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Abstract 20 

This paper introduces a new approach to cell clustering using the Variable Neighborhood Search (VNS) 21 
metaheurisMc. The purpose of this method is to cluster cells based on both gene expression and spaMal 22 
coordinates. IniMally, we confronted this clustering challenge as an Integer Linear Programming 23 
minimizaMon problem. Our approach introduced a novel model based on the VNS technique, 24 
demonstraMng the efficacy in navigaMng the complexiMes of cell clustering. Notably, our method 25 
extends beyond convenMonal cell-type clustering to spaMal domain clustering. This adaptability 26 
enables our algorithm to orchestrate clusters based on informaMon gleaned from gene expression 27 
matrices and spaMal coordinates. Our validaMon showed the superior performance of our method 28 
when compared to exisMng techniques. Our approach advances current clustering methodologies and 29 
can potenMally be applied to several fields, from biomedical research to spaMal data analysis. 30 

Subject areas:  SoWware and Workflows, BioinformaMcs, Transcriptomics. 31 

 32 

Statement of Need 33 
 34 

In high-throughput omics, deciphering the intricate cellular dynamics within Mssues is pivotal 35 
[1,2]. Cell clustering is essenMal for dissecMng the mosaic of cellular diversity [3,4]. This analyMcal 36 
approach seeks to categorize individual cells based on shared molecular signatures, allowing the 37 
idenMficaMon of discrete subpopulaMons within heterogeneous Mssues. In exploring cellular behavior 38 
and funcMon, cell clustering emerges as an indispensable tool, providing insights into the subtle 39 
nuances of gene expression profiles. The ability to straMfy cells into meaningful clusters not only refines 40 
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our understanding of Mssue composiMon but also lays the groundwork for precise insights into disease 41 
eMology and potenMal therapeuMc intervenMons. 42 

In tandem with cell clustering, spaMal transcriptomics [5,6] consMtutes a revoluMonary fronMer 43 
for understanding cellular dynamics with their naMve microenvironments. Beyond the tradiMonal 44 
scope of genomics, spaMal transcriptomics integrates the spaMal context of cells into the analysis, 45 
allowing researchers to explore how gene expression pa^erns unfold across complex Mssue structures. 46 
This mulMdimensional approach surpasses the limitaMons of convenMonal transcriptomic studies, 47 
providing a spaMally resolved perspecMve that is indispensable for decoding the orchestraMon of 48 
cellular interacMons and the emergence of Mssue-specific funcMons. 49 

In order to contribute to this dynamic landscape, we introduce a novel methodology rooted in 50 
the Variable Neighborhood Search approach [7]. Our innovaMon seeks to elevate the precision and 51 
efficacy of cell clustering in spaMal transcriptomic analyses, promising to reveal hidden facets of cellular 52 
organizaMon and funcMonality. In this work, we introduce a novel Variable Neighborhood Search (VNS) 53 
approach tailored for cell clustering in spaMal transcriptomics. Although our iniMal invesMgaMons 54 
focused on datasets designed for cell-type clustering, it is essenMal to emphasize that our method's 55 
design accommodates spaMal domain clustering as well. Here, we present a synthesis of computaMonal 56 
skills and biological insights aimed at pushing the boundaries of our understanding of the complex cell 57 
interacMons within Mssues. 58 

 59 

Background 60 

Clustering methods from the literature 61 
 62 
Many methods in the literature can be used to parMMon an 𝑁-dimensional populaMon into 𝐾 sets 63 
based on specific rules. In this paper, we focus on some of the most popular clustering methods used 64 
in the field of data analysis, such as 𝑘-Means [8], Louvain [9], Leiden [10], and MClust [11]. While these 65 
methods share the goal of grouping data points, they differ in the types of data they are designed for, 66 
the principle they opMmize, and the algorithms they are well-suited for. 𝑘-Means is a general-purpose 67 
clustering algorithm, Louvain and Leiden are tailored for community detecMon in networks, while 68 
MClust is a model-based clustering method. In the following subsecMons, we briefly describe each of 69 
these methods.   70 
 71 
𝑘-Means algorithm 72 
The 𝑘-means algorithm [8] is a parMMoning algorithm that divides a dataset into 𝑘-clusters based on 73 
the similarity of data points. It starts by establishing 𝑘 groups, each comprising a singular randomly 74 
chosen point. Points are then added to these groups according to the principle that new points are 75 
assigned to the group whose mean point is the most similar by some rule. AWer point allocaMon, the 76 
means of all groups are adjusted to incorporate the influence of newly added points. Consequently, at 77 
each stage, the 𝑘-means are reflecMve of the means of the groups they represent.   78 

While this method is computaMonally efficient and adeptly handles extensive datasets, it does 79 
not guarantee convergence to an opMmal soluMon. Notably, issues arise from the random iniMalizaMon 80 
of centroids, leading to unexpected convergence pa^erns. Moreover, the algorithm requires users to 81 
choose the cluster number beforehand, influencing cluster shapes and suscepMbility to outlier effects. 82 
However, it is known that certain special cases of the 𝑘-means algorithm exist in the literature where 83 
convergence to an opMmal soluMon is assured. 84 

 85 



Louvain algorithm 86 
The Louvain algorithm, developed by V. D. Vondel et al. [9], is designed for detecMng communiMes in 87 
network or graph data. This algorithm aims to opMmize modularity, a measure of the quality of network 88 
division into communiMes, using two phases: (1) local moving of nodes and (2) aggregaMon of the 89 
network. In the first phase, individual nodes are moved to the community that yields the largest 90 
increase in the quality funcMon. In the second phase, an aggregaMon network is obtained based on 91 
parMMons, with each community in a parMMon becoming a node in the aggregate network. These two 92 
phases are repeated unMl the quality funcMon cannot be increased further. However, the Louvain 93 
algorithm can potenMally produce communiMes with arbitrarily poor connecMvity. In the most adverse 94 
scenarios, these communiMes may become enMrely disconnected, parMcularly during iteraMve 95 
execuMons of the algorithm. 96 
 97 
Leiden algorithm 98 
To address the connecMvity issues of the Louvain algorithm, V. A. Traag et al. introduced the Leiden 99 
algorithm [10]. The Leiden algorithm guarantees that communiMes are well connected and, when 100 
applied iteraMvely, the algorithm converges to a parMMon where all subsets of all communiMes are 101 
locally opMmally assigned. The Leiden algorithm is partly based on the smart local move algorithm, 102 
which itself can be seen as an improvement of the Louvain algorithm and takes advantage of the idea 103 
of speeding up the local moving of nodes and the idea of moving nodes to random neighbors, the 104 
Leiden algorithm considers these ideas to represent the most promising direcMons in which the 105 
Louvain algorithm can be improved. The Leiden algorithm consists of three phases: (1) local moving of 106 
nodes, (2) refinement of the parMMon, and (3) aggregaMon of the network based on the refined 107 
parMMon, using the non-refined parMMon to create an iniMal parMMon for the aggregate network.  Thus, 108 
this algorithm opMmizes a quality funcMon to idenMfy communiMes by considering the density of 109 
connecMons within the communiMes. 110 
 111 
MClust 112 
MClust [11], applied in cell clustering, idenMfies disMnct cell groups based on observed features using 113 
Gaussian mixture models [12]. Unlike other clustering algorithms, MClust accommodates various 114 
cluster shapes, making it suitable for complex situaMons. It uMlizes the ExpectaMon-MaximizaMon [13] 115 
algorithm for parameter esMmaMon, offering robust handling of missing data and complex 116 
distribuMons. This model-based clustering tool is powerful in uncovering pa^erns within complex 117 
biological datasets, such as those from single-cell omics technologies. IniMally designed for single-cell 118 
RNA sequencing data, it can also be applied to spaMal transcriptomic data, its effecMveness depending 119 
on data characterisMcs and analysis goals. 120 

 121 
Embedding methods from the literature 122 
 123 

In spaMal transcriptomics, where data is organized as a matrix with cells and genes, the high 124 
dimensionality (oWen exceeding 30,000 genes) and sparsity pose analyMcal challenges. Dimensionality 125 
reducMon methods play key roles in addressing these issues. These techniques help disMll meaningful 126 
pa^erns from the data, facilitaMng more efficient analyses. 127 

The generaMon of embeddings, achieved through established literature methods, aims to 128 
transform the high-dimensional gene space into a more manageable form. This process enables a 129 
clearer exploraMon of spaMal relaMonships, cell heterogeneity, and underlying biological processes. By 130 
leveraging validated methods from exisMng literature, we ensure a scienMfically rigorous approach, 131 



condensing rich gene expression profiles into interpretable embeddings while addressing 132 
computaMonal complexiMes. 133 

As menMoned previously, we performed dimensionality reducMon using five different 134 
embedding methods: STAGATE [14], Principal Component Analysis (PCA) [15], GraphST [16], Cell 135 
Clustering for SpaMal Transcriptomics (CCST) data [17], and STAligner [18]. 136 

 137 
STAGATE 138 
The STAGATE method [14] has been designed for spaMal clustering and denoising in spaMally resolved 139 
transcriptomics data. This method generates low-dimensional latent embeddings with both spaMal 140 
informaMon and gene expressions via a graph a^enMon auto-encoder.  Notably, the method adopts an 141 
a^enMon mechanism in the middle layer of the encoder and decoder, which learns the edge weights 142 
of spaMal neighbor networks and uses them to update spot representaMons by collecMvely aggregaMng 143 
informaMon from their neighbors.    144 
 145 
Principal Component Analysis 146 
PCA [15] is a staMsMcal method for dimensionality reducMon and data visualizaMon. It is a mathemaMcal 147 
procedure that transforms a set of correlated variables into a new set of uncorrelated variables known 148 
as principal components. The principal components are linear combinaMons of the original variables 149 
and are sorted based on how much they account for the variance within the data; i.e., the first principal 150 
component accounts for the highest variance. PCA finds widespread applicaMon across domains, 151 
including data analysis, machine learning, and image processing, aiming to streamline intricate 152 
datasets and uncover pa^erns or associaMons between variables. 153 

 154 
GraphST 155 
GraphST [16] is an advanced self-supervised contrasMve learning technique designed to maximize the 156 
potenMal of spaMal transcriptomics data. IntegraMng graph neural networks with self-supervised 157 
contrasMve learning, this method acquires spot representaMons that are both informaMve and 158 
disMncMve. This is achieved by minimizing the embedding distance between spaMally neighboring spots 159 
reciprocally. 160 

 161 
Cell Clustering for Spa>al Transcriptomics data 162 
CCST [17] leverages graph convoluMonal networks (GCNs) to integrate gene expression data and 163 
comprehensive spaMal informaMon from individual cells in spaMal gene expression data. The 164 
relaMonships between variables are captured as a graph, with the adjacency matrix represenMng 165 
connecMons among variables and the node feature matrix reflecMng variable observaMons. The GCN 166 
layer is strategically designed to fuse graph (in our case, spaMal structure) and node features (gene 167 
expression). IniMally, the data is transformed into a graph, where nodes represent cells with gene 168 
expression profiles as a^ributes, and edges represent neighborhood relaMonships between cells. 169 
Subsequently, a sequence of GCN layers is used to incorporate graph and gene expression details into 170 
cell node embedding vectors. Concurrently, the graph is perturbed to generate negaMve embeddings. 171 
By learning the discriminaMon task, the neural network model is trained to encode cell embeddings 172 
derived from spaMal gene expression data, subsequently used for cell clustering. 173 
 174 
STAligner 175 
STAligner [18] is a specialized tool for aligning and integraMng spaMally-resolved transcriptomics data. 176 
It begins by normalizing expression profiles for all spots and creaMng a spaMal neighbor network based 177 
on spaMal coordinates. Employing a graph a^enMon auto-encoder neural network, STAligner extracts 178 



spaMally-aware embeddings and uses spot triplets to guide the alignment process, fostering similarity 179 
among related spots and disMncMon among dissimilar ones across slices. The introducMon of triplet 180 
loss refines spot embeddings by minimizing the distance from the anchor to posiMve spots and 181 
increasing the distance to negaMve spots. This iteraMve process opMmizes triplet construcMon and auto-182 
encoder training unMl batch-corrected embeddings are obtained. Furthermore, STAligner's versaMlity 183 
extends to integraMng spaMal transcriptomics datasets, facilitaMng alignment and concurrent 184 
idenMficaMon of spaMal domains across diverse biological samples, technological planorms, 185 
developmental stages, disease condiMons, and consecuMve Mssue slices for 3D alignment. 186 
 187 

Implementa/on 188 

Mathema1cal model 189 
 190 
Let 𝐶 = [𝑐&] represent the set of cells 𝑐&, 𝑖 = 1,… , 𝑛, and the total number of cells equal 𝑛. For each 191 
cell 𝑐& , 𝑖 = 1,… , 𝑛 , let 𝑐&'  and 𝑐&

(  represent its 𝑥  and 𝑦  coordinates, and let vector 𝑐&)*+ =192 
Z𝑐&
)*+! , … , 𝑐&

)*+"[  represent embedding values (𝑀  is the total number of embedding values). 193 
Furthermore, let the distance funcMon 𝐷: 𝐶 × 	𝐶 → 	ℛ,  be defined as a measure of the similarity 194 
between the cells. In our model, for two cells 𝑐&  and 𝑐-, the distance 𝐷 was calculated as follows: 𝐷	 =195 
𝛼	𝐷.)/) 	+ 	 (1 − 𝛼)𝐷01123, where 𝛼 is the input parameter, 𝐷.)/)  is the cosine similarity between cell 196 
embeddings, and 𝐷01123  is the Euclidian distance between cell coordinates: 197 

𝐷.)/)g𝑐& , 𝑐-h = 𝑐𝑜𝑠𝑖𝑛𝑒g𝑐& , 𝑐-h, 198 

𝐷01123	g𝑐& , 𝑐-h = lg𝑐&' − 𝑐-'h
% + m𝑐&

( − 𝑐-
(n

%
	. 199 

In our model, we chose 𝐾 different cells from the set of cells 𝐶 to represent clusters and called these 200 
cells centroids. Therefore, let the binary variables 𝑥&-  (𝑖, 𝑗 = 1,… , 𝑛) and 𝑦&  be defined in the following 201 
way: 202 

𝑥&- = p
1, 𝑖𝑓	𝑐𝑒𝑙𝑙	𝑐& 	𝑏𝑒𝑙𝑜𝑛𝑔𝑠	𝑡𝑜	𝑡ℎ𝑒	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑	𝑏𝑦	𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑	𝑐-
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 203 

𝑦& 	= 	 p
1, 𝑖𝑓	𝑐𝑒𝑙𝑙	𝑐& 	𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠	𝑡ℎ𝑒	𝑐𝑒𝑛𝑡𝑜𝑟𝑖𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  204 

The Integer Linear Programming formulaMon of the clustering problem can be described as follows: 205 

min} } 𝑥&-𝐷(𝑐& , 𝑐-)
/

-5!

/

&5!
																							(1) 206 

subject to these constraints:   207 

} 𝑥&-
/

&5!
= 1,			1 ≤ 𝑗 ≤ 𝑛,																												(2) 208 

𝑥&- ≤ 𝑞- ,			1 ≤ 	𝑖 ≤ 	𝑛, 1 ≤ 	𝑗 ≤ 	𝑛,						(3) 209 

																						} 𝑦&
/

&5!
= 𝐾,																															(4) 210 

𝑥&- , 𝑦- ∈ {0,1},			1 ≤ 	𝑖 ≤ 	𝑛,			1 ≤ 	𝑗 ≤ 	𝑛.				(5) 211 
The objecMve funcMon (1) represents the sum of distances from each cell to its most similar cluster 212 
representaMve. This funcMon should be minimized. EquaMon (2) indicates that each cell is assigned to 213 
only one cluster. Before assigning a cell to a cluster, the cluster needs to be defined (3). The total 214 
number of clusters is equal to 𝐾 (4). All variables are constrained to be binary (5).  215 

The model described with equaMons (1)-(5) is based on the 𝑝-median classificaMon and is 216 
presented in a similar form by Davidović et al. [19]. 217 

 218 



Variable Neighborhood Search Method 219 
 220 

The VNS method is a well-known metaheurisMc method. It starts from one point in the search 221 
space, explores its neighborhoods, and repeats the process unMl a be^er soluMon or stopping criteria 222 
are reached. This method was proposed for the first Mme by Mladenović [20] and later elaborated by 223 
Mladenović and Hansen [21] and Hansen and Mladenović [22]. 224 

Before we introduce the VNS method, let us define the set 𝑁6(𝑋), 𝑘 = 𝑘{*&/}, … , 𝑘*9' as the 225 
set of all vectors 𝑋′ that have a difference of the 𝑘:; order from the soluMon 𝑋, and call that set 𝑘:; 226 
Neighborhood to the soluMon X. 227 

The VNS-based heurisMc can be defined in a way that it starts from the iniMal feasible soluMon 228 
𝑋, shakes it by creaMng another soluMon 𝑋< ∈ 𝑁6(𝑋), and then applies a local search method to create 229 
a be^er feasible soluMon 𝑋′′. If the feasible soluMon 𝑋′′ obtained by the local search procedure is not 230 
be^er than the current incumbent 𝑋  (𝐹(𝑋<<) ≥ 	𝐹∗ ), the VNS algorithm repeats the procedure of 231 
shaking in the neighborhood 𝑁6,6#$%&  (i.e., 𝑘 is incremented by 𝑘=:)>) and local searches within it. It 232 
repeats this passage unMl 𝑘  reaches its maximum 𝑘*9' . Otherwise, if 𝐹(𝑋<<) < 	𝐹∗ , 𝐹∗becomes 233 
𝐹(𝑋’’) and 𝑘 becomes 𝑘*&/.  The procedure of changing the neighborhood enables the VNS algorithm 234 
to get out from the local minima. The process is repeated unMl a certain number of iteraMons or other 235 
stop criteria are reached.  236 

Pseudo-code for the basic VNS algorithm is presented as Algorithm 1. ImplementaMons of the 237 
funcMons Ini+alSolu+on(), Shake(), LocalSearch(), and StoppingCondi+on() defined for our clustering 238 
problem are described in the following subsecMon. 239 

 240 

 241 



 242 

VNS for the cell clustering problem 243 
 244 

With respect to the problem's definiMon, let us assume that all cells can be represented by numbers 245 
from 1 to 𝑛. Specifically, cells can be represented by the set 𝐶 = [𝑐&],  𝑛 = |𝐶|, and that for each cell 246 
𝑐&  there are two types of data: the 𝑥 and 𝑦 coordinates of the cell (𝑐&'  and 𝑐&

() and the embedding 247 
values (vector 𝑒𝑚𝑏&). In our representaMon, the soluMon vector 𝑌 = [𝑦!, … , 𝑦?] contains indexes of 𝐾 248 
cells chosen as cluster representaMves. Also, cell 𝑦&  is a centroid of the 𝑖-th cluster. From the centroid 249 
soluMon vector 𝑌 we obtain vector 𝑋 = [𝑥&] of size 𝑛 in the following way: 𝑥&, 𝑖 = 1,… , 𝑛, represents 250 
the closest centroid from the 𝑌  vector to the 𝑖 -th cell. Our representaMon saMsfies all condiMons 251 
described by equaMons (2) - (5). Using this representaMon, our goal was to minimize the value of the 252 

funcMon 𝐹: 𝐶 × 	𝐶 → 	ℛ,,  where 𝐹  is defined as 𝐹(𝑋) = ∑ m𝛼𝐷.)/)(𝑖, 𝑥&) + (1 −/
&5!253 

𝛼)𝐷01123(𝑖, 𝑥&)n. 254 

The funcMon Ini+alSolu+on() randomly chooses K mutually different numbers from the set of 255 
numbers {1, … , 𝑛} and returns them as a 𝐾-dimensional vector 𝑌. For every soluMon vector 𝑌, vector 256 
𝑋 is obtained in the following way: for each cell 𝑖, the distance 𝐷 between the cell 𝑖 and all centroids 257 
𝑦-  from the vector 𝑌 is calculated; next, 𝑥&  is set equal to the 𝑦-  for which the distance 𝐷 is minimal.  258 
That is, whenever the vector 𝑌  is changed, vector 𝑋  is also updated. Also, to avoid repeated 259 
calculaMons, the distance 𝐷 between all cells is calculated and saved as a distance matrix. 260 
   The Shake()  funcMon takes two inputs: the incumbent 𝑌 and the size 𝑘 of the neighborhood 261 
that needs to be explored. As a result, the Shake() funcMon randomly chooses 𝑘 elements from the 262 
vector 𝑌 and replaces them with 𝑘 randomly chosen elements from the set {1, … , 𝑛} that are different 263 
from all elements from the current 𝑌. This means that when some elements are changed, all elements 264 
in vector 𝑌 will sMll be mutually different. In other words, the 𝑆ℎ𝑎𝑘𝑒() funcMon chooses a vector 𝑌′ 265 
from	𝑁6(𝑌). 266 

The LocalSearch() funcMon takes vector 𝑌′, the distance matrix 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, and the parameters 267 
𝑚 and 𝑝 as inputs. In our implementaMon, we used the first improvement strategy. Based on the value 268 
of the parameter 𝑚, for each element of the vector 𝑌′, the LocalSearch() funcMon first chooses a 269 
random integer number 𝑖𝑛𝑑 ∈ [0,𝑚]; next, based on the 𝑖𝑛𝑑 value, keeps the observed element of 270 
the vector 𝑌′ as it is (𝑖𝑛𝑑	 == 	0) or replace it with the new one (𝑖𝑛𝑑	 > 	0). For 𝑖𝑛𝑑 ≥ 	2, the observed 271 
element is replaced with one of the candidates from the set of candidates that are created within the 272 
LocalSearch() funcMon (the LocalSearch() funcMon searches for 𝑖𝑛𝑑 candidates for which the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 273 
value from the observed candidate is the smallest, sorts the list, excludes all candidates that are 274 
already present in the vector 𝑌′, and then chooses one candidate for the replacement).  Please note 275 
that the smallest 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  value between the observed candidate and itself will be zero, so the 276 
condiMon 𝑖𝑛𝑑 > 1 is necessary. In case 𝑖𝑛𝑑	 == 	1 , 𝑖𝑛𝑑 will be chosen again unMl its value is not equal 277 
to 1.  AddiMonally, if the candidate list is empty aWer excluding all elements that already exist in the 278 
vector 𝑌′, a random candidate will be chosen from the set {1, … , 𝑛} ∖ {𝑦!, … , 𝑦?}. 279 
Finally, aWer the procedure of replacing or keeping elements from the vector 𝑌′ is finished, i.e., a new 280 
vector 𝑌′′ is obtained, the 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ() funcMon calculates 𝐹(𝑌′′) and, if 𝐹(𝑌′′) 	< 	𝐹∗ , the first 281 
improvement has been made, and the funcMon returns the vector 𝑌′′ as the output or repeats the 282 
whole process. The process of examining elements of the vector 𝑌′ and replacing them with new 283 
values is repeated only if no improvement is made, but not more than 𝑝 Mmes. In case no improvement 284 
is made and the process has been repeated p Mmes, the vector 𝑌′′ = 𝑌′ will be returned as the output 285 
of this funcMon.  286 



In other words, the LocalSearch() funcMon examines elements in the close neighborhood of 287 
the observed vector 𝑌′ by creaMng a new vector 𝑌′′, calculates the funcMon value 𝐹(𝑌′′) and, if the 288 
funcMon value is less than the currently best value 𝐹∗, returns that vector. Otherwise, it will conMnue 289 
the process of examining elements of the vector 𝑌′ but not more than 𝑝 Mmes.  290 

Usually, the StoppingCondi+on() funcMon checks if the maximal number of iteraMons  291 
(𝑚𝑎𝑥&:)2) or the maximal running Mme (𝑡*9') have been reached. In our code, the StoppingCondi+on() 292 
funcMon checks only if the maximal number of iteraMons has been reached and, if the answer is 𝑡𝑟𝑢𝑒, 293 
returns the best soluMon found as the result of the VNS procedure. If the maximal number of iteraMons 294 
has not been reached, the VNS procedure conMnues its search.    295 

 296 

Data Descrip/on 297 
 298 

We assessed the performance of the clustering methods through quanMtaMve evaluaMon, employing 299 
datasets sourced from two disMnct spaMally resolved transcriptomic technologies: Stereo-seq [23] and 300 
10x Visium [24]. 301 
 From Stereo-seq technology, two datasets were used for tesMng: a large dataset of a field 302 
mouse brain hemisphere (SS200000128TR E2 benchmark) and another from the dorsal midbrain 303 
(Forebrain).  The large field mouse brain contains more than 38,000 cells and more than 20,000 genes 304 
and can be downloaded from [25], while Forebrain contains more than 18,000 cells and more than 305 
23,000 genes and can be downloaded from [26]. Please note that Forebrain contains the whole dorsal 306 
midbrain. In our study, we used manual lasso to separate a part of this dataset and called that part 307 
Forebrain. Both datasets are composed of only one slice.   308 

In order to evaluate the performance of the presented VNS method on mulM-slice datasets, 309 
we used a 10x Visium dataset containing spaMal expressions of 12 human-layered dorsolateral 310 
prefrontal cortex (DLPFC) secMons. Since these 12 secMons are from three different human donors, 311 
they were used as mulM-secMon (4-layers) datasets in our study. All layers of the DLPFC secMons were 312 
manually annotated by Maynard et al. [24] and can be downloaded from [27]. Viewing them as the 313 
ground truth, we compared the clustering accuracy of the VNS method with other clustering methods 314 
using only embedding obtained by the verMcal spaMal transcriptomic integraMon provided by 315 
STAGATE. 316 

Analysis 317 

Input parameters 318 
 319 
TesMng was conducted on the AWS instance m6a.48xlarge under the Linux operaMve system.  320 

Input parameters for our algorithm are the number of clusters (𝐾), the percentage of the 321 
influence of the embedding values (𝛼 ), the maximal number of neighborhoods that should be 322 
searched (𝑘*9' ,), the maximal number of iteraMons (𝑚𝑎𝑥&:)2), and the local search parameters 𝑚 and 323 
𝑝. The minimal (𝑘*&/) number of neighborhoods and step (𝑘=:)>) are set to 1 by default.   324 

The input parameters used for tesMng are 𝛼 ∈ {1, 0.95} (𝛼	 = 	1 means that no addiMonal 325 
spaMal informaMon is included, while 𝛼 = 0.95  means that 5%  of spaMal informaMon is used for 326 
calculaMng the distance between the cells), 𝑘*9' ∈ {10,15,20,25,30}, 𝑚 ∈ {10,12,15,20,30}, and 327 
𝑝 ∈ {10,12,15,20}. 328 
 329 



Evalua1on method 330 
 331 
We used the Adjusted Rand Index (ARI) [28] to evaluate the results and compare them with each other. 332 
ARI is a measure used to evaluate the performance and similarity between two clustering algorithms. 333 
It quanMfies the agreement between the true and predicted clustering, adjusMng for the amount of 334 
agreement that could occur by chance. ARI values range from -1 to 1: where 1 indicates the perfect 335 
agreement, 0 indicates agreement expected by chance, and negaMve values suggest less agreement 336 
than expected by chance.   337 
 338 

Results of the VNS method across various scenarios with single-slice datasets 339 
 340 
Due to the sparsity of the gene expression matrix and to ensure a fair comparison, embeddings were 341 
obtained using various methods from the literature (PCA, STAGATE, GraphST, and CCST) for both 342 
Stereo-seq datasets. Moreover, all methods create embedding that significantly reduces the number 343 
of genes to a much smaller set of features. For instance, the CCST method reduced the number of 344 
genes from the Forebrain dataset to 128 features, STAGATE to 64 features, PCA to 50 features, and 345 
GraphST to 20 features. For the E2 dataset, all parameters were the same except for STAGATE, where 346 
the number of features was lowered to 30. Hence, the input data depend on the number of cells and 347 
the number of obtained features (embeddings). The standard clustering methods from the literature 348 
(𝑘-Means, MClust, Louvain, and Leiden) and the proposed VNS method for cell clustering were applied 349 
to the generated embeddings. The results of the tesMng are presented in Tables 1 and 2. 350 

The goal of the VNS method was to find the soluMon with the smallest cost funcMon, and we 351 
show these results in Table 1. Table 1 shows results obtained by the VNS method only and is organized 352 
as follows: the first column presents the name of the embeddings used as the input to the VNS method, 353 
while the following four columns (𝑓@AB, 𝑡@AB, 𝑒𝑟𝑟	,	and 𝜎) show the smallest cost funcMon value, the 354 
corresponding running Mme, and the staMsMcal analysis of all soluMons obtained by VNS when 355 
comparing to the presented cost funcMon value in that order. In other words, due to the stochasMc 356 
nature of the metaheurisMc, the VNS algorithm was run 20 Mmes (for 20 different seeds) for each 357 
embedding, and informaMon regarding the best soluMon value obtained in these 20 runs is provided 358 
in these four columns (𝑓@AB , 𝑡@AB , 𝑒𝑟𝑟	,	and 𝜎 ). More precisely, 𝑓@AB  presents the minimal cost 359 
funcMon value obtained aWer these 20 runs; 𝑡@AB is the corresponding running Mme for the presented 360 
soluMon value; 𝑒𝑟𝑟  and 𝜎  contain addiMonal informaMon on the quality of the soluMon: 𝑒𝑟𝑟  is the 361 
average relaMve error of found soluMon from the presented one and is calculated as 𝑒𝑟𝑟 =362 
!
%C
∑ 𝑒𝑟𝑟&%C
&5! , where 𝑒𝑟𝑟_𝑖 = |𝑉𝑁𝑆& 	− 	𝑓@AB|/|𝑉𝑁𝑆&|, where 𝑉𝑁𝑆&  is the VNS soluMon obtained in the 363 

𝑖:;  run (seed). The value 𝜎  is the standard deviaMon of 𝑒𝑟𝑟  and is calculated by 𝜎	 =364 

l !
%C
∑ (𝑒𝑟𝑟& − 𝑒𝑟𝑟)%%C
&5! 	. For each embedding method, the results obtained by VNS are presented in 365 

separate rows. 366 
The results presented in Table 2 are organized into three groups. Similar to Table 1, the first 367 

column (first group) presents the name of the method used for creaMng the embedding. The next ten 368 
rows present the results for each clustering method separately; for each method, we provide the ARI 369 
score (𝐴𝑅𝐼) and the running Mme (𝑡) in seconds. The 𝐴𝑅𝐼  and 𝑡 values under the VNS columns stand 370 
for the best found 𝐴𝑅𝐼	 score obtained for all tesMng combinaMons and the corresponding running 371 
Mme. The highest 𝐴𝑅𝐼 score achieved for some datasets among all clustering methods is highlighted 372 
in bold, while the second-best 𝐴𝑅𝐼 score is highlighted by an asterisk (*). 373 



In both tables, the first set of results corresponds to the E2 dataset, and the next corresponds 374 
to the Forebrain dataset. The E2 dataset results are visualized in Figure 1, while the Forebrain dataset 375 
results are visualized in Figure 2. 376 

 377 
Table 1. VNS soluMon for single-slice datasets. Values in columns 𝑓@AB , 𝑡@AB, 𝑒𝑟𝑟 and 𝜎 are 378 

obtained as explained in the Analysis secMon.  379 
 380 

Embedding 𝑓!"# 𝑡!"# (s) 𝑒𝑟𝑟	 𝜎	 

E2 

CCST 1,019.7419 48.8355 0.1626 0.0476 

STAGATE 2,706.7446 110.258 0.1196 0.0415 

PCA 9,550.0142 79.1977 0.0320 0.0118 

GraphST 10,083.5379 64.95 0.0197 0.0059 

Forebrain 

CCST 427.8511 47.8054 0.1579 0.0439 

STAGATE 543.0947 52.7096 0.0925 0.0347 

PCA 3,541.7886 50.1935 0.0214 0.0073 

GraphST 2,209.235 92.0103 0.0473 0.0140 

 381 
Table 2. Clustering method comparison for single-slice datasets. The highest ARI score 382 

achieved for some datasets among all clustering methods is highlighted in bold, while the second-best 383 
ARI score is highlighted by an asterisk (*). 384 

 385 
Embeddings Leiden Louvain 𝑘-Means MClust VNS 

ARI t (s) ARI t (s) ARI t (s) ARI t (s) ARI t (s) 

E2 

CCST 
0.1553 29.1638 0.1518 5.7702 0.1962* 15.3243 0.1401 4,799.5287 0.2224 47.5667 

STAGATE 
0.1951 7.5198 0.2176 6.3803 0.2907 2.62854 0.2052 516.8929 0.2890* 59.7737 

PCA 
0.0001 6.8347 0.1316 9.9780 0.2072* 12.0037 0.2024 1,128.1911 0.2907 235.465 

GraphST 
0.0841 14.8255 0.0697* 13.0344 0.0492 4.2599 0.0635 533.1441 0.0636 47.5184 

Forebrain 

CCST 
0.0925 25.7164 0.0961* 2.5659 0.1093 8.7788 0.0821 1,330.3455 0.1263 18.6987 

STAGATE 
0.1753 3.6952 0.1676 3.6263 0.1775* 6.0085 0.1718 269.9742 0.2342 24.6907 

PCA 
0.1659 4.4805 0.1674* 3.7720 0.1717 6.4302 0.1025 147.4443 0.1568 45.2866 

GraphST 
0.1738 3.8813 0.1847* 4.6558 0.1833 1.8972 0.1709 73.0143 0.2104 9.2064 

 386 
 387 
VNS clustering achieves be9er results than other tested methods using the E2 dataset 388 
 389 
From the first part of the results shown in Table 1, we can conclude that, using PCA embedding in all 390 
20 runs, the values of the cost funcMon are very close to the lowest cost funcMon value (𝑒𝑟𝑟	 < 	3.5, 391 
𝜎	 < 	1.5%). Using STAGATE, we have some differences, although 𝜎 is sMll below 5%	implying that the 392 



VNS method is stable with both embeddings. The results of VNS clustering when the smallest cost 393 
funcMon values are reached are visualized in Figure 1a, while the results with the best ARI score 394 
achieved by all clustering methods are shown in Figure 1b. 395 

 396 

VNS methods outperform other methods when clustering cells from the Forebrain dataset 397 
 398 

By examining values from the 𝑒𝑟𝑟 and 𝜎	columns in Table 1 for the Forebrain dataset, it can be easily 399 
seen that differences between the results obtained in 20 runs are very small. In fact, the difference 400 
between the best-found soluMon (the soluMon with the minimal cost funcMon value) and the other 19 401 
soluMons is less than 5% (the average relaMve error 𝜎 is less than 5%). This result means that the 402 
soluMons found in all 20 runs were very close to the smallest one. Also, from the results in the column 403 
𝑡@AB, we can observe a running was less than 1 minute for three different embedding types and less 404 
than 2 minutes for one embedding type.  405 

Moreover, from the results presented in Table 2 for the Forebrain dataset, we can see that, in 406 
the majority of cases, VNS had the highest 𝐴𝑅𝐼 score compared to the other methods (for three types 407 
of embedding, the 𝑉𝑁𝑆 𝐴𝑅𝐼 score was the highest). Also, the running Mme was less than 1 minute for 408 
each type of embedding. The only embedding for which the VNS did not find a soluMon with the best 409 
𝐴𝑅𝐼 score was the PCA one, and for this embedding, the best	𝐴𝑅𝐼 score was obtained by the 𝑘-Means 410 
method. 411 

By analyzing the results in Tables 1 and 2, we conclude that the VNS method achieves the best  412 
𝐴𝑅𝐼	score with the STAGATE embedding, and that in all 20 runs all soluMons were close to the one 413 
with the lowest cost funcMon (𝑒𝑟𝑟	 < 	1%). The results obtained with the minimal cost funcMon and 414 
the maximal 𝐴𝑅𝐼 score are visualized in Figure 2. 415 

 416 
 417 
 418 

VNS demonstrates a superior performance on mul>-slice datasets 419 
 420 

Next, we compared the clustering accuracy of the VNS method with other clustering methods by using 421 
embeddings obtained by the STAligner method only. Compared to other embedding methods used for 422 
single-slice datasets, it is worth menMoning that STAligner reduces the number of genes to 30 features. 423 
The results of this comparison are presented in Tables 3 and 4. Table 3 is organized similarly to Table 424 
1. The only difference is in the first column, which, in this case, is called Slice name. Since DLPFC 425 
datasets are 4-layered slices, this column contains the names of the first and the last slices in this 426 
parMcular dataset. Other slices imply. Thus, each row represents the results for one separate DLPFC 427 
dataset. 428 

Table 4 is organized similarly to Table 2; however, the column Embeddings is replaced by the 429 
column Slice name, and the names of the first and the last slices from parMcular mulM-slice datasets 430 
are presented. Other slices imply. The results for each dataset are presented in separate rows, as in 431 
Table 3. The results from Table 3 are visualized in Figure 3. 432 

As we see from the columns 𝑒𝑟𝑟	 and 𝜎 in Table 3, in all 20 runs, the VNS method obtained 433 
results similar to the ones with the smallest cost funcMon (𝑒𝑟𝑟	 < 5.8%, 𝜎 < 2.5%). Again, these results 434 
imply that the method is stable even for mulM-slice datasets. The fact that results from the columns 435 
𝑡@AB are smaller than 5 implies that this method can obtain results for four slices of these types of 436 
datasets in less than 5 seconds. 437 



From the results presented in Table 4, it can be concluded that the method proposed in this 438 
paper outperforms other clustering methods in all aspects. Specifically, for each of the datasets we 439 
tested, 𝐴𝑅𝐼 score was the highest and the running Mme was the lowest when the VNS method was 440 
used. 441 
 442 

Table 3. VNS soluMon for mulM-slice datasets. 443 

Slice name 𝑓!"# 𝑡!"# 𝑒𝑟𝑟 𝜎 
151507_151510 

890.7088 4.2262 0.0884 0.0390 
151669_151672 

755.7133 2.8674 0.0866 0.0273 
151673_151676 

513.8781 1.1983 0.0923 0.0396 
 444 

Table 4. Clustering method comparison for mulM-slice datasets. The highest ARI score achieved for 445 
some datasets among all clustering methods is highlighted in bold, while the second-best ARI score is 446 
highlighted by an asterisk (*). 447 

Slice name Leiden Louvain 𝑘-Means MClust VNS 
ARI t (s) ARI t (s) ARI t (s) ARI t (s) ARI t (s) 

151507_151510 
0.3440 27.3778 0.4293* 4.0119 0.3061 2.1001 0.3489 62.5176 0.4887 2.1094 

151669_151672 
0.4084 26.9197 0.4985* 2.9611 0.2213 1.6839 0.4633 39.1007 0.6156 1.3014 

151673_151676 
0.4370 25.1056 0.4754* 2.6766 0.3299 1.4413 0.4316 49.1890 0.5016 0.8573 

 448 

Discussion and Conclusion 449 
 450 

Here, we introduced a novel approach suitable for clustering both single- and mulM-slice spaMal 451 
transcriptomics datasets. This is the first applicaMon of a metaheurisMc method, called the VNS, to the 452 
clustering of spaMal transcriptomic data. The essence of the VNS implementaMon presented in this 453 
study is the uMlizaMon of a combinatorial/mathemaMcal opMmizaMon algorithm; in this instance, a 454 
metaheurisMc approach. These methods are strategically designed to deliver sufficiently opMmal 455 
soluMons to opMmizaMon and machine learning challenges while minimizing computaMonal resources. 456 
This approach is intended to offer a robust and computaMonally efficient soluMon for cell clustering in 457 
spaMal transcriptomics.  458 

Our analysis demonstrated that the performance of clustering methods is significantly influenced by 459 
the choice of embeddings and the way they were generated. Notably, the VNS approach combined 460 
with PCA embeddings yields results that closely align with the ground truth, as illustrated in Figure 2b. 461 
When benchmarked against exisMng techniques, our method consistently outperforms in terms of 462 
efficiency and ARI scores. The algorithm’s speed and stability are commendable, and its flexibility is 463 
evidenced by a comprehensive set of parameters that can be tailored to meet diverse user 464 
requirements. Future research will extend the method’s applicaMon to Mme-series datasets and 465 
explore addiMonal VNS modificaMons and embedding techniques to enhance its uMlity. 466 

 467 

Availability of source code and requirements: 468 
 469 
• Project name: VNS 470 



• Project home page: h^ps://github.com/STOmics/VNS/tree/main 471 
• OperaMng system(s): Linux 472 
• Programming language: Python 473 
• License: MIT 474 
• RRID: 475 
 476 

Data availability 477 
 478 
From Stereo-seq technology, two datasets were used: 479 
(1) a large dataset of a field mouse brain hemisphere (SS200000128TR E2 benchmark), which can be 480 
downloaded from Zenodo [25]  481 
(2) Forebrain, which can be downloaded from the CNGB MOSTA database 482 
h^ps://db.cngb.org/stomics/mosta/download/.   483 
AddiMonal data is also available in GigaDB [29]. We used only one part of Forebrain, which was 484 
extracted using a manual lasso.  485 
 486 

Declara/ons 487 
 488 
Abbrevia1ons 489 
ARI, Adjusted Rand Index; CCST, Clustering for SpaMal Transcriptomics; DLPFC, dorsolateral prefrontal 490 
cortex; GCN, graph convoluMonal network; PCA, Principal Component Analysis; VNS, Variable 491 
Neighborhood Search. 492 
 493 
Consent for publica1on 494 
Not applicable. 495 
 496 

Compe1ng Interests 497 
The author(s) declare that they have no compeMng interests. 498 
 499 
Ethics approval and consent to par1cipate 500 
The authors declare that ethical approval was not required for this type of research. 501 
 502 
Funding 503 
This work was supported by the NaMonal Key R&D Program of China (2022YFC3400400). 504 
 505 
Author's Contribu1ons 506 
AD and MI provided the idea of the soluMon, implementaMon, tesMng, and manuscript. JL and SF 507 
supervised the whole process. CL created embeddings for both datasets for tesMng.   508 
 509 
Acknowledgements 510 
We acknowledge the CNGB NucleoMde Sequence Archive (CNSA) of China NaMonal GeneBank 511 
DataBase (CNGBdb) for maintaining the MOSTA database. 512 
 513 

https://db.cngb.org/stomics/mosta/download/


 514 
 515 
Figure 1. (a) Results of the VNS clustering on the E2 dataset. The first figure on the leW presents the 516 
ground truth data. These results were obtained using the VNS method with PCA, STAGATE, GraphST, 517 
and CCST embeddings. (b) Clustering results for the E2 dataset. Each row presents the clustering 518 
results obtained by 𝑘-Means, MClust, Louvain, Leiden, and VNS over a certain embedding method. 519 
Therefore, the first row presents the results obtained by all clustering methods when using PCA 520 
embedding. The next three rows used STAGATE, GraphST, and CCST embeddings. 521 



 522 
 523 
Figure 2. (a) Results of the VNS clustering on the Forebrain dataset. The first figure on the leW 524 
presents the ground truth data. These results were obtained using the VNS method with PCA, 525 
STAGATE, GraphST, and CCST embeddings. (b) Clustering results for the Forebrain dataset. Each row 526 
presents the clustering results obtained by 𝑘-Means, MClust, Louvain, Leiden, and VNS, over a 527 
certain embedding method. Therefore, the first row presents the results obtained by all clustering 528 
methods when using PCA embedding. The next three rows used STAGATE, GraphST, and CCST 529 
embeddings. 530 



 531 



Figure 3. The clustering results on the DLPFC datasets 151507-151510, 151669-151672, and 151673-532 
151676 are presented in panels (a), (b), and (c), respecMvely. The first column shows the ground truth 533 
data, while the subsequent columns display the results obtained using 𝑘-Means, MClust, Louvain, 534 
Leiden, and the VNS method with STAligner embeddings. 535 
 536 
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