• +1
    • RS
    • SR
    • Bhattacharjee
Views

1,047

Downloads

181

Peer reviewers

0

Citations

0

Make action
PDF

Field

Mathematics

Subfield

Mathematical Physics

Open Peer Review

Preprint

0 peer reviewers

CC BY

KK Theory and K Theory for Type II Strings Formalism

Deep Bhattacharjee1, Sanjeevan Singha Roy2, Riddhima Sadhu2, Ashis Kumar Behera3

Affiliations

  1. Ekiti State University, Nigeria
  2. Birla Institute of Technology, Mesra, Ranchi, India
  3. Independent researcher

Abstract

Type-II emphasizing Type-II(B) in Ramond–Ramond Sector has been analysed and computed from the Atiyah–Hirzebruch spectral sequence taking Ei sheets for the concerned values of i4= and for Ep,qn for n=1,2,3; several varieties of K–Theories where a transitive approach has been shown from the KK–Theory to K–Theory to String Theory concerning Fredholm modules of Atiyah–Singer Index Theorem and the Baum–Connes conjecture with respect to the Hilbert–A, Hilbert–B module and c*-algebras also in the reduced form taking Morita equivalence and the Kasparov composition product where extended relations has been provided between the equivalence of noncommutative geometry and noncommutative topology channelized through Poincaré Duality, Thom Isomorphism and Todd class. 

Corresponding author: Deep Bhattacharjee, itsdeep@live.com

Mathematical Subject Classification: Primary (19-XX, 83-XX), Secondary (19Kxx, 19K35, 83Exx)

 

I. Introduction

Any map [1] from a domain to a codomain with the mapping parameter θ:ζζ can provide a continuous set of functions when ζ and ζ is endowed with a metric which when attempt for any representation of a Topological structure considering two sets {ζ} and {ζ} there norms even a bijection [1] between them ζζ which for a defined function f over a value of f(x) there involves a structure of a vector space with concerned operations through a continuous linear transformation, that space for that function carries a Topology best known as Hilbert space. The specified module that carries the c algebra [2] for that space is defined as c Hilbert modules [3] through the inner product.

For any group  with a subgroup  the representations ΓΛ makes it easier to construct new representations through the subgroup or the smaller group  over certain parameters that when categorize through the constructive modules of Hilbert's c then this extent the c module to c algebras through the non—commutative formulations [4][5].

Furthermore, any derived pathway to construct the noncommutative geometry provides a framework for the moulder category to represent an equivalence over (left — right) — symmetric rings [6][7][8][9] as established afterwards with rings R and R; then for the ring — representations, studying the category of those modules; there exists Morita equivalence [10] for the isomorphic commutative form or in general norms in the case of non — commutative rings [11].

For the constructions of KK — Theory; Morita equivalence is an important tool to c * algebras where for the inequality on the two modules A and B; for the moulder form E on A and B for the moulder form E on A and E on B (as appeared later in the paper) a homotopy invariant bifunctor can make a Morita equivalence for the KK — Theory through KK(A,B) and KK(B,C) for A,B,C as c * algebras; there's for the modular form E having elements ε,ϵ the inequality represents the form <ε,ϵ><ϵ,ε>≤< ε,ε>||<ϵ,ϵ> where for the A — module; the above relation holds and taking the B — module representing the c — algebraic pair KK(A,B) and KK(B,C) where one finds the combined form over the composition product representing KK(A,C) and the Morita equivalence to be represented in a specific formulation as to be proved throughout the paper [12][13].

Over the compact Hausdorff spaces [14] and considering the Fredholm modules of Atiyah-Singer Index Theorem [15] for a relatable definition of A,B,C in c algebras the Kasparov's product KK(A,C) for KK(A,B) and KK(B,C) will be established over an elliptic differential operator ϱ0Ms or ϱ0Mn for s smoothness or n —dim and through extensive analysis of that operator which indeed suffice the Fredholm module making a relatable framework for K — Homology and K — Theory [3][5][6][16]; The Thom isomorphism is established for the Chern Character Ch over a mapping parameter ι through a rank — n vector bundle v1(n) with v2 having the first related to a unit sphere bundle. This in turn induces the categorical correspondence between a relational establishment over noncommutative geometry and noncommutative topology taking the function f over a bounded structure through linear transformations that bounds the concerned subsets I and J for a mapping parameter ρη in the same Hilbert space H.

This will deduce for a much more concrete formalism of the K— Theory to K— Homology with an extension of c— algebras to reduced calge bras for parent group () that defined the 2 norm of Hilbert space taking into consideration the KK Theory with Gromov's aT menable property for all the necessary formulations concerned before except Morita equivalence that when established through 5 parameters through an assembly mapping parameter  over discrete torsions gives the ultimate relation of KK — Theory in Baum — Connes conjecture taking into account both the Novikov conjecture and Kadison — Kaplansky conjecture for injectivity and surjectivity respectively connecting to noncommutative topology [17][18][19].

  • Extensions have been made in the operator and Topological aspects in the cohomology class where several classifiers are shown with distinct property to suffice the Spc —Structure and the Atiyah —Hirzebruch spectral sequence for the Type II (II-A and II-B) as concerned on the complex Topology space T where the Atiyah — Singer Index Theorem taking the Fredholm modules as necessary for K-Theory with Bott — Periodicity is taken and a channelization is made to Grothendieck — Riemann — Roch; for the transition of KK-Theory to Strings; Hodge dual, Gauge symmetry, charge density for the required Lagrangian in RR-fields through D-Brane Potential, De Rham Cohomology, and GSO —Projections are shown. P-form electrodynamics with P-Skeleton are considered for the purpose. NS 3-form and its relation to RR-flux in both D-Brane charge density and supergravity is established. The spectral sequence of Atiyah-Hirzebruch is taken and operator over Ep,qn for n taking the values 2,3, over a consideration of several orders of K-Theory as such Topological, Algebraic, and Twisted. étale cohomology and its representation is shown for Algebraic K-Theory and the Kähler (without any specific consideration of compact and Ricci flatness) has been shown in general terms for K-Theory in a Twisted formalism in Ei for i=4= .

II. Establishing Morita Equivalence With KK-Theory For Hilbert C*-Module

For a Hilbert space H with a c-module Hc one can define a c*-algebra for the metric g on a Riemann manifold M (having the form Mg ) with a vector bundle V there exists a compact neighbourhood being locally variant on a small patch; over an isomorphism of the Hilbert space of that vector bundle V in a continuous way for a commutative c-algebra through the vanishing infinity.

For the modular form of c-algebra the Hilbert module for the non-commutative form is the generalized norm taking the algebra over a topological field T in unital formulation for the unit parameter i as such for every ϵ in the algebra there exists ϵ=iϵ=ϵi.

Representing over the induced form for any finite group  with  for the vector bundle V on the Hilbert space H, any construction can be defined over the k-elements of the group  over L defined a parameter P as [19],

P=nk=1Lk

This gives for each k, the induced representation through group  in the same L+kLk for  through the vector representation V of subgroup  being  in Hilbert space H parametrized through [3][6],

X(π,V)

Thus, one gets,

 for every nk=1L+kV there is, nk=1L(1,,n)kπ(L+k)Ek

Representing EkV, three non-trivial actions can be noted for the constructions [20][21],

  1.  εkV
  2.  L+kLk
  3.  

This takes a pre-Hilbert Hausdorff space to construct c*-algebra satisfying the operations of an inner product through the Hilbert A-module being non-negative and self-adjoint. Taking the inner product of the complex manifold representing M through,

M×MA

Thus, for any sequence of set that is countable over the Topological space T with a proper representation for the previously encountered manifolds MT taking kth  countable order of infinity,

{MTk}k=1

When merged with the unital form taken before ϵ=iϵ=ϵi such that for every unit parameter i there exists ϵ in the algebra; where for any c-algebra there holds the Banach-algebra for a compact F, that if provided there exists three forms taking B0(F)[3][19][20][22],

  1. Typical form —For the complex space M; the locally compact Hausdorff space for vanishing infinity norm gives B0(F) for continuous functions on M.
  2. Unital { if is commutative  identity element of having norm 1F in B0(F) is compact 
  3. For Point [2] to have a congruent transformation, there is Banach algebra B0(F) in A-form where the congruent transformation is unital for a closet set [A].

For the compact Hausdorff (here parameterizing F+0) with vector bundles V for the labeling of F+0 - 0 for positive to extend over Bott Periodicity with + as adjoint through 8-periodic homotopy groups from π0 to π7 such that [12],

π0,1,2,3,4,5,6,7 gives 3 — category tables in unitary U, orthogonal O, symplectic Sp,

U_O_Sp_πkπk+2πk+8=πk+4πk+4=πk+8k=0,1

Thus, for Hausdorff F; the underlying K-Theory K(F) there is [12][23];

  1. Topological K-Theory  on MT for K(F)
  2. Reduced K-Theory Kred (F) for Snn>0 relates the Bott for positive 0 for F+0and adjoint + in Hausdorff F for Kred (F+0)in non-commutive form.

Where Point [I] relates the Banach-algebras for the locally compact Hausdorff over a abelian module on any sequence of set countable over Topological space T (as previously mentioned) on c*algebras for bivariant forms suffice the proper framework for the Hilbert c-module on rings R and R for modular homeomorphisms on R such that the biproduct exists in finitary over a defined functor δ preserving equivalence and additive properties [9][16][23],

δ:modRmodRδ:modRmodR

For the naturally induced isomorphism for functors δ and δ for a finite module ring R for the bimodule (R,R) suffice the natural isomorphism iff for X(R,R) and Y(R,R) there is is [2][3][9][16][23],

(R,R) bimodule X(R,R)RY(R,R)R(R,R) bimodule Y(R,R)RX(R,R)R

Moreover, if we consider A,B and C as c-algebras then if there is a Hilbert B-module that is fully countably generated in the form of E, then for that c-subalgebras of B there exists a strong Morita equivalence between A and B provided for the B module there is φ(E)A and for A module there is φ(E)B where for the c-algebraic pair (A,B), over a homotopy invariant bifunctor the constructions can be taken for A,B and C in such a way that for the defined abelian group KK(A,B) and combining it with KK(B,C) a strong Morita equivalence can be established in the form [2][16][24],

KK(A,B)KK(A,C) Combining the elements of KK(A,B) AND KK(B,C), there exists the product and the non-trivial assumptions that B and C are strongly Morita equivalent.

III. Relating Noncommutative Geometry with Noncommutative Topology

Now, for the linkage of K —Theory to K Homology and c-algebras for the locally compact Hausdorff spaces, there can be a relatable definition of the c-algebra through noncommutative topology where there exists a detailed constructions to be discussed below [13][17][18][25].

The mostly related theorem that suffice this duality with an equivalence between noncommutative geometry and noncommutative topology; just like the formulations of the Kasparov's composition product over A,B,C in c*-algebras giving the result KK(A,C) for KK(A,B)×KK(B,C) with the associated Morita Equivalence; any abelian group taking a trivial parameterization γ(A) or can represent the Atiyah —Singer Index Theorem for the vector bundle V having the elements v1 and v2 which over the smooth manifold Ms with ' s ' representing the smoothness property and the elliptic differential operator for the mapping over smooth sections on MS as,

ϱ0Ms:v1v2

Where for this elliptic differential operator ϱ0Ms implying the Fredholm modules on the Hilbert space H for c*-algebras there is the Chern character Ch(ϱ0Ms) giving Thom isomorphism with the mapping of vector bundles of rank — n through,

ι:v1(n)v2

Taking the unit sphere bundle S(v1) and v2 representing the Chern character Ch(ϱ0Mn) for n — dimensional compact manifold over the relation through a complex Tangent bundle T as,

[Hk(T;Q)Hn+k(v2(T))/S(v2(T));Q]1=Ch((v1(ı),v2(ı),ξ(ϱ0Mn)))v2(T) vector bundles v1(ι) and v2(ι)

Where T represents the complex tangent bundle of Todd class Td(T)

Where ξ(ϱ0Mn) isomorphisms on S(T) in Td(T)

Which establishes the KK Theory through Fredholm module ϱ0Mn or ϱ0Ms for n — dim or s — smoothness where both are considered for the purpose of the constructions of Atiyah-Singer Theorem.

For the relation between noncommutative geometry and noncommutative topology it is now easy to show the c-algebras for the dual category of the Hausdorff spaces over *-isomorphism through the operator theory for a bounded structure over a function f operating through linear transformations through two vector spaces I and J that are bounded through the image of the function f(η) for the η taking control over the mapping parameter ρ as ρη for ρη:IJ where ρη makes the transformations that bounds the subsets of I to subsets of J on the same Hilbert space H.

Towards the establishment of noncommutative topology as described above in the paper the relation between noncommutative topology with noncommutative geometry over a non-trivial prescriptions of c *—Hilbert modules and Hausdorff space that gets channelized further to establish the KKTheory and Morita equivalence; a considerable fact is that for the proper extensions of c —algebras there is a defined category of the operator formalisms in the algebraic notions of K —Theory where it can be shown that for the parent group (taken before with the c —algebra, any reduced category for the completion of cred() formalism through a locally compact Topological group (denoting with a trivial notation just for the formulations) as  for a translation invariant norm through bounded functions; this cred () has an isomorphism for c() where any defined c —algebra can be expressed taking the cred() as a quotient of c() for the Hilbert space H having the defined norm Hl2 there exists 5 parameters that connects the K —Theory to K —Homology for making KK Theory which provides a relation to Gromov hyperbolic groups [26] along with the groups that defined ^' for a translation invariant norm through bounded functions in SL3 (Z)along with other rank-1 Lie Groups and other discrete Lie Groups SO(n,1) and SU(n,1) with Gromov's aT —menable property for the assembly mapping parameter  (which will be extremely useful later in the paper) for isomorphism having the representation of [16][18][25],

 Baum — Connes conjectur einjectivity  Novikov conjecture surjectivity  Kadison—Kaplansky conjecture 

For ρfree ()ρ represents discrete torsion for group ()

Where the 5 —parameters are the 5 —classifiers viz.,

  1. A — module
  2.  B — module
  3. ρfree  Kadison — Kaplansky
  4. c— algebra
  5. KK Theory
 for action SSρfree over A through c automorphisms 

Where aT menable group for Hilbert space H on the (previously taken giving three non-trivial connections to conclude this section,

For Σn summing over n-elements

For HH where in ΣnH

For cred() assembly mapping parameter  over a norm |N|2 provides the relation, 

(n|N|2)c12cred ():=sus(N()2:c()2:=1)

IV. Gelfand Transform and Poincaré Duality For C*-Algebra In kth  Homology Group in Spc

Considering an involution ι0 for the Topological group  with the defined Harr measure μ in a locally compact Hausdorff space F there exists a commutative spectrum Sσ where for the unital element i being the element of Sσ for the Gelfand space G representing,

iSσ in G

There exists a commutative form for an algebraic isomorphism α in two categories of algebras,

  1.  c — algebra for an enveloping c norm in α isomorphism.
  2. Banach algebra for the continuous function fc

Considering Point [2], one gets the transform of G representing as Gc for c —continuous form through 2 — norms for the group action of group  defined +() and ++() where for the spectrum Sσ in Point [1], gives the modified form of a Fourier Transform as Gelfand Transform for Gc.

 for +(R) in Gc and fc+(R) any c —algebra for the Hausdorff space F over a two-way mapping π:FF where F is also a Hausdorff space there exists;

Gelfand—Naimark Transform c(F) and c(F) in noncommutative c —algebras the spectrum Sσ can be defined over π for Hausdorff F in Gc norm in α — isomorphism as,

π:Fc+(αcT)T in an identfiable in cTc+ in a spacial case of c norm 

Where c+(F)c+(αcT)

The two norms in group action for group  namely, +() and ++() for a Borel measure β for +() μμ represents the Harr measure (as considered earlier) through the involution ι0 one gets a generalized notion as,

Noncommutative geometry established over fc2++()norm norm fc2() there are,

  1. Subspace csub for calge bra
  2. The generalized norm ++()
  3. Banach algebra B0 in Banach space B0(X) with a Borel measure β in continuous fc for subgroup  in c subspace in calge bra suffice the form,
McsubdμTr(fc(μ))μϵ()

Where μϵ acts on the Haar measure μ for group  over the action μϵ().

Now, for the Gelfand-Naimark Transform; a generalized application of the Fourier Transform (rather Gelfand Transform) with its application in noncommutative geometry for the isomorphism over a 'assembly mapping parameter  that we considered earlier, there can be the application for both cred and calge bra for an inde x01 in *-over credalge bras the common notion that arises is of,

  1. Taking a discrete torsion-free parameter ψ —compact for an equivariant k —homology for the norm of 'right-side accessible form is always difficult than left-side accessible form' —the Baum-Connes conjecture can be extended for a proper action (without considering any classifying space Sclc for ψSclc; ; the 'assembly mapping parameter' T takes the mapping denoted by ψ subscript for action ˙S given,
    ˙S=ψcomφψcom(R)0or1(EψScom)φ0or1(cred(φcom))
  2. Taking the same discrete and torsion-free parameter (which has been considered φ or ρ throughout the paper for notational significance (without any reduced form); which now acts on the classifying space φSclc for the complex integers denoting Λ; the calge bra gets the Gelfand-Naimark Transform in the commutative way that becomes accessible for the Poincare duality to consider upon. However, for the case considered here, any automorphisms acting on c for Amodule gives the Baum-Connes conjecture in the form of  with A and φ as,
    A,φ:Rφφψ(R)(EφSA)φ0or1(Aγψ)

For the trivial parameterization of as considered where any parameter-less A for δ as considered above else the parameter A for the Amodule without δ being considered otherwise.

Thereby, Poincaré duality can be defined through KK Theory for complex integer Λ on classifying space ΛSclc in calge bra over discrete parameter ψ; taking the Thom Isomorphism for Topological K Theory in the homology theory for a generalized norm defining [22][24],

Spinc —structure Spc on Riemann manifold M with metric representation Mg for the parameter (mentioned above) as Λ structuring,

Sp(n)×Λ×U(1)SO(n)×U(1)1 for Spinqc

q Representing morphisms over Λ2 for the sequence S,

S=1Λ2

Representing the Chern class for U(1)BChern class H2(MgΛ)

Thus taking Mn as the ndim manifold; Poincaré duality can be expressed in,

Mn (compact, closed and oriented )isomorphic to Mn,n

For nintegers; whereas expressed earlier Spqc being the spin—structure on morphisms for the action on a manifold that is orientable in Topological K — Theory. For isomorphisms on any integers of n in Mn,n any mod2 (without any orientation assumption) —Poincare duality holds for,

Hn(Mn,Λ) in (nk)-homology group of n in [MM] class taking the Thom Isomorphism in Mhom o log ycross-product  for H as,

HMHM

Suffice the form Hnk(M)Hn for integers n; thereby establishing the Poincare duality.

V. Spc with Type-II Strings In Atiyah-Hirzebruch For Ramond-Ramond Sector

The K — Theory for the operator and Topological aspects in the cohomology class; there exists distinct classifiers for the D — Branes or Dirichlet Branes in the Ramond-Ramond (RR)—Sector of Type II-B Strings sufficing the 3 — dim integral class property. There is the cohomology class for the transformationtwist giving the mod2 torsion quantum corrections considering the Freed-Witten discrepancies as and when considered in the peculiar K — Theory in the reconciled aspects over Atiyah-Hirzebruch spectral sequence.

The non-trivial aspect to discuss in high energy physics for the Topological K-Theory taking the TypeII (II-A and II-B) superstrings is to consider the RR-fields in P — form electrodynamics considering the 10  dim Supergravity for the potential  over ΩP+1 —field defined through the Hodge duals d in the form Ωd9P there exists 4  classifiers that will ultimately result the approach of K  Theory in the complex Topological space T on manifold M over a representation MT relates not only the Atiyah-Singer Index Theorem (for the Fredholm modules, Bott-Periodicity as taken earlier) but also gives the Grothendieck—Riemann—Roch Theorem on bounded complex Λ on sheaves S over a relation SΛ taking the morphism σm:XY for σm:A(X)A(Y) over the Tangent sheaf TΛ of Λ on σm ! to suffice ch(σm!Λ) gives,

Λσm(ch(S)Td(Tσm))

All suffice through the 4 classifiers as mentioned above e[27][28],

  1. Hodge dual d
  2. Gauge symmetry gP form 
  3. Equations of motion g=J for JP-vector 
  4. Charge density Cρ through the Lagrangian for ζCρ in RR fields for ϖ10P through the D-Brane potential (10P) gives the equations of motion S×for (10P) having a replacement order of P to (7P) for the previously taken charge density Cρ giving two non-trivial relations [29][30],
    1. De Rham Co hom ology with H-twist for the exterior derivative  with charge density Cρ for the parameter χ gives,
      χ9P+H×Ω9P
      =χP+1=2ϖ7P=C9P
    2. The action for Type II (II-B being both T and S-dual to itself) for non-invariant GSO projections in subdomains where for the existence of 32-supercharges in Type II-B (R8,1×S1) the action S of P-form electrodynamics on a manifold M through gauge symmetry can be represented by gP form  gives,S=M[12gχg+(1)PBχJ]
      Which gives the nilpotent potential in manifold M over a spacetime coordinates (σ,τ) as,
      ΩP+1+χ9P+Ω(σ,τ)=ΩP+1(σ,τ)=2ϖP(σ,τ)=0(σ,τ)

All of these suffice for Spc in the extension of Poincare duality in a generalized norm of orientability of homology theory taking the Thom Isomorphism in complex form of Topological K Theory relating Atiyah—Singer Index Theorem and Fredholm modules, Bott—Periodicity, Atiyah—Hirzebruch, Grothendieck—Riemann—Roch with KK-Theory [31][32][33][34].

Additionally, to discuss furthermore about the Type II Superstrings formalism as associated with supergravity for a homology class there is a relation between the Dirac quantization conditions and RR-fields where in the Lie group structure [27][35][36]

U(1)×SU(2)×SU(3)SU(5)SO(10)E(8)

The Photon being represented by U(1) the related methodology of the charge quantization and the magnetic monopoles where their independent nature relates the breaking of gauge group from D(1) heavy branes when the distance is infinite for a path v suffice the relation[35][36],

v(1+ieAjdxjd(v)d(v))=exp(ieAd(v))eAd(v)=Bd(v)

Considering a cycle σcy in the homogeneous Lie group, the movement can ultimately results in lifting the Lie group that originates over identity structures through,

2times(σcy) and 3times(σcy)

Where the 2times(σcy) where a covering parameter J for SO(2) can maintain the Type II superstring actions over the Twisted K — Theory (over Topo log i cal norms). One category of Type II superstrings (Type II-B) which has been extended to 12dim where in the t Hooft limit, for Yang-Mills N=4, F-Theory being encountered under SL(2,Z), the D-Brane analogy being extended where there exists some non-trivial aspects being existent over RR-Fields and its relation to the Twisted K-Theory making up these points [27][37][38][39],

  1. GSO — Projections for an eliminated Tachyon and preserved Supersymmetry.
  2. Distinct classifiers for Type II into IIIIAIIB.
  3. SL(2,Z) for a CFT for a worldsheet periodicity as concerned for Fermion—projections giving 3 sub—relations,
    1. Invariance over SL(2,Z).
    2. Modular diffeomorphisms as expressed on Torus for Point [3] to get rid of gravitational anomalies.
      1. This in turn establishes the integral for Kalb — Ramond (KR) field with the relation to the B field for λ as,
        KRλiλjBij

Thus, for the correspondence to KRNSNSB — field ; a far more concrete relation can be attained for HfluxNSDBrane where the P form for P skeleton represents a complicated structure later but for the cohomology integral coefficients for a D-Brane absent RR-flux the relation can be stated over [27][37][38][35][36][39]

NS3 form mRRflux charg e density of D-Brane +RRflux equations of motion (sup ergravity) 

Extending Type II for Type II-B the representation when made for a manifold M for the group operators Og in the quotient space q with q rescalling  Type II-B represents the Orientifold over the operator relation where  in  rescalling being taken trivially for the involution parameter, the nonempty operator represents the orientifold for the operator Og2p such that for the operator P there is Type II-B for,

(P)

Where through the splitting another structure represents IIA for the (11)  form.

The P  skeleton as stated above in turn gives the Topological K-Theory over B for the fibre f in the cohomological space M. over a Serre fibration parameter Sf.:M.B. in the (p,q)  norm representing the cohomolgy pair (M(p),M(p,q)) for kth co hom ology group through,

p,qHk(M(p))p,qHk(M(P),M(P),H(P1)(M(p))

For the Atiyah—Hirzebruch taking the space M. and the spectral sequence associated with it for the fibres f. there exists the En-sheet taking (p,q) — norms for Ep,qn for n taking the values 2,3,; the spectral sequence can be in respect of the differentials Ed where there is,

  1. Atiyah—Hirzebruch spectral sequence
  2. Twisted K—Theory
  3. Topological K—Theory
  4. Algebraic K—Theory
  5. Complex δ
  6. En for different values of n providing;
    1. Serre spectral sequence for E1
    2. Topological K-Theory for Ep2
    3. Twisted K-Theory for E3 over the differential E3(d) such that for the Ep,qn;n takes an equality for E2 and E3.
    4. For [Point b ] in complex parameter δ=2k+1 denoting complex projective CPδ there exists two foundations,
      1. Collapsing for even 2k
      2. Non collapsing for odd 2k+1
        1. Where Topological K-Theory as associated with Atiyah-Hirzebruch for 2k+ 1 over space M. ; a nice relation can be expressed in Ep,δ.2(M.).
  7. For the Kähler where any compact Kahler having Ricci flatness is a Calabi—Yau [40][41] for all the threefold being non—trivial in superstring theory, any Kähler (without any consideration of being compact) can give the twisted formalism of K—Theory for Ei such that i4=.
  8. Algebraic K—Theory having a relation to the étale cohomology [42][43][44] for the scheme MeT where MT is a Topological space; any representation can be done in the local isomorphism such that for the category taking MeT for etale representation et (MeT) suffice isomorphism for the Topological space[45][46][47][48][49][50] T( or MT ) which provides the Atiyah-Hirzebruch spectral sequence [27] for E2 in (p,q) — norms thereby establishing the Quillen—Lichtenbaum conjecture for Ep,q2 with the ˙etale cohomology MeT.

VI. Discussions

Representing a finite group of two elements for a specified vector bundle acting on the Hilbert space for A-module being non—negative and self-adjoint constructions are made over a complex manifold such that taking that topological space through a pre—Hibert Hausdorff order there exists the c-algebra and Banach-algebra where the 3-points emphasized here a 8-periodic homotopy groups can be established through Bott Periodicity for Unitary, Orthogonal and symplectic category over a compact Hausdorff suffice K-Theory in the Topological and reduced form over two functors in (left—right) ring representation makes the well-defined Morita Equivalence taking the naturally induced isomorphism for those two functors in bimodular forms.

The linkage of K Theory to K Homology and c — algebras have been established taking the same Morita equivalence for Kasparov's composition product where through the elliptic differential operator representing the Fredholm modules it has been established by Atiyah-Singer Index Theorem and Thom Isomorphism for the associated Chern character to establish the structures taking over the operator theory for the linear transformations with n — dim vectors through a specified mapping parameter over n — dim spaces for the complex tangent bundle channelizing the way to represent the dual category of the Hausdoff spaces in * — isomorphism that bounds the two subsets taken in this paper giving the relation between noncommutative geometry and noncommutative topology where the noncommutative topology is sufficed over a connectivity channelling from K —Theory to K — Homology considering operator KTheory taking Baum — Connes conjecture through the 5 — classifiers for a concrete relation to KKTheory.

Considering the two categories of algebra c and the Banach where for the defined group action for the associated 2-norms as defined for Banach; there's two spectrums satisfying c taking the same group actions where a modified form of Fourier transform, i.e., a Gelfand Transform can be established and given related to the same Hausdorff space for a Gelfand—Neimark transform over a-isommorphism considered. The properties of noncommutative geometry can be perceived through a generalized notion occupying Borel measures, involutions and Harr measures given the second norms taking group action () as ++(). This also provides the subspace of c-algebra as csub over the previously mentioned transforms and associated parameters with the necessary mapping operator in index x01 there is a cred-algebras in the khomology for a right side assemble parameter taking the same Baum-cones conjecture for a classifying space Scc. This torsion-free parameter in the A-module with Baum-Connes conjecture and the Hilbert A-module over the complex parameter δ gives the Poincare duality through the KK — Theory over another complex integer  where Thom isomorphisms have been considered for a Topological K-Theory and the Spc-structure over the associated Chern class in the n-dim manifold.

Different forms of K—Theory as Twisted, Topological, Algebraic is considered taking Ep,qn and Epn — norms for defined value of n=1,2,3,4= where the last value is expressed in terms of Kahler manifold (which if is compact with vanishing Ricci curvature can give the Calabi-Yau and iff this CY is of threefold then a nontrivial expression of string theory is defined for various values of supersymmetry). The K-Theory in the cohomology class with the topological aspects gives the Ramond-Ramond sector sufficing 3-dim integral class property for Type-II(B) strings. For the potentials of supergravity and the classifiers that are concerned through various representation-forms give the Atiyah-Singer Index Theorem with Fredholm modules and the Grothendieck-Riemann-Roch Theorem through the equations presented in the paper.

De Rahm cohomology with H—Twist is taken with a charge density and GSO-Projections for concerned Type-II action (on II-A and II-B) in P-form electrodynamics. Along with RR-fields the NS-NS B-field in the same P-form over P-skeleton where the NS 3-form is shown for the RR-flux on D-Brane RR-flux on supergravity. For the extension of Type-II(A) being considered through splitting and (1-1)-forms where the extended notion of Serre fibration is shown and the Atiyah—Hirzebruch spectral sequence is established for En — sheets with n=1,2,3,4= giving distinct categories of K-Theories.

_____

The authors have no conflict of interest related to this paper.

References

  1. abBhattacharjee, D. (2022). The γ Symmetry. EasyChair Preprint No. 8089. https://easychair.org/publications/preprint/B2rP
  2. abcBhattacharjee, D. (2022b). GENERATORS OF BOREL MEASURABLE COMMUTATIVE ALGEBRA ON COMPACT HAUSDORFF TAKING VON NEUMANN AW* OVER *-ISOMORPHISM. EPRA International Journal of Research & Development (IJRD), 7(9), 122–124. https://doi.org/10.36713/epra11269
  3. abcdeLance, E. C. (2009). Hilbert C*-Modules. Cambridge University Press, 9780511526206. https://doi.org/10.1017/cbo9780511526206
  4. ^Hall, M. (2018). The Theory of Groups (Dover Books on Mathematics) (Reprint). Dover Publications.
  5. abLarsen, F., & Laustsen, N. (2009). An Introduction to K-Theory for C*-Algebras. Cambridge University Press, 9780511623806. https://doi.org/10.1017/cbo9780511623806
  6. abcMurphy, G. J. (1990). C*-Algebras and Operator Theory (1st ed.). Academic Press.
  7. ^Leinster, T. (2014). Basic Category Theory (Cambridge Studies in Advanced Mathematics, Series Number 143) (1st ed.). Cambridge University Press.
  8. ^Bhattacharjee, D. (2022a). Establishing equivalence among hypercomplex structures via Kodaira embedding theorem for non-singular quintic 3-fold having positively closed (1,1)-form Kähler potential 𝒊2−1∂∂*ρ. Research Square. https://doi.org/10.21203/rs.3.rs-1635957/v1
  9. abcWatkins, J. J. (2009). Topics in Commutative Ring Theory. Princeton University Press.
  10. ^JOIŢA, M. (2004). MORITA EQUIVALENCE FOR LOCALLY C$^{*}$-ALGEBRAS. Bulletin of the London Mathematical Society, 36(6), 802-810. doi:10.1112/S0024609304003522
  11. ^Cuntz, J. (1983). Generalized homomorphisms between C*-algebras and KK-theory. Dynamics and Processes, 31–45. https://doi.org/10.1007/bfb0072109
  12. abcBhattacharjee, D., Singha Roy, S., & Sadhu, R. (2022). HOMOTOPY GROUP OF SPHERES, HOPF FIBRATIONS AND VIL-LARCEAU CIRCLES. EPRA International Journal of Research & Development (IJRD), 7(9), 57–64. https://doi.org/10.36713/epra11212
  13. abBlackadar, B. (1998). K-Theory for Operator Algebras (Mathematical Sciences Research Institute Publications, Series Number 5) (Revised). Cambridge University Press.
  14. ^Bhattacharjee, D., Roy, S. S., & Behera, A. K. (2022). Relating Enrique surface with K3 and Kummer through involutions and double covers over finite automorphisms on Topological Euler–Poincaré characteristics over complex K3 with Kähler equivalence. Research Square. https://doi.org/10.21203/rs.3.rs-2011341/v1
  15. ^Mukherjee, A. (2013). Atiyah-Singer Index Theorem - An Introduction (Texts and Readings in Mathematics). Hindustan Book Agency.
  16. abcdeTamaz Kandelaki. (2006). ALGEBRAIC K-THEORY OF FREDHOLM MODULES AND KK-THEORY. ArXiv: K-Theory and Homology. http://emis.maths.adelaide.edu.au/journals/JHRS/volumes/2006/n1a9/v1n1a9hl.pdf
  17. abBorceux, F., & van Den Bossche, G. (1989). An essay on noncommutative topology. Topology and Its Applications, 31(3), 203–223. https://doi.org/10.1016/0166-8641(89)90018-7
  18. abcYu, G. (2000). The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Inventiones Mathematicae, 139(1), 201–240. https://doi.org/10.1007/s002229900032
  19. abcJolissaint, P. (1989). K-theory of reduced C*-algebras and rapidly decreasing functions on groups. K-Theory, 2(6), 723–735. https://doi.org/10.1007/bf00538429
  20. abLandsman, N. P. (1998). Lecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanics. ArXiv:Math-Ph/9807030v1. https://doi.org/10.48550/arXiv.math-ph/9807030
  21. ^Hochs, P. (2021). Hilbert c*-modules. RTNCG Language Course. https://prclare.people.wm.edu/AIM_RTNCG/LS_210524_Hochs.pdf
  22. abBhattacharjee, D. (2022a). Rigorously Computed Enumerative Norms as Prescribed through Quantum Cohomological Connectivity over Gromov – Witten Invariants. TechRxiv. https://doi.org/10.36227/techrxiv.19524214.v1
  23. abcMagill, M. (2017). Topological K-Theory and Bott Periodicity. U.U.D.M Project Report 2017:9. https://uu.diva-portal.org/smash/get/diva2:1103965/FULLTEXT01.pd
  24. abvan den Dungen, K. (2020). Localisations of half-closed modules and the unbounded Kasparov product. ArXiv:2006.10616v2 [Math.KT]. https://doi.org/10.48550/arXiv.2006.10616
  25. abFreed, D. (2021). The Atiyah–Singer index theorem. Bulletin of the American Mathematical Society, 58(4), 517–566. https://doi.org/10.1090/bull/1747
  26. ^Bhattacharjee, D. (2022e). Establishing Equivariant Class [O] for Hyperbolic Groups. Asian Research Journal of Mathematics, 362–369. https://doi.org/10.9734/arjom/2022/v18i11615
  27. abcdeBhattacharjee, D. (2022b). Atiyah – Hirzebruch Spectral Sequence on Reconciled Twisted K – Theory over S – Duality on Type – II Superstrings. Authorea. https://doi.org/10.22541/au.165212310.01626852/v1
  28. ^Polchinski, J. (2005). String Theory, Vol. 1 (Cambridge Monographs on Mathematical Physics). Cambridge University Press.
  29. ^Doubek, M., Jurčo, B., Markl, M., & Sachs, I. (2020). Algebraic Structure of String Field Theory (Lecture Notes in Physics) (1st ed. 2020). Springer.
  30. ^Zwiebach, B. (2009). A First Course in String Theory, 2nd Edition (2nd ed.). Cambridge University Press.
  31. ^Max Karoubi. (2007). Twisted K-theory – old and new. ArXiv: K-Theory and Homology, 117–149. https://doi.org/10.4171/060
  32. ^Garousi, M. R. (2010). Ramond-Ramond field strength couplings on D-branes. Journal of High Energy Physics, 2010(3). https://doi.org/10.1007/jhep03(2010)126
  33. ^Bischoff, J., Ketov, S. V., & Lechtenfeld, O. (1995). The GSO projection, BRST cohomology and picture-changing in N = 2 string theory. Nuclear Physics B, 438(1–2), 373–409. https://doi.org/10.1016/0550-3213(94)00536-n
  34. ^Doubek, M., Jurčo, B., Markl, M., & Sachs, I. (2020a). Algebraic Structure of String Field Theory (Lecture Notes in Physics Book 973) (1st ed. 2020). Springer.
  35. abcSupergravity grand unified theories. (n, d). Supersymmetric Gauge Field Theory and String Theory. https://doi.org/10.1887/0750302674/b552c6
  36. abcBorunda, M., Serone, M., & Trapletti, M. (2003). On the quantum stability of type IIB orbifolds and orientifolds with Scherk–Schwarz SUSY breaking. Nuclear Physics B, 653(1–2), 85–108. https://doi.org/10.1016/s0550-3213(03)00040-3
  37. abBrink, L. (2016). Maximally supersymmetric Yang–Mills theory: The story of N = 4 Yang–Mills theory. International Journal of Modern Physics A, 31(01), 1630002. https://doi.org/10.1142/s0217751x16300027
  38. abThe Dirac Monopole and Dirac Quantization. (2019). Classical Field Theory, 244–255. https://doi.org/10.1017/9781108569392.032
  39. abBarone, F. A., Barone, F. E., & Helayël-Neto, J. A. (2011). Charged brane interactions via the Kalb-Ramond field. Physical Review D, 84(6). https://doi.org/10.1103/physrevd.84.065026
  40. ^Bhattacharjee, D. (2022g). Generalization of Quartic and Quintic Calabi – Yau Manifolds Fibered by Polarized K3 Surfaces. Research Square. https://doi.org/10.21203/rs.3.rs-1965255/v1
  41. ^Bhattacharjee, D. (2022g). M-Theory and F-Theory over Theoretical Analysis on Cosmic Strings and Calabi-Yau Manifolds Subject to Conifold Singularity with Randall-Sundrum Model. Asian Journal of Research and Reviews in Physics, 25–40. https://doi.org/10.9734/ajr2p/2022/v6i230181
  42. ^Milne, J. S. (2017). Étale Cohomology (PMS-33) (Princeton Mathematical Series, 98). Princeton University Press.
  43. ^Thomason, R. W. (1985). Algebraic K-theory and etale cohomology. ANNALES SCIENTIFIQUES DE L’É.N.S, 437–552. http://www.numdam.org/article/ASENS_1985_4_18_3_437_0.pdf
  44. ^Bhattacharjee, D (2022): An outlined tour of geometry and topology as perceived through physics and mathematics emphasizing geometrization, elliptization, uniformization, and projectivization for Thruston's 8-geometries covering Riemann over Teichmuller spaces. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.20134382.v1
  45. ^Gross, M. (2002, November 27). Calabi-Yau Manifolds and Related Geometries. In Lectures at a Summer School in Nordfjordeid, Norway, June 2001. Springer. https://doi.org/10.1007/b8363310.1007/978-3-642-19004-9
  46. ^Bhattacharjee, D., Samal, P., Bose, P. N., Behera, A. K., & Das, S. (2023, April 5). Suspension η for β bundles in ±1 geodesics in g≥1 genus creations for loops for a Topological String Theory Formalism. TechRxiv. https://doi.org/10.36227/techrxiv.22339732.v1
  47. ^Greene, B. (2000, February 3). The Elegant Universe. In Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. Vintage.
  48. ^Penrose, R., & Penrose, R. (2007, January 9). The Road to Reality. In A Complete Guide to the Laws of the Universe. Vintage. https://doi.org/10.1604/9780679776314
  49. ^Bhattacharjee, D., Roy, S. S., & Sadhu, R. (2023, May 2). Hyperbolic Einstein: Towards Tachyonic Relativity. Qeios. https://doi.org/10.32388/fcokia
  50. ^Bhattacharjee, D. (2022, November 16). A Coherent Approach towards Quantum Gravity. Physical Science International Journal, 59–78. https://doi.org/10.9734/psij/2022/v26i6751

Open Peer Review