
A Novel Variable Neighborhood Search Approach for Cell Clustering for Spa9al 1

Transcriptomics 2

 3

Authors: 4

Aleksandra	Djordjevic!,∗, aleksandradjordjevic@genomics.cn 5
Junhua	Li!,$, lijunhua@genomics.cn 6
Shuangsang	Fang!,%, fangshuangsang@genomics.cn 7
Lei	Cao!,%, caolei2@genomics.cn 8
Marija	Ivanovic!,∗, marijaivanovic@genomics.cn 9
 10
1 BGI	Research, Shenzhen	518083, China 11
2 BGI	Research, Beijing	102601, China 12
3 BGI	Research, Lidostas	Parks, Riga	49276, Latvia 13
 14
∗	contributed equally, corresponding authors. 15

ORCID IDs: 16
Marija Ivanovic [0000-0002-3372-8271], Aleksandra Djordjevic [0009-0002-9450-4121], Junhua Li 17
[0000-0001-6784-1873], Shuangsang Fang [0000-0002-4126-0074], Lei Cao [0000-0002-7170-9602]; 18
 19

Abstract 20

This paper introduces a new approach to cell clustering using the Variable Neighborhood Search (VNS) 21
metaheurisMc. The purpose of this method is to cluster cells based on both gene expression and spaMal 22
coordinates. IniMally, we confronted this clustering challenge as an Integer Linear Programming 23
minimizaMon problem. Our approach introduced a novel model based on the VNS technique, 24
demonstraMng the efficacy in navigaMng the complexiMes of cell clustering. Notably, our method 25
extends beyond convenMonal cell-type clustering to spaMal domain clustering. This adaptability 26
enables our algorithm to orchestrate clusters based on informaMon gleaned from gene expression 27
matrices and spaMal coordinates. Our validaMon showed the superior performance of our method 28
when compared to exisMng techniques. Our approach advances current clustering methodologies and 29
can potenMally be applied to several fields, from biomedical research to spaMal data analysis. 30

Subject areas: SoWware and Workflows, BioinformaMcs, Transcriptomics. 31

 32

Statement of Need 33
 34

In high-throughput omics, deciphering the intricate cellular dynamics within Mssues is pivotal 35
[1,2]. Cell clustering is essenMal for dissecMng the mosaic of cellular diversity [3,4]. This analyMcal 36
approach seeks to categorize individual cells based on shared molecular signatures, allowing the 37
idenMficaMon of discrete subpopulaMons within heterogeneous Mssues. In exploring cellular behavior 38
and funcMon, cell clustering emerges as an indispensable tool, providing insights into the subtle 39
nuances of gene expression profiles. The ability to straMfy cells into meaningful clusters not only refines 40

h^ps://doi.org/10.32388/0Z3EG4

mailto:aleksandradjordjevic@genomics.cn
mailto:lijunhua@genomics.cn
mailto:fangshuangsang@genomics.cn
mailto:caolei2@genomics.cn
mailto:marijaivanovic@genomics.cn

our understanding of Mssue composiMon but also lays the groundwork for precise insights into disease 41
eMology and potenMal therapeuMc intervenMons. 42

In tandem with cell clustering, spaMal transcriptomics [5,6] consMtutes a revoluMonary fronMer 43
for understanding cellular dynamics with their naMve microenvironments. Beyond the tradiMonal 44
scope of genomics, spaMal transcriptomics integrates the spaMal context of cells into the analysis, 45
allowing researchers to explore how gene expression pa^erns unfold across complex Mssue structures. 46
This mulMdimensional approach surpasses the limitaMons of convenMonal transcriptomic studies, 47
providing a spaMally resolved perspecMve that is indispensable for decoding the orchestraMon of 48
cellular interacMons and the emergence of Mssue-specific funcMons. 49

In order to contribute to this dynamic landscape, we introduce a novel methodology rooted in 50
the Variable Neighborhood Search approach [7]. Our innovaMon seeks to elevate the precision and 51
efficacy of cell clustering in spaMal transcriptomic analyses, promising to reveal hidden facets of cellular 52
organizaMon and funcMonality. In this work, we introduce a novel Variable Neighborhood Search (VNS) 53
approach tailored for cell clustering in spaMal transcriptomics. Although our iniMal invesMgaMons 54
focused on datasets designed for cell-type clustering, it is essenMal to emphasize that our method's 55
design accommodates spaMal domain clustering as well. Here, we present a synthesis of computaMonal 56
skills and biological insights aimed at pushing the boundaries of our understanding of the complex cell 57
interacMons within Mssues. 58

 59

Background 60

Clustering methods from the literature 61
 62
Many methods in the literature can be used to parMMon an 𝑁-dimensional populaMon into 𝐾 sets 63
based on specific rules. In this paper, we focus on some of the most popular clustering methods used 64
in the field of data analysis, such as 𝑘-Means [8], Louvain [9], Leiden [10], and MClust [11]. While these 65
methods share the goal of grouping data points, they differ in the types of data they are designed for, 66
the principle they opMmize, and the algorithms they are well-suited for. 𝑘-Means is a general-purpose 67
clustering algorithm, Louvain and Leiden are tailored for community detecMon in networks, while 68
MClust is a model-based clustering method. In the following subsecMons, we briefly describe each of 69
these methods. 70
 71
𝑘-Means algorithm 72
The 𝑘-means algorithm [8] is a parMMoning algorithm that divides a dataset into 𝑘-clusters based on 73
the similarity of data points. It starts by establishing 𝑘 groups, each comprising a singular randomly 74
chosen point. Points are then added to these groups according to the principle that new points are 75
assigned to the group whose mean point is the most similar by some rule. AWer point allocaMon, the 76
means of all groups are adjusted to incorporate the influence of newly added points. Consequently, at 77
each stage, the 𝑘-means are reflecMve of the means of the groups they represent. 78

While this method is computaMonally efficient and adeptly handles extensive datasets, it does 79
not guarantee convergence to an opMmal soluMon. Notably, issues arise from the random iniMalizaMon 80
of centroids, leading to unexpected convergence pa^erns. Moreover, the algorithm requires users to 81
choose the cluster number beforehand, influencing cluster shapes and suscepMbility to outlier effects. 82
However, it is known that certain special cases of the 𝑘-means algorithm exist in the literature where 83
convergence to an opMmal soluMon is assured. 84

 85

Louvain algorithm 86
The Louvain algorithm, developed by V. D. Vondel et al. [9], is designed for detecMng communiMes in 87
network or graph data. This algorithm aims to opMmize modularity, a measure of the quality of network 88
division into communiMes, using two phases: (1) local moving of nodes and (2) aggregaMon of the 89
network. In the first phase, individual nodes are moved to the community that yields the largest 90
increase in the quality funcMon. In the second phase, an aggregaMon network is obtained based on 91
parMMons, with each community in a parMMon becoming a node in the aggregate network. These two 92
phases are repeated unMl the quality funcMon cannot be increased further. However, the Louvain 93
algorithm can potenMally produce communiMes with arbitrarily poor connecMvity. In the most adverse 94
scenarios, these communiMes may become enMrely disconnected, parMcularly during iteraMve 95
execuMons of the algorithm. 96
 97
Leiden algorithm 98
To address the connecMvity issues of the Louvain algorithm, V. A. Traag et al. introduced the Leiden 99
algorithm [10]. The Leiden algorithm guarantees that communiMes are well connected and, when 100
applied iteraMvely, the algorithm converges to a parMMon where all subsets of all communiMes are 101
locally opMmally assigned. The Leiden algorithm is partly based on the smart local move algorithm, 102
which itself can be seen as an improvement of the Louvain algorithm and takes advantage of the idea 103
of speeding up the local moving of nodes and the idea of moving nodes to random neighbors, the 104
Leiden algorithm considers these ideas to represent the most promising direcMons in which the 105
Louvain algorithm can be improved. The Leiden algorithm consists of three phases: (1) local moving of 106
nodes, (2) refinement of the parMMon, and (3) aggregaMon of the network based on the refined 107
parMMon, using the non-refined parMMon to create an iniMal parMMon for the aggregate network. Thus, 108
this algorithm opMmizes a quality funcMon to idenMfy communiMes by considering the density of 109
connecMons within the communiMes. 110
 111
MClust 112
MClust [11], applied in cell clustering, idenMfies disMnct cell groups based on observed features using 113
Gaussian mixture models [12]. Unlike other clustering algorithms, MClust accommodates various 114
cluster shapes, making it suitable for complex situaMons. It uMlizes the ExpectaMon-MaximizaMon [13] 115
algorithm for parameter esMmaMon, offering robust handling of missing data and complex 116
distribuMons. This model-based clustering tool is powerful in uncovering pa^erns within complex 117
biological datasets, such as those from single-cell omics technologies. IniMally designed for single-cell 118
RNA sequencing data, it can also be applied to spaMal transcriptomic data, its effecMveness depending 119
on data characterisMcs and analysis goals. 120

 121
Embedding methods from the literature 122
 123

In spaMal transcriptomics, where data is organized as a matrix with cells and genes, the high 124
dimensionality (oWen exceeding 30,000 genes) and sparsity pose analyMcal challenges. Dimensionality 125
reducMon methods play key roles in addressing these issues. These techniques help disMll meaningful 126
pa^erns from the data, facilitaMng more efficient analyses. 127

The generaMon of embeddings, achieved through established literature methods, aims to 128
transform the high-dimensional gene space into a more manageable form. This process enables a 129
clearer exploraMon of spaMal relaMonships, cell heterogeneity, and underlying biological processes. By 130
leveraging validated methods from exisMng literature, we ensure a scienMfically rigorous approach, 131

condensing rich gene expression profiles into interpretable embeddings while addressing 132
computaMonal complexiMes. 133

As menMoned previously, we performed dimensionality reducMon using five different 134
embedding methods: STAGATE [14], Principal Component Analysis (PCA) [15], GraphST [16], Cell 135
Clustering for SpaMal Transcriptomics (CCST) data [17], and STAligner [18]. 136

 137
STAGATE 138
The STAGATE method [14] has been designed for spaMal clustering and denoising in spaMally resolved 139
transcriptomics data. This method generates low-dimensional latent embeddings with both spaMal 140
informaMon and gene expressions via a graph a^enMon auto-encoder. Notably, the method adopts an 141
a^enMon mechanism in the middle layer of the encoder and decoder, which learns the edge weights 142
of spaMal neighbor networks and uses them to update spot representaMons by collecMvely aggregaMng 143
informaMon from their neighbors. 144
 145
Principal Component Analysis 146
PCA [15] is a staMsMcal method for dimensionality reducMon and data visualizaMon. It is a mathemaMcal 147
procedure that transforms a set of correlated variables into a new set of uncorrelated variables known 148
as principal components. The principal components are linear combinaMons of the original variables 149
and are sorted based on how much they account for the variance within the data; i.e., the first principal 150
component accounts for the highest variance. PCA finds widespread applicaMon across domains, 151
including data analysis, machine learning, and image processing, aiming to streamline intricate 152
datasets and uncover pa^erns or associaMons between variables. 153

 154
GraphST 155
GraphST [16] is an advanced self-supervised contrasMve learning technique designed to maximize the 156
potenMal of spaMal transcriptomics data. IntegraMng graph neural networks with self-supervised 157
contrasMve learning, this method acquires spot representaMons that are both informaMve and 158
disMncMve. This is achieved by minimizing the embedding distance between spaMally neighboring spots 159
reciprocally. 160

 161
Cell Clustering for Spa>al Transcriptomics data 162
CCST [17] leverages graph convoluMonal networks (GCNs) to integrate gene expression data and 163
comprehensive spaMal informaMon from individual cells in spaMal gene expression data. The 164
relaMonships between variables are captured as a graph, with the adjacency matrix represenMng 165
connecMons among variables and the node feature matrix reflecMng variable observaMons. The GCN 166
layer is strategically designed to fuse graph (in our case, spaMal structure) and node features (gene 167
expression). IniMally, the data is transformed into a graph, where nodes represent cells with gene 168
expression profiles as a^ributes, and edges represent neighborhood relaMonships between cells. 169
Subsequently, a sequence of GCN layers is used to incorporate graph and gene expression details into 170
cell node embedding vectors. Concurrently, the graph is perturbed to generate negaMve embeddings. 171
By learning the discriminaMon task, the neural network model is trained to encode cell embeddings 172
derived from spaMal gene expression data, subsequently used for cell clustering. 173
 174
STAligner 175
STAligner [18] is a specialized tool for aligning and integraMng spaMally-resolved transcriptomics data. 176
It begins by normalizing expression profiles for all spots and creaMng a spaMal neighbor network based 177
on spaMal coordinates. Employing a graph a^enMon auto-encoder neural network, STAligner extracts 178

spaMally-aware embeddings and uses spot triplets to guide the alignment process, fostering similarity 179
among related spots and disMncMon among dissimilar ones across slices. The introducMon of triplet 180
loss refines spot embeddings by minimizing the distance from the anchor to posiMve spots and 181
increasing the distance to negaMve spots. This iteraMve process opMmizes triplet construcMon and auto-182
encoder training unMl batch-corrected embeddings are obtained. Furthermore, STAligner's versaMlity 183
extends to integraMng spaMal transcriptomics datasets, facilitaMng alignment and concurrent 184
idenMficaMon of spaMal domains across diverse biological samples, technological planorms, 185
developmental stages, disease condiMons, and consecuMve Mssue slices for 3D alignment. 186
 187

Implementa/on 188

Mathema1cal model 189
 190
Let 𝐶 = [𝑐&] represent the set of cells 𝑐&, 𝑖 = 1,… , 𝑛, and the total number of cells equal 𝑛. For each 191
cell 𝑐& , 𝑖 = 1,… , 𝑛 , let 𝑐&' and 𝑐&

(represent its 𝑥 and 𝑦 coordinates, and let vector 𝑐&)*+ =192
Z𝑐&
)*+! , … , 𝑐&

)*+"[represent embedding values (𝑀 is the total number of embedding values). 193
Furthermore, let the distance funcMon 𝐷: 𝐶 × 	𝐶 → 	ℛ, be defined as a measure of the similarity 194
between the cells. In our model, for two cells 𝑐& and 𝑐-, the distance 𝐷 was calculated as follows: 𝐷	 =195
𝛼	𝐷.)/) 	+ 	 (1 − 𝛼)𝐷01123, where 𝛼 is the input parameter, 𝐷.)/) is the cosine similarity between cell 196
embeddings, and 𝐷01123 is the Euclidian distance between cell coordinates: 197

𝐷.)/)g𝑐& , 𝑐-h = 𝑐𝑜𝑠𝑖𝑛𝑒g𝑐& , 𝑐-h, 198

𝐷01123	g𝑐& , 𝑐-h = lg𝑐&' − 𝑐-'h
% + m𝑐&

(− 𝑐-
(n

%
	. 199

In our model, we chose 𝐾 different cells from the set of cells 𝐶 to represent clusters and called these 200
cells centroids. Therefore, let the binary variables 𝑥&- (𝑖, 𝑗 = 1,… , 𝑛) and 𝑦& be defined in the following 201
way: 202

𝑥&- = p
1, 𝑖𝑓	𝑐𝑒𝑙𝑙	𝑐& 	𝑏𝑒𝑙𝑜𝑛𝑔𝑠	𝑡𝑜	𝑡ℎ𝑒	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑	𝑏𝑦	𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑	𝑐-
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 203

𝑦& 	= 	 p
1, 𝑖𝑓	𝑐𝑒𝑙𝑙	𝑐& 	𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠	𝑡ℎ𝑒	𝑐𝑒𝑛𝑡𝑜𝑟𝑖𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 204

The Integer Linear Programming formulaMon of the clustering problem can be described as follows: 205

min} } 𝑥&-𝐷(𝑐& , 𝑐-)
/

-5!

/

&5!
																							(1) 206

subject to these constraints: 207

} 𝑥&-
/

&5!
= 1,			1 ≤ 𝑗 ≤ 𝑛,																												(2) 208

𝑥&- ≤ 𝑞- ,			1 ≤ 	𝑖 ≤ 	𝑛, 1 ≤ 	𝑗 ≤ 	𝑛,						(3) 209

																						} 𝑦&
/

&5!
= 𝐾,																															(4) 210

𝑥&- , 𝑦- ∈ {0,1},			1 ≤ 	𝑖 ≤ 	𝑛,			1 ≤ 	𝑗 ≤ 	𝑛.				(5) 211
The objecMve funcMon (1) represents the sum of distances from each cell to its most similar cluster 212
representaMve. This funcMon should be minimized. EquaMon (2) indicates that each cell is assigned to 213
only one cluster. Before assigning a cell to a cluster, the cluster needs to be defined (3). The total 214
number of clusters is equal to 𝐾 (4). All variables are constrained to be binary (5). 215

The model described with equaMons (1)-(5) is based on the 𝑝-median classificaMon and is 216
presented in a similar form by Davidović et al. [19]. 217

 218

Variable Neighborhood Search Method 219
 220

The VNS method is a well-known metaheurisMc method. It starts from one point in the search 221
space, explores its neighborhoods, and repeats the process unMl a be^er soluMon or stopping criteria 222
are reached. This method was proposed for the first Mme by Mladenović [20] and later elaborated by 223
Mladenović and Hansen [21] and Hansen and Mladenović [22]. 224

Before we introduce the VNS method, let us define the set 𝑁6(𝑋), 𝑘 = 𝑘{*&/}, … , 𝑘*9' as the 225
set of all vectors 𝑋′ that have a difference of the 𝑘:; order from the soluMon 𝑋, and call that set 𝑘:; 226
Neighborhood to the soluMon X. 227

The VNS-based heurisMc can be defined in a way that it starts from the iniMal feasible soluMon 228
𝑋, shakes it by creaMng another soluMon 𝑋< ∈ 𝑁6(𝑋), and then applies a local search method to create 229
a be^er feasible soluMon 𝑋′′. If the feasible soluMon 𝑋′′ obtained by the local search procedure is not 230
be^er than the current incumbent 𝑋 (𝐹(𝑋<<) ≥ 	𝐹∗), the VNS algorithm repeats the procedure of 231
shaking in the neighborhood 𝑁6,6#$%& (i.e., 𝑘 is incremented by 𝑘=:)>) and local searches within it. It 232
repeats this passage unMl 𝑘 reaches its maximum 𝑘*9' . Otherwise, if 𝐹(𝑋<<) < 	𝐹∗ , 𝐹∗becomes 233
𝐹(𝑋’’) and 𝑘 becomes 𝑘*&/. The procedure of changing the neighborhood enables the VNS algorithm 234
to get out from the local minima. The process is repeated unMl a certain number of iteraMons or other 235
stop criteria are reached. 236

Pseudo-code for the basic VNS algorithm is presented as Algorithm 1. ImplementaMons of the 237
funcMons Ini+alSolu+on(), Shake(), LocalSearch(), and StoppingCondi+on() defined for our clustering 238
problem are described in the following subsecMon. 239

 240

 241

 242

VNS for the cell clustering problem 243
 244

With respect to the problem's definiMon, let us assume that all cells can be represented by numbers 245
from 1 to 𝑛. Specifically, cells can be represented by the set 𝐶 = [𝑐&], 𝑛 = |𝐶|, and that for each cell 246
𝑐& there are two types of data: the 𝑥 and 𝑦 coordinates of the cell (𝑐&' and 𝑐&

() and the embedding 247
values (vector 𝑒𝑚𝑏&). In our representaMon, the soluMon vector 𝑌 = [𝑦!, … , 𝑦?] contains indexes of 𝐾 248
cells chosen as cluster representaMves. Also, cell 𝑦& is a centroid of the 𝑖-th cluster. From the centroid 249
soluMon vector 𝑌 we obtain vector 𝑋 = [𝑥&] of size 𝑛 in the following way: 𝑥&, 𝑖 = 1,… , 𝑛, represents 250
the closest centroid from the 𝑌 vector to the 𝑖 -th cell. Our representaMon saMsfies all condiMons 251
described by equaMons (2) - (5). Using this representaMon, our goal was to minimize the value of the 252

funcMon 𝐹: 𝐶 × 	𝐶 → 	ℛ,, where 𝐹 is defined as 𝐹(𝑋) = ∑ m𝛼𝐷.)/)(𝑖, 𝑥&) + (1 −/
&5!253

𝛼)𝐷01123(𝑖, 𝑥&)n. 254

The funcMon Ini+alSolu+on() randomly chooses K mutually different numbers from the set of 255
numbers {1, … , 𝑛} and returns them as a 𝐾-dimensional vector 𝑌. For every soluMon vector 𝑌, vector 256
𝑋 is obtained in the following way: for each cell 𝑖, the distance 𝐷 between the cell 𝑖 and all centroids 257
𝑦- from the vector 𝑌 is calculated; next, 𝑥& is set equal to the 𝑦- for which the distance 𝐷 is minimal. 258
That is, whenever the vector 𝑌 is changed, vector 𝑋 is also updated. Also, to avoid repeated 259
calculaMons, the distance 𝐷 between all cells is calculated and saved as a distance matrix. 260
 The Shake() funcMon takes two inputs: the incumbent 𝑌 and the size 𝑘 of the neighborhood 261
that needs to be explored. As a result, the Shake() funcMon randomly chooses 𝑘 elements from the 262
vector 𝑌 and replaces them with 𝑘 randomly chosen elements from the set {1, … , 𝑛} that are different 263
from all elements from the current 𝑌. This means that when some elements are changed, all elements 264
in vector 𝑌 will sMll be mutually different. In other words, the 𝑆ℎ𝑎𝑘𝑒() funcMon chooses a vector 𝑌′ 265
from	𝑁6(𝑌). 266

The LocalSearch() funcMon takes vector 𝑌′, the distance matrix 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, and the parameters 267
𝑚 and 𝑝 as inputs. In our implementaMon, we used the first improvement strategy. Based on the value 268
of the parameter 𝑚, for each element of the vector 𝑌′, the LocalSearch() funcMon first chooses a 269
random integer number 𝑖𝑛𝑑 ∈ [0,𝑚]; next, based on the 𝑖𝑛𝑑 value, keeps the observed element of 270
the vector 𝑌′ as it is (𝑖𝑛𝑑	 == 	0) or replace it with the new one (𝑖𝑛𝑑	 > 	0). For 𝑖𝑛𝑑 ≥ 	2, the observed 271
element is replaced with one of the candidates from the set of candidates that are created within the 272
LocalSearch() funcMon (the LocalSearch() funcMon searches for 𝑖𝑛𝑑 candidates for which the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 273
value from the observed candidate is the smallest, sorts the list, excludes all candidates that are 274
already present in the vector 𝑌′, and then chooses one candidate for the replacement). Please note 275
that the smallest 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 value between the observed candidate and itself will be zero, so the 276
condiMon 𝑖𝑛𝑑 > 1 is necessary. In case 𝑖𝑛𝑑	 == 	1 , 𝑖𝑛𝑑 will be chosen again unMl its value is not equal 277
to 1. AddiMonally, if the candidate list is empty aWer excluding all elements that already exist in the 278
vector 𝑌′, a random candidate will be chosen from the set {1, … , 𝑛} ∖ {𝑦!, … , 𝑦?}. 279
Finally, aWer the procedure of replacing or keeping elements from the vector 𝑌′ is finished, i.e., a new 280
vector 𝑌′′ is obtained, the 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ() funcMon calculates 𝐹(𝑌′′) and, if 𝐹(𝑌′′) 	< 	𝐹∗ , the first 281
improvement has been made, and the funcMon returns the vector 𝑌′′ as the output or repeats the 282
whole process. The process of examining elements of the vector 𝑌′ and replacing them with new 283
values is repeated only if no improvement is made, but not more than 𝑝 Mmes. In case no improvement 284
is made and the process has been repeated p Mmes, the vector 𝑌′′ = 𝑌′ will be returned as the output 285
of this funcMon. 286

In other words, the LocalSearch() funcMon examines elements in the close neighborhood of 287
the observed vector 𝑌′ by creaMng a new vector 𝑌′′, calculates the funcMon value 𝐹(𝑌′′) and, if the 288
funcMon value is less than the currently best value 𝐹∗, returns that vector. Otherwise, it will conMnue 289
the process of examining elements of the vector 𝑌′ but not more than 𝑝 Mmes. 290

Usually, the StoppingCondi+on() funcMon checks if the maximal number of iteraMons 291
(𝑚𝑎𝑥&:)2) or the maximal running Mme (𝑡*9') have been reached. In our code, the StoppingCondi+on() 292
funcMon checks only if the maximal number of iteraMons has been reached and, if the answer is 𝑡𝑟𝑢𝑒, 293
returns the best soluMon found as the result of the VNS procedure. If the maximal number of iteraMons 294
has not been reached, the VNS procedure conMnues its search. 295

 296

Data Descrip/on 297
 298

We assessed the performance of the clustering methods through quanMtaMve evaluaMon, employing 299
datasets sourced from two disMnct spaMally resolved transcriptomic technologies: Stereo-seq [23] and 300
10x Visium [24]. 301
 From Stereo-seq technology, two datasets were used for tesMng: a large dataset of a field 302
mouse brain hemisphere (SS200000128TR E2 benchmark) and another from the dorsal midbrain 303
(Forebrain). The large field mouse brain contains more than 38,000 cells and more than 20,000 genes 304
and can be downloaded from [25], while Forebrain contains more than 18,000 cells and more than 305
23,000 genes and can be downloaded from [26]. Please note that Forebrain contains the whole dorsal 306
midbrain. In our study, we used manual lasso to separate a part of this dataset and called that part 307
Forebrain. Both datasets are composed of only one slice. 308

In order to evaluate the performance of the presented VNS method on mulM-slice datasets, 309
we used a 10x Visium dataset containing spaMal expressions of 12 human-layered dorsolateral 310
prefrontal cortex (DLPFC) secMons. Since these 12 secMons are from three different human donors, 311
they were used as mulM-secMon (4-layers) datasets in our study. All layers of the DLPFC secMons were 312
manually annotated by Maynard et al. [24] and can be downloaded from [27]. Viewing them as the 313
ground truth, we compared the clustering accuracy of the VNS method with other clustering methods 314
using only embedding obtained by the verMcal spaMal transcriptomic integraMon provided by 315
STAGATE. 316

Analysis 317

Input parameters 318
 319
TesMng was conducted on the AWS instance m6a.48xlarge under the Linux operaMve system. 320

Input parameters for our algorithm are the number of clusters (𝐾), the percentage of the 321
influence of the embedding values (𝛼), the maximal number of neighborhoods that should be 322
searched (𝑘*9' ,), the maximal number of iteraMons (𝑚𝑎𝑥&:)2), and the local search parameters 𝑚 and 323
𝑝. The minimal (𝑘*&/) number of neighborhoods and step (𝑘=:)>) are set to 1 by default. 324

The input parameters used for tesMng are 𝛼 ∈ {1, 0.95} (𝛼	 = 	1 means that no addiMonal 325
spaMal informaMon is included, while 𝛼 = 0.95 means that 5% of spaMal informaMon is used for 326
calculaMng the distance between the cells), 𝑘*9' ∈ {10,15,20,25,30}, 𝑚 ∈ {10,12,15,20,30}, and 327
𝑝 ∈ {10,12,15,20}. 328
 329

Evalua1on method 330
 331
We used the Adjusted Rand Index (ARI) [28] to evaluate the results and compare them with each other. 332
ARI is a measure used to evaluate the performance and similarity between two clustering algorithms. 333
It quanMfies the agreement between the true and predicted clustering, adjusMng for the amount of 334
agreement that could occur by chance. ARI values range from -1 to 1: where 1 indicates the perfect 335
agreement, 0 indicates agreement expected by chance, and negaMve values suggest less agreement 336
than expected by chance. 337
 338

Results of the VNS method across various scenarios with single-slice datasets 339
 340
Due to the sparsity of the gene expression matrix and to ensure a fair comparison, embeddings were 341
obtained using various methods from the literature (PCA, STAGATE, GraphST, and CCST) for both 342
Stereo-seq datasets. Moreover, all methods create embedding that significantly reduces the number 343
of genes to a much smaller set of features. For instance, the CCST method reduced the number of 344
genes from the Forebrain dataset to 128 features, STAGATE to 64 features, PCA to 50 features, and 345
GraphST to 20 features. For the E2 dataset, all parameters were the same except for STAGATE, where 346
the number of features was lowered to 30. Hence, the input data depend on the number of cells and 347
the number of obtained features (embeddings). The standard clustering methods from the literature 348
(𝑘-Means, MClust, Louvain, and Leiden) and the proposed VNS method for cell clustering were applied 349
to the generated embeddings. The results of the tesMng are presented in Tables 1 and 2. 350

The goal of the VNS method was to find the soluMon with the smallest cost funcMon, and we 351
show these results in Table 1. Table 1 shows results obtained by the VNS method only and is organized 352
as follows: the first column presents the name of the embeddings used as the input to the VNS method, 353
while the following four columns (𝑓@AB, 𝑡@AB, 𝑒𝑟𝑟	,	and 𝜎) show the smallest cost funcMon value, the 354
corresponding running Mme, and the staMsMcal analysis of all soluMons obtained by VNS when 355
comparing to the presented cost funcMon value in that order. In other words, due to the stochasMc 356
nature of the metaheurisMc, the VNS algorithm was run 20 Mmes (for 20 different seeds) for each 357
embedding, and informaMon regarding the best soluMon value obtained in these 20 runs is provided 358
in these four columns (𝑓@AB , 𝑡@AB , 𝑒𝑟𝑟	,	and 𝜎). More precisely, 𝑓@AB presents the minimal cost 359
funcMon value obtained aWer these 20 runs; 𝑡@AB is the corresponding running Mme for the presented 360
soluMon value; 𝑒𝑟𝑟 and 𝜎 contain addiMonal informaMon on the quality of the soluMon: 𝑒𝑟𝑟 is the 361
average relaMve error of found soluMon from the presented one and is calculated as 𝑒𝑟𝑟 =362
!
%C
∑ 𝑒𝑟𝑟&%C
&5! , where 𝑒𝑟𝑟_𝑖 = |𝑉𝑁𝑆& 	− 	𝑓@AB|/|𝑉𝑁𝑆&|, where 𝑉𝑁𝑆& is the VNS soluMon obtained in the 363

𝑖:; run (seed). The value 𝜎 is the standard deviaMon of 𝑒𝑟𝑟 and is calculated by 𝜎	 =364

l !
%C
∑ (𝑒𝑟𝑟& − 𝑒𝑟𝑟)%%C
&5! 	. For each embedding method, the results obtained by VNS are presented in 365

separate rows. 366
The results presented in Table 2 are organized into three groups. Similar to Table 1, the first 367

column (first group) presents the name of the method used for creaMng the embedding. The next ten 368
rows present the results for each clustering method separately; for each method, we provide the ARI 369
score (𝐴𝑅𝐼) and the running Mme (𝑡) in seconds. The 𝐴𝑅𝐼 and 𝑡 values under the VNS columns stand 370
for the best found 𝐴𝑅𝐼	 score obtained for all tesMng combinaMons and the corresponding running 371
Mme. The highest 𝐴𝑅𝐼 score achieved for some datasets among all clustering methods is highlighted 372
in bold, while the second-best 𝐴𝑅𝐼 score is highlighted by an asterisk (*). 373

In both tables, the first set of results corresponds to the E2 dataset, and the next corresponds 374
to the Forebrain dataset. The E2 dataset results are visualized in Figure 1, while the Forebrain dataset 375
results are visualized in Figure 2. 376

 377
Table 1. VNS soluMon for single-slice datasets. Values in columns 𝑓@AB , 𝑡@AB, 𝑒𝑟𝑟 and 𝜎 are 378

obtained as explained in the Analysis secMon. 379
 380

Embedding 𝑓!"# 𝑡!"# (s) 𝑒𝑟𝑟	 𝜎	

E2

CCST 1,019.7419 48.8355 0.1626 0.0476

STAGATE 2,706.7446 110.258 0.1196 0.0415

PCA 9,550.0142 79.1977 0.0320 0.0118

GraphST 10,083.5379 64.95 0.0197 0.0059

Forebrain

CCST 427.8511 47.8054 0.1579 0.0439

STAGATE 543.0947 52.7096 0.0925 0.0347

PCA 3,541.7886 50.1935 0.0214 0.0073

GraphST 2,209.235 92.0103 0.0473 0.0140

 381
Table 2. Clustering method comparison for single-slice datasets. The highest ARI score 382

achieved for some datasets among all clustering methods is highlighted in bold, while the second-best 383
ARI score is highlighted by an asterisk (*). 384

 385
Embeddings Leiden Louvain 𝑘-Means MClust VNS

ARI t (s) ARI t (s) ARI t (s) ARI t (s) ARI t (s)

E2

CCST
0.1553 29.1638 0.1518 5.7702 0.1962* 15.3243 0.1401 4,799.5287 0.2224 47.5667

STAGATE
0.1951 7.5198 0.2176 6.3803 0.2907 2.62854 0.2052 516.8929 0.2890* 59.7737

PCA
0.0001 6.8347 0.1316 9.9780 0.2072* 12.0037 0.2024 1,128.1911 0.2907 235.465

GraphST
0.0841 14.8255 0.0697* 13.0344 0.0492 4.2599 0.0635 533.1441 0.0636 47.5184

Forebrain

CCST
0.0925 25.7164 0.0961* 2.5659 0.1093 8.7788 0.0821 1,330.3455 0.1263 18.6987

STAGATE
0.1753 3.6952 0.1676 3.6263 0.1775* 6.0085 0.1718 269.9742 0.2342 24.6907

PCA
0.1659 4.4805 0.1674* 3.7720 0.1717 6.4302 0.1025 147.4443 0.1568 45.2866

GraphST
0.1738 3.8813 0.1847* 4.6558 0.1833 1.8972 0.1709 73.0143 0.2104 9.2064

 386
 387
VNS clustering achieves be9er results than other tested methods using the E2 dataset 388
 389
From the first part of the results shown in Table 1, we can conclude that, using PCA embedding in all 390
20 runs, the values of the cost funcMon are very close to the lowest cost funcMon value (𝑒𝑟𝑟	 < 	3.5, 391
𝜎	 < 	1.5%). Using STAGATE, we have some differences, although 𝜎 is sMll below 5%	implying that the 392

VNS method is stable with both embeddings. The results of VNS clustering when the smallest cost 393
funcMon values are reached are visualized in Figure 1a, while the results with the best ARI score 394
achieved by all clustering methods are shown in Figure 1b. 395

 396

VNS methods outperform other methods when clustering cells from the Forebrain dataset 397
 398

By examining values from the 𝑒𝑟𝑟 and 𝜎	columns in Table 1 for the Forebrain dataset, it can be easily 399
seen that differences between the results obtained in 20 runs are very small. In fact, the difference 400
between the best-found soluMon (the soluMon with the minimal cost funcMon value) and the other 19 401
soluMons is less than 5% (the average relaMve error 𝜎 is less than 5%). This result means that the 402
soluMons found in all 20 runs were very close to the smallest one. Also, from the results in the column 403
𝑡@AB, we can observe a running was less than 1 minute for three different embedding types and less 404
than 2 minutes for one embedding type. 405

Moreover, from the results presented in Table 2 for the Forebrain dataset, we can see that, in 406
the majority of cases, VNS had the highest 𝐴𝑅𝐼 score compared to the other methods (for three types 407
of embedding, the 𝑉𝑁𝑆 𝐴𝑅𝐼 score was the highest). Also, the running Mme was less than 1 minute for 408
each type of embedding. The only embedding for which the VNS did not find a soluMon with the best 409
𝐴𝑅𝐼 score was the PCA one, and for this embedding, the best	𝐴𝑅𝐼 score was obtained by the 𝑘-Means 410
method. 411

By analyzing the results in Tables 1 and 2, we conclude that the VNS method achieves the best 412
𝐴𝑅𝐼	score with the STAGATE embedding, and that in all 20 runs all soluMons were close to the one 413
with the lowest cost funcMon (𝑒𝑟𝑟	 < 	1%). The results obtained with the minimal cost funcMon and 414
the maximal 𝐴𝑅𝐼 score are visualized in Figure 2. 415

 416
 417
 418

VNS demonstrates a superior performance on mul>-slice datasets 419
 420

Next, we compared the clustering accuracy of the VNS method with other clustering methods by using 421
embeddings obtained by the STAligner method only. Compared to other embedding methods used for 422
single-slice datasets, it is worth menMoning that STAligner reduces the number of genes to 30 features. 423
The results of this comparison are presented in Tables 3 and 4. Table 3 is organized similarly to Table 424
1. The only difference is in the first column, which, in this case, is called Slice name. Since DLPFC 425
datasets are 4-layered slices, this column contains the names of the first and the last slices in this 426
parMcular dataset. Other slices imply. Thus, each row represents the results for one separate DLPFC 427
dataset. 428

Table 4 is organized similarly to Table 2; however, the column Embeddings is replaced by the 429
column Slice name, and the names of the first and the last slices from parMcular mulM-slice datasets 430
are presented. Other slices imply. The results for each dataset are presented in separate rows, as in 431
Table 3. The results from Table 3 are visualized in Figure 3. 432

As we see from the columns 𝑒𝑟𝑟	 and 𝜎 in Table 3, in all 20 runs, the VNS method obtained 433
results similar to the ones with the smallest cost funcMon (𝑒𝑟𝑟	 < 5.8%, 𝜎 < 2.5%). Again, these results 434
imply that the method is stable even for mulM-slice datasets. The fact that results from the columns 435
𝑡@AB are smaller than 5 implies that this method can obtain results for four slices of these types of 436
datasets in less than 5 seconds. 437

From the results presented in Table 4, it can be concluded that the method proposed in this 438
paper outperforms other clustering methods in all aspects. Specifically, for each of the datasets we 439
tested, 𝐴𝑅𝐼 score was the highest and the running Mme was the lowest when the VNS method was 440
used. 441
 442

Table 3. VNS soluMon for mulM-slice datasets. 443

Slice name 𝑓!"# 𝑡!"# 𝑒𝑟𝑟 𝜎
151507_151510

890.7088 4.2262 0.0884 0.0390
151669_151672

755.7133 2.8674 0.0866 0.0273
151673_151676

513.8781 1.1983 0.0923 0.0396
 444

Table 4. Clustering method comparison for mulM-slice datasets. The highest ARI score achieved for 445
some datasets among all clustering methods is highlighted in bold, while the second-best ARI score is 446
highlighted by an asterisk (*). 447

Slice name Leiden Louvain 𝑘-Means MClust VNS
ARI t (s) ARI t (s) ARI t (s) ARI t (s) ARI t (s)

151507_151510
0.3440 27.3778 0.4293* 4.0119 0.3061 2.1001 0.3489 62.5176 0.4887 2.1094

151669_151672
0.4084 26.9197 0.4985* 2.9611 0.2213 1.6839 0.4633 39.1007 0.6156 1.3014

151673_151676
0.4370 25.1056 0.4754* 2.6766 0.3299 1.4413 0.4316 49.1890 0.5016 0.8573

 448

Discussion and Conclusion 449
 450

Here, we introduced a novel approach suitable for clustering both single- and mulM-slice spaMal 451
transcriptomics datasets. This is the first applicaMon of a metaheurisMc method, called the VNS, to the 452
clustering of spaMal transcriptomic data. The essence of the VNS implementaMon presented in this 453
study is the uMlizaMon of a combinatorial/mathemaMcal opMmizaMon algorithm; in this instance, a 454
metaheurisMc approach. These methods are strategically designed to deliver sufficiently opMmal 455
soluMons to opMmizaMon and machine learning challenges while minimizing computaMonal resources. 456
This approach is intended to offer a robust and computaMonally efficient soluMon for cell clustering in 457
spaMal transcriptomics. 458

Our analysis demonstrated that the performance of clustering methods is significantly influenced by 459
the choice of embeddings and the way they were generated. Notably, the VNS approach combined 460
with PCA embeddings yields results that closely align with the ground truth, as illustrated in Figure 2b. 461
When benchmarked against exisMng techniques, our method consistently outperforms in terms of 462
efficiency and ARI scores. The algorithm’s speed and stability are commendable, and its flexibility is 463
evidenced by a comprehensive set of parameters that can be tailored to meet diverse user 464
requirements. Future research will extend the method’s applicaMon to Mme-series datasets and 465
explore addiMonal VNS modificaMons and embedding techniques to enhance its uMlity. 466

 467

Availability of source code and requirements: 468
 469
• Project name: VNS 470

• Project home page: h^ps://github.com/STOmics/VNS/tree/main 471
• OperaMng system(s): Linux 472
• Programming language: Python 473
• License: MIT 474
• RRID: 475
 476

Data availability 477
 478
From Stereo-seq technology, two datasets were used: 479
(1) a large dataset of a field mouse brain hemisphere (SS200000128TR E2 benchmark), which can be 480
downloaded from Zenodo [25] 481
(2) Forebrain, which can be downloaded from the CNGB MOSTA database 482
h^ps://db.cngb.org/stomics/mosta/download/. 483
AddiMonal data is also available in GigaDB [29]. We used only one part of Forebrain, which was 484
extracted using a manual lasso. 485
 486

Declara/ons 487
 488
Abbrevia1ons 489
ARI, Adjusted Rand Index; CCST, Clustering for SpaMal Transcriptomics; DLPFC, dorsolateral prefrontal 490
cortex; GCN, graph convoluMonal network; PCA, Principal Component Analysis; VNS, Variable 491
Neighborhood Search. 492
 493
Consent for publica1on 494
Not applicable. 495
 496

Compe1ng Interests 497
The author(s) declare that they have no compeMng interests. 498
 499
Ethics approval and consent to par1cipate 500
The authors declare that ethical approval was not required for this type of research. 501
 502
Funding 503
This work was supported by the NaMonal Key R&D Program of China (2022YFC3400400). 504
 505
Author's Contribu1ons 506
AD and MI provided the idea of the soluMon, implementaMon, tesMng, and manuscript. JL and SF 507
supervised the whole process. CL created embeddings for both datasets for tesMng. 508
 509
Acknowledgements 510
We acknowledge the CNGB NucleoMde Sequence Archive (CNSA) of China NaMonal GeneBank 511
DataBase (CNGBdb) for maintaining the MOSTA database. 512
 513

https://db.cngb.org/stomics/mosta/download/

 514
 515
Figure 1. (a) Results of the VNS clustering on the E2 dataset. The first figure on the leW presents the 516
ground truth data. These results were obtained using the VNS method with PCA, STAGATE, GraphST, 517
and CCST embeddings. (b) Clustering results for the E2 dataset. Each row presents the clustering 518
results obtained by 𝑘-Means, MClust, Louvain, Leiden, and VNS over a certain embedding method. 519
Therefore, the first row presents the results obtained by all clustering methods when using PCA 520
embedding. The next three rows used STAGATE, GraphST, and CCST embeddings. 521

 522
 523
Figure 2. (a) Results of the VNS clustering on the Forebrain dataset. The first figure on the leW 524
presents the ground truth data. These results were obtained using the VNS method with PCA, 525
STAGATE, GraphST, and CCST embeddings. (b) Clustering results for the Forebrain dataset. Each row 526
presents the clustering results obtained by 𝑘-Means, MClust, Louvain, Leiden, and VNS, over a 527
certain embedding method. Therefore, the first row presents the results obtained by all clustering 528
methods when using PCA embedding. The next three rows used STAGATE, GraphST, and CCST 529
embeddings. 530

 531

Figure 3. The clustering results on the DLPFC datasets 151507-151510, 151669-151672, and 151673-532
151676 are presented in panels (a), (b), and (c), respecMvely. The first column shows the ground truth 533
data, while the subsequent columns display the results obtained using 𝑘-Means, MClust, Louvain, 534
Leiden, and the VNS method with STAligner embeddings. 535
 536

References 537
 538

1. Giladi, A., Amit, I. Single-cell genomics: a stepping stone for future immunology 539
discoveries. Cell, 2018, 172.1: 14-21. 540

2. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudo 541
temporal ordering of single cells. Nature biotechnology, 2014, 32.4: 381-386. 542

3. Stuart, T. et al. Comprehensive integraMon of single-cell data. Cell, 2019, 177.7: 1888-1902. 543
e21. 544

4. SaMja, R. et al. SpaMal reconstrucMon of single-cell gene expression data. Nature 545
biotechnology, 2015, 33.5: 495-502. 546

5. Vickovic, S. et al. High-definiMon spaMal transcriptomics for in situ Mssue profiling. Nature 547
methods, 2019, 16.10: 987-990. 548

6. Williams C.G., Lee H.J., Asatsuma T., Vento-Tormo R., Haque A. An introducMon to spaMal 549
transcriptomics for biomedical research. Genome Medicine 2022;14(1):1–18. 550

7. Hansen, P., Mladenović, N., Brimberg, J., Pérez, J.A.M. (2010). Variable Neighborhood 551
Search. In: Gendreau, M., Potvin, JY. (eds) Handbook of MetaheurisMcs. InternaMonal Series 552
in OperaMons Research & Management Science, vol 146. Springer, Boston, MA. 553
h^ps://doi.org/10.1007/978-1-4419-1665-5_3 554

8. MacQueen J, et al. Some methods for classificaMon and analysis of mulMvariate observaMons. 555
In: Proceedings of the fiWh Berkeley symposium on mathemaMcal staMsMcs and probability, 556
vol. 1 Oakland, CA, USA; 1967. p. 281–297. 557

9. Blondel V.D., Guillaume J.L., Lambio^e R., Lefebvre E. Fast unfolding of communiMes in large 558
networks. Journal of staMsMcal mechanics: theory and experiment 2008;2008(10): P10008. 559

10. Traag V.A., Waltman L., Van Eck N.J. From Louvain to Leiden: guaranteeing well-connected 560
communiMes. ScienMfic reports 2019;9(1):5233. 561

11. Fraley C., RaWery A. MCLUST: SoWware for model-based cluster and discriminant analysis. 562
Department of StaMsMcs, University of Washington: Technical Report 1998; 342:1312. 563

12. Reynolds D.A., et al. Gaussian mixture models. Encyclopaedia of biometrics 2009; 741(659-564
663). 565

13. Moon TK. The expectaMon-maximizaMon algorithm. IEEE Signal processing magazine 566
1996;13(6):47–60. 567

14. Dong K., Zhang S. Deciphering spaMal domains from spaMally resolved transcriptomics with 568
an adapMve graph a^enMon autoencoder. Nature communicaMons 2022;13(1):1739. 569

15. Karamizadeh S., Abdullah S.M., Manaf A.A., Zamani M., Hooman A. An overview of principal 570
component analysis. Journal of Signal and InformaMon Processing 2013;4(3B):173. 571

16. Long Y, Ang KS, Li M, Chong KLK, Sethi R, Zhong C, et al. SpaMally informed clustering, 572
integraMon, and deconvoluMon of spaMal transcriptomics with GraphST. Nature 573
CommunicaMons 2023;14(1):1155. 574

17. Li J, Chen S, Pan X, Yuan Y, Shen HB. Cell clustering for spaMal transcriptomics data with 575
graph neural networks. Nature ComputaMonal Science 2022;2(6):399–408. 576

18. Zhou, X., Kangning D., and Shihua Z. "IntegraMng spaMal transcriptomics data across different 577
condiMons, technologies and developmental stages." Nature ComputaMonal Science (2023): 578
1-13. 579

https://doi.org/10.1007/978-1-4419-1665-5_3

19. Davidovic T, Glišovic N, Raškovic M. Bee colony opMmizaMon for clustering incomplete data. 580
In: The 7th InternaMonal Conference on OpMmizaMon Problems and Their ApplicaMons, 581
OPTA-2018; 2018. h^ps://ceur-ws.org/Vol-2098/paper8.pdf 582

20. Mladenovic N. A variable neighborhood algorithm-a new metaheurisMc for combinatorial 583
opMmizaMon. In: papers presented at OpMmizaMon Days, vol. 12; 1995. 584

21. Mladenovic N, Hansen P, Variable neighbourhood search, computer and operaMons 585
research. Computers & OperaMons Research 1997; 24(11) p1097-1100 586
h^ps://doi.org/10.1016/S0305-0548(97)00031-2 587

22. Hansen P, Mladenović N. (1999). An IntroducMon to Variable Neighborhood Search. In: Voß, 588
S., Martello, S., Osman, I.H., Roucairol, C. (eds) Meta-HeurisMcs. Springer, Boston, MA. 589
h^ps://doi.org/10.1007/978-1-4615-5775-3_30 590

23. Chen A, Liao S, Cheng M, Ma K, Wu L, Lai Y, et al. SpaMotemporal transcriptomic atlas of 591
mouse organogenesis using DNA nanoball-pa^erned arrays. Cell 2022;185(10):1777–1792. 592

24. Maynard KR, Collado-Torres L, Weber LM, UyMngco C, Barry BK, Williams SR, et al. 593
Transcriptome-scale spaMal gene expression in the human dorsolateral prefrontal cortex. 594
Nature neuroscience 2021;24(3):425–436. 595

25. Shen R, Liu L, Wu Z, Zhang Y et al. (2022). Data from: Application of Spatial-ID to large field 596
mouse brain hemisphere dataset measured by Stereo-seq [Data set]. Zenodo. 597
https://doi.org/10.5281/zenodo.7340795 598

26. STOMICS database MOSTA download h^ps://db.cngb.org/stomics/mosta/download/ 599
27. SpaMal LIBD GitHub h^ps://github.com/LieberInsMtute/spaMalLIBD 600
28. Hubert L, Arabie P. Comparing parMMons. Journal of ClassificaMon 1985; 2: 193–218. 601
29. Djordjevic A; Li J; Fang S; Cao L; Ivanovic M (2024): SupporMng data for "A Novel Variable 602

Neighborhood Search Approach for Cell Clustering for SpaMal Transcriptomics" GigaScience 603
Database. h^p://dx.doi.org/10.5524/102498 604

 605

https://doi.org/10.5281/zenodo.7340795
https://db.cngb.org/stomics/mosta/download/
https://github.com/LieberInstitute/spatialLIBD
http://dx.doi.org/10.5524/102498

