borel-Cantelli Lemma, to draw
our conclusion. First Borel-Cantelli Lemma says that if the sum of the probabilities
of the events

P+1
n=0 P(E2n) is finite, then the probability that infinitely many events

E2n occur is 0, or P(lim supn!1E2n) = 0.
Let us explain the meaning of lim supn!1E2n. We know that P(E2n) = P(S2n = 0).

If we consider [+1
n=1E2n, we are taking all the events E2n, for any 2n, from the first trial

to the ’last’ one, which is the infinite. In other words, we are taking all the possible
returns to the origin E2n from time 2n = 2 to infinite. If we consider [+1

n=2E2n, we
are taking all the events E2n from time 2n = 4 to infinite. If we consider [+1

n=NE2n,
we are taking all the events E2n occurred from and after time 2n = 2N . In this way,
we do not consider events occurred before time 2n = 2N , that is we are excluding
events in the first stage of our experiment. Of course, when N increases, the number
of events left decreases and we are restricting to the only events happened after such
a time. Now let us imagine that 2N ! +1. There will always be a certain number
of events remaining after time 2N, however great that time may be. These events left
are in the intersection of all the previous sets, obtained for each finite N . The set
lim supn!1E2n is exactly this intersection, the core of events left after each step in
which we increase N . Formally, lim supn!1E2n = \1

N=1 [
+1
n=N E2n.

Now the probability related to the core of events left after 2N is given by
P
�
[+1
n=NE2n

�
. It is a general law of probability that P

�
[+1
n=NE2n

�


P+1
n=N P (E2n).

On the one hand, when N grows to infinity, [+1
n=NE2n becomes our core set, the in-

tersection of all these sets, and so P
�
[+1
n=NE2n

�
becomes P(lim supn!1E2n). On

the other hand, when N grows to infinity,
P+1

n=N P (E2n) is finite for sure sinceP+1
n=1 P (E2n) is finite, as we proved above. This implies that the limit of the re-

mainder series is 0, that is limN!+1
P+1

n=N P (E2n) = 0. Therefore, in the light of the
inequality a few lines above, we deduce that also limN!+1 P

�
[+1
n=NE2n

�
= 0.

This means only one thing: from a certain point forward, the probability of an event
E2n occurring is zero, or equivalently, that it can no longer happen that S2n vanishes.
The cumulative sums S2n will vanish only finitely many times. The random walk will
return to zero only in a finite number of times. When this happens, i.e. when, like
in this case, we have only a finite number of returns to the origin, we say that the
recurrent event E ={A return to the origin takes place at time 2n} is transient.

What does this theorem tell us about gambling? In gambling terms, it says that
after a finite number of initial fluctuations around 0 the net gain will be positive and
remain so if p > q or will be negative and remain so if p < q.

We now merge everything we have said so far, particularly in section 3, to demon-
strate the probability that the random walk ever re-enters zero. The probability to
reach A before �B obtained in Eq. (26) is

P(S⌧ = A) =
1�

⇣
q
p

⌘B

1�
⇣
q
p

⌘A+B
(36)

We can adapt this formula to the case in which S0 = 1, B = 0 and A = N (equivalent
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to S0 = 0, B = 1 and A = N � 1)1:

P(S⌧ = N |S0 = 1) =
1� q

p

1�
⇣
q
p

⌘N
(37)

As N ! +1, the probability that the particle reaches N before 0 becomes

lim
N!+1

P(S⌧ = N |S0 = 1) =

⇢
0 if p < q i.e. p < 1

2
1� q

p if p > q i.e. p > 1
2

Note that when N ! +1, the upper bound barrier goes to infinity, that is it
disappears. The probability that the particle reaches 0 before N is then

P(S⌧ reaches 0 before N|S0 = 1) = 1� P(S⌧ reaches N before 0|S0 = 1)

and, in the limiting case, it becomes

P(S⌧ reaches 0 before N|S0 = 1) =

⇢
1 if p < q i.e. p < 1/2
q
p if p > q i.e. p > 1/2

In a similar way, we can prove that

P(S⌧ reaches 0 before N|S0 = �1) =

⇢ p
q if p < q i.e. p < 1/2
1 if p > q i.e. p > 1/2

Just a few more steps and we are there. Let us call Pi = P(S⌧ ever returns i |S0 = i)
the probability that the random walk, starting from a point i, will sooner or later return
to the same point. Then

P0 = P(S⌧ ever returns 0 |S0 = 0)

= p · P(S⌧ ever returns 0 |S1 = 1) + q · P(S⌧ ever returns 0 |S1 = �1)

If p > 1
2 we have

P0 = p · q
p
+ q · 1 = 2q = 1� (p� q)

If p < 1
2 we have

P0 = p · 1 + q · p
q
= 2p = 1� (q � p)

In general, we have

P0 = 1� |p� q| (38)

Note that P0 represents the probability that the random walk, starting from zero,
will sooner or later return to zero. We can conclude that

1Remind that the lower bound is set to S⌧ = �B with B > 0.
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• if p 6= q then P0 < 1 and the point 0 is a transient state,
• if p = q then P0 = 1 and the point 0 is a persistent state,

This result is very significant. It implies that, if p 6= q, the particle will pass a
certain number of times from 0 and then will continue towards constantly positive or
negative values according to the value of p and q. In other words, the probability that
it returns to 0 more than r times tends to zero. In the case p = q, the probability
that the particle returns to 0 more than r times remains equal to 1 and it will return
infinitely many times to 0.

From all this we conclude that if a game of chance is unfavorable to us, because for
us p is less than q, then after a certain finite number of fluctuations around zero in the
early stages of the game, in which we have now won and now lost, it will eventually
be our fate never to break even again, but to continue losing indefinitely!

Let us note that in the previous remarks we also proved the following important
relation between P0 and u =

P+1
n=0 u2n. If we compare results in Eq. (35), u = 1

|p�q| ,

and in Eq. (38), P0 = 1� |p� q|, we find out that

u =
1

1� P0
or P0 =

u� 1

u
(39)

Therefore, if u is finite then P0 < 1 and the passage by the origin is transient; if
P0 = 1, u diverges and the passage by the origin is persistent. This result will remain
valid in dimensions greater than one, as discussed in the Appendix B.

6. Conclusion

We conclude by summarizing some of the most important lessons about the unexpected
dynamics of gambling that the study of the random walk has revealed so far.

We first observed that, in a fair game, the probability of spending a very small or
very large fraction of the time on the positive side, that is in the role of the winner,
is much greater than the probability of spending half the time on that side, as our
intuition might incorrectly suggest. Moreover, the di↵erence between the probabilities
of the extreme cases and that of the 50% � 50% case increases with the number of
trials. It does not grow very fast, but it grows! We found that it grows as

p
N/2, where

N is the number of trials.
We also learned that there is a probability of 1% that the less fortunate player will

be in the lead for 30 minutes at most, over an entire year of play, while the more
fortunate player will be in the lead at least for 364 days, 23 hours, and 30 minutes.
There is a non-negligible probability that the unluckiest player will only be in the lead
for a very, very small fraction of the year. But there is also a 50% probability that the
unlucky player will be in the lead for only 53 days out of 365.

The probability of a tie is also very low. The hope of returning to 0 at least once,
which would mean regaining what we lost as less fortunate players, is less than 8
cases out of 100 of repeated attempts, and the hope of returning to a tie several times
becomes smaller and smaller. And all this in a fair game!

When we moved to the unfair games, things got worse, as we might have expected.
For example, we found that if our strategy is to quit the game when we win A dollars
or when we lose our budget of B dollars, then the probability of reaching the win
before losing our entire budget becomes very, very small when the game becomes even
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the slightest bit unfavorable to us. For example, it only takes a q/p = 2 ratio to be
virtually certain of losing $10 before winning $10!

Moreover, when again, the probability of loosing is double than the probability of
winning and we take 20 trials, the values of the probability that we break even exactly
at the end of the game is 5, 43% and the probability that is happens for the first time
at the end of the game is only 0, 29%. As can be seen, the probability of breaking even
at the end of the game is very low.

Finally, through a nontrivial argument, we proved that in a unfair game, although
it may seem weird, the event related to a return to the origin is transient, that is it
will occur only a finite number of times even if we repeat the trials ad infinitum. A
return to the origin cannot happen infinitely many times. Only in a fair game, the
probability that the random walk, starting from zero, will ever return to zero is equal
to 1 and we are sure that it will, sooner or later, return to the origin.
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Appendix A. Proofs

A.1. Proof of Proposition 1

Let’s take two points A = (a, ya) and B = (b, yb) in the positive quadrant with a < b
and ya, yb > 0. By reflection of A on the x-axis, we mean the point A0 = (a,�ya). An
important lemma links the number of paths from A to B to the number of paths from
A0 to B and plays a crucial role in the proof of Proposition 2.1:

Lemma A.1. The number of paths from A to B which touch or cross the x-axis equals
the number of all paths from A0 to B.
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Figure A1.: Paths analyzed in the proof of the lemma

This preliminary idea is called Reflection Principle.
Proof of the Lemma: consider a path ya = Sa, Sa+1, Sa+2, . . . , Sb�1, Sb = yb from

A to B having one or more vertices on the x-axis. Let t be the abscissa of the first of
such vertices, that is Sa = ya > 0, Sa+1 > 0, . . . , St�1 > 0, St = 0. Then �Sa = �ya,
�Sa+1, . . . , �St�1, St = 0, St+1, St+2, . . . , Sb�1 Sb = yb, is a path leading from A0

to B and having T = (t, 0) as its first point on the x-axis. There is so a one-to-one
correspondence between paths from A0 to T and those from A to T , and so between
paths from A0 to B and those from A to B.

Proof of the main Proposition: S1 could be ±1; but we are looking for positive
paths, so it must be S1 = +1. Now, we are in the point (1, 1) and we want to find out
the number of paths from (0, 0) to the point (x, y) which neither touch nor cross the
x-axis. By previous lemma, the number of such paths is equal to

Nx�1,y�1 �Nx�1,y+1

Here it is why. Let’s have a look at the Fig. A2:

Figure A2.: Paths analyzed in the proof of the Proposition

We have

• Nx,y is the number of all possible paths from (0, 0) to (x, y);
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• Nx�1,y�1 is the number of all possible paths from (0, 0) to (x� 1, y � 1), which
is the same as the number of paths from (1, 1) to (x, y);

• Nx�1,y+1 is the number of all possible paths from (0, 0) to (x� 1, y + 1), which
is the same as the number of paths from (1,�1) to (x, y).

The set of all the paths from from (1, 1) to (x, y) that do touch the x-axis anywhere
is in a one-to-one correspondence with the set of all paths from (1,�1) to (x, y), since
they have to cross the x-axis in at least one point. This is established by reflection
with respect to the x-axis of the initial segment of the path at the step where it first
touches the x-axis. This number is given by Nx�1,y+1 and it can be seen if we change
the coordinate axes moving the origin to (�1, 1). So, now we have to subtract from
the number of all paths from (1, 1) to (x, y) the number of paths that start in (1, 1)
and end in (x, y) and that touches the x-axis in at least one point. Coming back to
our language in terms of p and q and being x = p+ q and y = p� q, we have

Nx,y =

✓
p+ q

p

◆
Nx�1,y�1 =

✓
p+ q � 1

p� 1

◆
Nx�1,y+1 =

✓
p+ q � 1

q � 1

◆

from which

Nx�1,y�1 �Nx�1,y+1

=

✓
p+ q � 1

p� 1

◆
�
✓
p+ q � 1

q � 1

◆

=
p� q

p+ q

✓
p+ q

p

◆
=

y

x
Nx,y

and the proposition is proved.

A.2. Proof of Proposition 2

Each path such that S1 > 0, S2 > 0, . . . , S2n�1 > 0 and S2n = 0 must pass through
the point (2n�1, 1) and the number of paths such that S1 > 0, S2 > 0, . . . , S2n�2 > 0
equals

y

x
Nx,y =

1

2n� 1

✓
2n� 1

n� 1

◆
=

1

n

✓
2n� 2

n� 1

◆

since x = p+ q = 2n� 1, y = p� q = 1 and so p = n and q = n� 1. This is equal to
L2n�2 and it proves the first statement. Now let us consider a path joining (1, 1) and
(2n � 1, 1): if S1 > 0, S2 > 0, . . . , S2n�1 > 0, then all its vertices lie on or above the
line y = 1. Now, translating the origin to (1, 1), these paths connect the point (0, 0)
to (2n� 2, 0) and all their vertices are on or above the x-axis. We have established a
one-to-one correspondence between the paths satisfying S1 � 0, S2 � 0, . . . , S2n�1 � 0
and those such that S1 > 0, S2 > 0, . . . , S2n�1 > 0 but with n replaced by n + 1
because we moved the origin to (1, 1). So this number is L2(n+1)�2 = L2n.
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A.3. Proof of Proposition 3

Let us consider the space of paths of fixed length 2n. The total number of paths from
(0, 0) to (2n, y), 8y, is 22n. We proved there exist

N2n,0 =

✓
2n

n

◆

paths from (0, 0) to (2n, 0), so the relation a) is proved. We have seen before that
there exist L2n�2 paths joining (0, 0) to (2n, 0) such that S1 > 0, S2 > 0, . . . , S2n�1 >
0. Therefore there are twice as many paths such that S1 6= 0, . . . , S2n�1 6= 0 and
the corresponding probability is 2L2n�22�2n = 2�2n+1L2n�2 and this gives relation
d). The number of paths such that S1 � 0, . . . , S2n�2 � 0, S2n�1 < 0 is equal to
the number of paths such that S1 � 0, . . . , S2n�3 � 0, S2n�2 = 0 which is given by
L2(n�1) = L2n�2 and again we obtain probability dividing by the total number of

paths that, in this case, is 2 · 22(n�1) = 22n�1 because after 2n� 2 we could go up or
down. So again we get 2�2n+1L2n�2 and e) is proved. The probability that no zero
occurs up to and including time 2n is complementary to the probability that there is
a first return to the origin at any of the even times less than or equal 2n. So we have
1� (u0 � u2)� (u2 � u4)� · · ·� (u2n�2 � u2n) = u2n and this proves b). Finally, the
probability that we have paths such that S1 � 0, . . . , S2n � 0 is complementary to the
probability of paths with a first passage to �1 at any time less than or equal to 2n,
and, as before, we get u2n. Finally, to prove the last equality in d) and e) we have to
take into account the combinatorial relation u2n�2 =

2n
2n�1u2n.

A.4. Proof of Proposition 4

Let us observe at first that, if 2k = 0 or 2k = 2n, we have p0,2n = p2n,2n = u2n
according to point c) of proposition 3.1. Let 1  k  n � 1. A particle that stays on
the positive side for 2k > 0 time units and on the negative side for 2n� 2k > 0 time
units must pass through zero. Let 2t be the time of its first return to zero. We can
have two cases depending on whether the particle was on the positive or negative side
before 2t.

1) Up to time 2t the particle stays on the positive side and during the interval
(2t, 2n) it spends exactly 2k � 2t time units on the positive side:

Figure A3.: Positive path from 0 to 2t.

26



Then there exist 22t · (u2t�2 � u2t) paths of length 2t which return to the origin for
the first time at 2t. It is the total number of paths 22t multiplied by the probability
u2t�2�u2t given by point d) of proposition 3.1. Half of these paths keeps to the positive
side: 22t�1 ·(u2t�2�u2t). Furthermore, by definition, there are 22n�2t ·p2k�2t,2n�2t paths
of length 2n� 2t starting at (2t, 0) and having exactly 2k� 2t sides above the x-axis.
Thus the total number of paths of length 2n of the first type is

22t�1(u2t�2 � u2t) · 22n�2t · p2k�2t,2n�2t = 22n�1(u2t�2 � u2t)p2k�2t,2n�2t

2) From 0 to 2t the particle stays on the negative side, and between 2t and 2n it spends
exactly 2k time units on the positive side:

Figure A4.: Negative path from 0 to 2t.

Of course, now 2k + 2t  2n, i.e. 2k  2n � 2t. All the 2k positive intervals are
at the right of 2t, after 2t. So we can use the same argument as before but with 2k
instead of 2k � 2t and the number of paths is

22n�1(u2t�2 � u2t)p2k,2n�2t

It follows that, for 1  k  n� 1:

p2k,2n =

1

22n

"
kX

t=1

22n�1(u2t�2 � u2t)p2k�2t,2n�2t +
n�kX

t=1

22n�1(u2t�2 � u2t)p2k,2n�2t

#
=

1

2

kX

t=1

(u2t�2 � u2t)p2k�2t,2n�2t +
1

2

n�kX

t=1

(u2t�2 � u2t)p2k,2n�2t =

1

2
[(u0 � u2)p2k�2,2n�2 + (u2 � u4)p2k�4,2n�4 + · · ·+ (u2k�2 � u2k)p0,2n�2k] +

1

2
[(u0 � u2)p2k,2n�2 + (u2 � u4)p2k,2n�4 + · · ·+ (u2n�2k�2 � u2n�2k)p2k,2k]

Now let us suppose by induction that p2k,2⌫ = u2ku2⌫�2k for ⌫ = 1, 2, . . . , n� 1. Then
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we have:

p2k,2n =

1

2
[(u0 � u2)u2k�2u2n�2k + (u2 � u4)u2k�4u2n�2k + · · ·+ (u2k�2 � u2k)u0u2n�2k+

(u0 � u2)u2ku2n�2k�2 + (u2 � u4)u2ku2n�2k�4 + · · ·+ (u2n�2k�2 � u2n�2k)u2ku0] =

1

2
u2n�2k (u0u2k�2 � u2u2k�2 + u2u2k�4 � u4u2k�4 + · · ·+ u2k�2u0 � u2ku0)+

1

2
u2k (u0u2n�2k�2 � u2u2n�2k�2 + u2u2n�2k�4 � u4u2n�2k�4 + · · ·+ u2n�2k�2u0 � u2n�2ku0)

=
1

2
u2n�2ku2k +

1

2
u2ku2n�2k = u2ku2n�2k.

A.5. Proof of Proposition 5

Let us observe that, by means of the Stirling’s approximation formula

u2n =
1

22n

✓
2n

n

◆
=

1

22n
(2n)!

(n!)2
⇠

p
2⇡2n

�
2n
e

�2n

2⇡n
�
n
e

�2n
22n

=
1p
⇡n

So that, if we define the ratio 2k
2n as ⇢ = k

n

p2k,2n = u2k · u2n�2k ⇠ 1p
⇡k

· 1p
⇡(n� k)

=
1

⇡n
q

k
n

�
1� k

n

� =
1

⇡n
p

⇢(1� ⇢)

and

P(2k  2↵) =

↵
nX

⇢=0

1

⇡n

1p
⇢(1� ⇢)

For n, k,↵ ! +1, we recognize the Riemann sum approximating the integral

Z ↵

0

1

⇡

dk

n

1q
k
n

�
1� k

n

� =
1

⇡

Z ↵/n

0

d⇢p
⇢(1� ⇢)

By setting ⇢ = cos2 ✓ and ✓ = arccos
p
⇢, we get

P(2k  2↵) =
1

⇡
[�2arccos

p
⇢]↵/n0 =

2

⇡


⇡

2
� arccos

r
↵

n

�

and eventually we have

P(2k  2↵) =
2

⇡
arcsin

r
↵

n
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A.6. Proof of Proposition 6

In probability theory, a sequence of random variables for which, at any given time, the
conditional expectation of the subsequent value is equal to the current one, regardless
of any previous value, is called a martingale. This proof will use some properties of
martingales, and we refer the reader to the text [8] for some of the technical details,
particularly in reference to the stopped process and the stopping time theorem.

The process Sn is a martingale and, by the stopping time theorem, also Sn^⌧ , the
stopped process, is a martingale. It follows that E[Sn^⌧ ] = E[S0^⌧ ] = E[S0] = 0 if
S0 = 0. So E[Sn^⌧ ] = 0, 8n � 0. We also ask that P(⌧ < +1) = 1, i.e. that ⌧ is finite
with probability 1. Under this conditions: limn!+1 Sn^⌧ = S⌧ , almost surely. Since
|Sn^⌧ |  max(A,B) we can apply the dominated convergence theorem to conclude
that

lim
n!+1

E[Sn^⌧ ] = E[S⌧ ]

So we have also E[S⌧ ] = 0, but E[S⌧ ] = A · P(S⌧ = A)� B · P(S⌧ = �B). Therefore,
it follows that

A · P(S⌧ = A)�B · (1� P(S⌧ = A)) = 0 ) (A+B)P(S⌧ = A) = B,

from which we have the thesis. In order to prove the second part, we observe that
Var[Xn] = E[X2

n] � E2[Xn] = E[X2
n] = 1 so Mn := S2

n � n is also a martingale.
Reasoning as before, E[M⌧ ] = 0 but

E[M⌧ ] = E[S2
⌧ ]� E[⌧ ] = A2 · P(S⌧ = A) +B2 · P(S⌧ = �B)� E[⌧ ]

so that

E[⌧ ] = A2 · B

A+B
+B2 · A

A+B
= AB.

A.7. Proof of Proposition 7

Let us define a new process Mn :=
� q
p

�Sn , with M0 = 1. The process Mn is a martin-
gale, since

E[Mn+1|Fn] = E
"✓

q

p

◆Sn+1

|Fn

#
= E

"✓
q

p

◆Sn+Xn+1

|Fn

#
=

E
"✓

q

p

◆Sn

·
✓
q

p

◆Xn+1

|Fn

#
=

✓
q

p

◆Sn

· E
"✓

q

p

◆Xn+1

|Fn

#
=

✓
q

p

◆Sn

·
"✓

q

p

◆1

· P(Xn = 1) +

✓
q

p

◆�1

· P(Xn = �1)

#
=

✓
q

p

◆Sn

·

q

p
p+

p

q
q

�
=

✓
q

p

◆Sn

· [q + p] =

✓
q

p

◆Sn

= Mn
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This fact implies that E[M⌧ ] = limn!+1 E[Mn^⌧ ] = E[M0] = 1, but

E[M⌧ ] =

✓
q

p

◆A

· P(S⌧ = A) +

✓
q

p

◆�B

· P(S⌧ = �B) = 1

so that

✓
q

p

◆A

· P(S⌧ = A) +

✓
q

p

◆�B

· [1� P(S⌧ = A)] = 1

which equals

"✓
q

p

◆A

�
✓
q

p

◆�B
#
· P(S⌧ = A) = 1�

✓
q

p

◆�B

.

Finally, we get

P(S⌧ = A) =
1�

⇣
q
p

⌘�B

⇣
q
p

⌘A
�
⇣
q
p

⌘�B
=

1�
⇣
q
p

⌘B

1�
⇣
q
p

⌘A+B

We have also

P(S⌧ = B) = 1� P(S⌧ = A) = 1�
1�

⇣
q
p

⌘B

1�
⇣
q
p

⌘A+B
=

1�
⇣
p
q

⌘A

1�
⇣
p
q

⌘A+B
.

The last expression is equivalent to P(S⌧ = A) under the switch q $ p and A $ B.
To prove the expected duration, let us consider a new process:

Mn = Sn � E[Xn] · n

In the biased random walk we have E[Xn] = 1 · p + (�1) · q = p � q = 2p � 1. So we
define:

Mn = Sn � (p� q) · n

Mn is a martingale since

E[Mn+1|Fn] =E[Sn+1 � (p� q)(n+ 1)|Fn]

=E[Sn +Xn+1 � n(p� q)� (p� q)|Fn]

=Sn � n(p� q) + E[Xn+1]� (p� q)

=Sn � n(p� q) + (p� q)� (p� q)

=Sn � n(p� q) = Mn

and we can apply stopping theorem for martingales. In fact we know that E[Sn^⌧ ] =
E[S0] = 0 and limn!+1 E[Sn^⌧ ] = E[S⌧ ] because of the theorem of dominated conver-
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gence. So we have E[M⌧ ] = 0 and

E[M⌧ ] = E[S⌧ ]� (p� q)E[⌧ ] ) (p� q)E[⌧ ] = E[S⌧ ] ) E[⌧ ] = 1

p� q
E[S⌧ ]

Therefore:

E[⌧ ] = 1

p� q

2

4A ·
1�

� q
p

�B

1�
� q
p

�A+B
�B ·

0

@1�
1�

� q
p

�B

1�
� q
p

�A+B

1

A

3

5

=
1

p� q

2

4(A+B)
1�

� q
p

�B

1�
� q
p

�A+B
�B

3

5]

=
A+B

p� q
·

1�
� q
p

�B

1�
� q
p

�A+B
� B

p� q

The E[⌧ ] may be given a more symmetric expression

E[⌧ ] = 1

p� q

2

4A
1�

� q
p

�B

1�
� q
p

�A+B
�B

1�
�p
q

�A

1�
�p
q

�A+B

3

5

or

E[⌧ ] = 1

p� q

A
⇣
1�

�p
q

�B⌘
+B

⇣
1�

� q
p

�A⌘

� q
p

�A �
�p
q

�B

A.8. Proof of the Remark after Proposition 4.2

If p = q then p ! 1
2 and q ! 1

2 , and we can consider an expansion of our functions
around 1

2 . If we set

f(p) =

✓
q

p

◆A

=

✓
1

p
� 1

◆A

we have that

f 0 (p) = �A

p2

✓
1

p
� 1

◆A�1

) f 0
✓
1

2

◆
= �4A

and

f 00 (p) =
2A

p3

✓
1

p
� 1

◆A�1

+
A(A� 1)

p4

✓
1

p
� 1

◆A�2

) f 0
✓
1

2

◆
= 16A2
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so that

f(p) ⇠ 1� 4A

✓
p� 1

2

◆
+ 8A2

✓
p� 1

2

◆2

which is equivalent to

1�
✓
q

p

◆A

⇠ 2A(p� q)� 2A2(p� q)2

Thus we have

P(S⌧ = A) =
1�

� q
p

�B

1�
� q
p

�A+B
⇠ 2B(2p� 1)

2(A+B)(2p� 1)
=

B

A+B

and

E[⌧ ] ⇠ 1

p� q


A
2B(p� q)� 2B2(p� q)2

2(A+B)(p� q)
�B

2A(q � p)� 2A2(q � p)2

2(A+B)(q � p)

�

=
AB

p� q


B(p� q) +A(p� q)

A+B

�
= AB

Appendix B. Higher dimensions

Let us consider now a two-dimensional symmetric random walk that starts at the
origin and is performed on the lattice Z2. We can imagine a walker that now moves
on integer points in two dimensions: each step is a distance 1 jump in one of the four
directions - let’s say up, down, right, left. So there are four directions for each step and
the choice of a direction is random with probability 1

4 for each one. We will consider
only finite walks. A given walk of length N is then performed with probability 1

4N . We
define loop a walk that begins and ends at the origin. A walk of length zero is a trivial
loop and a loop is said to be simple if it is not a concatenation of two nontrivial loops.

Obviously, a loop has an even length. Let N (2)
2n be the number of loops of 2n steps.

The probability of a return to the origin in 2n steps (2n includes all the steps in the
x- and y-directions) is then

P
⇣
S(2)
2n = (0, 0)

⌘
:= u(2)2n =

1

42n
N (2)

2n

A return to the origin is possible only if the number of steps in the positive x- and y-
directions equal those in the negative x- and y-directions, respectively. So if we divide
the 2n steps into the four classes up, down, right, left and if there are k steps in the
first one, then we must have k steps in the second one and n�k steps in the third and
forth one. The number of all the combinations of these steps is given by a multinomial
coe�cient and if we sum over all k, 0  k  n, we get the number of all 2n-loops. In
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this way, we have

u(2)2n =
1

42n

nX

k=0

(2n)!

k!k!(n� k)!(n� k)!
=

1

42n

✓
2n

n

◆ nX

k=0

✓
n

k

◆2

=
1

42n

✓
2n

n

◆2

since it holds
�n
0

�2
+
�n
1

�2
+ · · ·+

�n
n

�2
=

�2n
n

�
.

Let us observe that we could have obtained this number also in the following way.
Let us consider two strings a and b of +1 and �1 of length 2n, such that there is an
equal number of +1 and �1 in each one. We want to construct a loop of length 2n.
We can establish the following rules: the pair (ai, bi) corresponds to the i-th step

• in the direction (+1, 0) if (ai, bi) = (+1,+1),
• in the direction (�1, 0) if (ai, bi) = (�1,�1).
• in the direction (0,+1) if (ai, bi) = (�1,+1),
• in the direction (0,�1) if (ai, bi) = (+1,�1),

This walk returns to the origin. In fact, let the number of pairs (+1,+1) be k, the
number of pairs (�1,�1) be l, the number of pairs (�1,+1) be m and the number of
pairs (+1,�1) be n, then k +m = l+ n and k + n = l+m. Hence, 2k = 2l, i.e. k = l
and m = n. So, the number of up steps is equal to the number of down steps and the
number of right steps is equal to the number of left steps.

Figure B1.: Loop in two dimensions corresponding to the sequence
�+���++
++���+

�
.

In this way we have built a bijection between the loops in Z2 and all the couples
of plus and minus that we can build starting from two strings of 2n terms in which
we have n plus and n minus, and this number is of course the product of the two

binomials
�2n
n

�
. Now, again for n ! +1 by Stirling’s approximation

�2n
n

�2 ⇠ 42n

⇡n , we
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have

u(2)2n ⇠ 1

⇡n

Again

u(2) :=
+1X

n=0

u(2)2n ⇠
+1X

n=0

1

⇡n

diverges, so that

P(2)
0 = P (S⌧ ever returns to (0, 0)|S0 = (0, 0)) =

u(2) � 1

u(2)
= 1

This means that there is a probability 1 that the particle will sooner or later - and
therefore infinitely often - return to its initial position, i.e. the particle will pass through
every possible point infinitely often.

In the case of three dimensions, our particle can move to six di↵erent neighborhoods
with equal probability. Thus, if we define

P
⇣
S(3)
2n = (0, 0, 0)

⌘
:= u(3)2n

we have

u(3)2n =
1

62n

n�kX

j=0

nX

k=0

(2n)!

j!j!k!k!(n� j � k)!(n� j � k)!

the sums being extended over all j and k with j + k  n. It is easy to see that it is
equivalent to

u(3)2n =
1

22n

✓
2n

n

◆X

j,k

⇢
1

3n
n!

j!k!(n� j � k)!

�2

Let us observe that the quantity pj,k = 1
3n

n!
j!k!(n�j�k)! represents a trinomial distri-

bution, so that
P

j,k pj,k = 1. Now we know that if there are N positive numbers

a1 < a2 < · · · < aN between 0 and 1 such that
PN

i=1 ai = 1 then
PN

i=1 a
2
i <PN

i=1 aiaN = aN
PN

i=1 ai = aN , i.e. the sum of the squared terms is less than the
greatest term. So we can say that the sum of the squares of the pj,k’s is less than the
biggest one among them and the biggest one is obtained when j = k = n

3 since it is a
multinomial distribution. From this fact, it follows

u(3)2n <
1

22n

✓
2n

n

◆
1

3n
n!

�
n
3 !
�3
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Again, by Stirling’s approximation

1

22n

✓
2n

n

◆
⇠ 1p

⇡n

and

1

3n
n!

�
n
3 !
�3 =

1

3n

p
2⇡n

�
n
e

�n
⇣p

2⇡ n
3

�
n
3e

�n
3

⌘3 =
3
p
3

2⇡n

so that

u(3)2n <
3
p
3

2⇡
p
⇡
· 1

n3/2
.

The last inequality implies that

u(3) :=
+1X

n=0

u(3)2n <
3
p
3

2⇡
p
⇡

+1X

n=0

1

n3/2
< +1

This is enough to state that the particle will not pass infinitely often through the origin,
and thus through every possible point. There is only a less than one probability that the
particle will soon or later come back to the origin. The three-dimensional symmetric
random walk is transient, so the particle may never return to the origin:

P(3)
0 = P (S⌧ ever returns to (0, 0, 0)|S0 = (0, 0, 0)) =

u(3) � 1

u(3)
< 1

Alternatively, we can consider two particles performing independent symmetric ran-
dom walks, the steps occurring simultaneously. Will they ever meet? Let us consider
the metric in which the distance between two possible positions is the smallest num-
ber of steps leading from one position to the other. If the two particles move one step
each, their mutual distance either remains the same or changes by two units, and so
their distance either is even at all times or else is always odd. In the second case the
particles can never occupy the same position. In the first case it is readily seen that
the probability of their meeting at the n-th step equals the probability of the first
particle’s reaching in 2n steps the initial position of the second particle. Hence our
proposition states that in one and two dimensions but not in three dimensions the two
particles are sure infinitely often to occupy the same position. If the initial distance
of the two particles is odd, a similar argument shows that they will infinitely often
occupy neighboring positions. In one and two dimensions the two particles are certain
to meet infinitely often but in three dimensions there is a positive probability that

they never meet. It has been showed that P(3)
0 = 0, 3405373 and that this probability

decreases with increasing dimensions over the third one [5].
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