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Abstract

Polyaniline is a conductive polymer that attracts the attention of many researchers around the world.

The history of this polymer begins in 1862 when Letheby first reported this material. Since then, a

myriad of studies has been conducted on this material, and new works continue to investigate the

potential of this material. Polyaniline has been improved with the help of Nanotechnology. The use of

nanofillers has been seen as a quick and economical way to modify materials, driving innovations based

on new physical and chemical properties from the conductive polymer materials and nanoparticles

joining. Several works address the use of different nanoparticles, which leads to the practical

impossibility of sifting through all this information. Thus, this work proposes to systematically collect

data in the literature and investigate which nanoparticles can increase the electrical conductivity of

Polyaniline (PAni). The results obtained demonstrate that among the possible nanofillers, graphene and

carbon nanotubes have great prominence. Furthermore, the results of the meta-analysis prove that

PAni's conductivity increases when this polymer is modified with the aforementioned nanofillers.

1. INTRODUCTION
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Since polyaniline was reported by Letheby in 1862, a profusion of work has been developed on this

material (1). Polyaniline (PAni) is a conductive polymer from the flexible polymer family, which has high

electrical conductivity (2–13). Among conductive polymers, PAni is unique because of its easiness of

synthesis (14–25). Besides, Professor MacDiarmid et al. (26) proved the PAni emeraldine base can be

converted from an insulator to a metal-like material by treatment with aqueous HCl, by forming the

emeraldine-hydrochloride salt. Such transformation involves non-redox doping, in which a polaron

conduction band, with most of the positive charge residing on the nitrogen atoms, is responsible for the

electrical conductivity. PAni's doping process produces a nice color range from blue to green, which is

useful for developing electrochromic devices, which is further favored by its good environmental stability

(27–39). PAni has been one of the most studied polymers for the past 20 years.

Our research group has studied PAni dozens of times. Our first publication on PAni dates back to 2005

when we introduced a methodology for studying the dependence of electrical resistivity with pressure in

conducting composites (40). Then, we studied several subjects regarding PAni, such as polymerization in

the presence of carbon black (41), DBSA (42), cardanol bio-resin (43), cardanol-furfural bio-resin (44), DMIT

(45), polyamide-6,6 (35), SBS (46, 47), nitrile rubber (48), EVA-NBR (49), poly(lactic acid) (50), curaua

fibers (51), coconut fibers (52, 53), coir fibers (54), mango fibers (55), cotton fabrics (56) as well as the

influence of plasticizers (57, 58), magnetite (59, 60) and maghemite (61, 62). Next, the characterization of

these materials by electrical surface colorimetry (63), resistivity (64), WAXS (65, 66), UV-Vis (67), XPS (68),

NIR (69), and SAXS (70–73), were studied. Finally, a paper named “Polyaniline: Trends and perspectives

from text-mining analysis” (74) was published in the Brazilian Journal of Experimental Design, Data

Analysis, and Inferential Statistics. Thus, as evidenced by this set of studies, our research group has a

relevant background in this subject, always looking for new ways to improve this polymer.

PAni is a typical conductive polymer, resulting from the oxidative polymerization of aniline, whose

conductivity can be affected by the degree of doping, the type of dopant, the morphology, and the degree

of crystallization (4). PAni has attracted attention in recent decades due to its characteristics such as low

cost, high conductivity, and good resistance to the environment (18). Besides, PAni has special electronic

properties, which can be reversibly controlled by the material's protonation/deprotonation processes (5). In

addition, PAni has great potential for high-end applications, such as electrodes (18, 28, 38, 75–83),

batteries (15, 84–93), microelectronics (94–102), electrochromic materials used in displays (103–110),

sensors (22, 111–118), and electromagnetic shielding (119–127). Despite its excellent properties, several

studies have been carried out in an attempt to improve the properties of PAni. Among all of the documents

about PAni listed in Scopus database (n = 30,788), almost 75% of them (23,066) involved polyaniline and

“nano”. Therefore, the use of nanofillers is a quick and economical way to modify materials, driving

innovations based on new physical and chemical properties from the conductive polymer materials and

nanoparticles joining. Thus, this work proposes to systematically collect data in the literature and

investigate which nanoparticles can increase the electrical conductivity of PAni. The results obtained

demonstrate that among the possible nanofillers, graphene and carbon nanotubes have great prominence.
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Furthermore, the results of the meta-analysis prove that PAni conductivity increases when this polymer is

modified with the aforementioned nanofillers.

 

2. METHODS

All the steps of this study were derived from a question: “Do nanoparticles improve polyaniline

electrical conductivity or electrical resistivity?” 

 

2.1. Article search

Research articles containing the term “polyaniline” in the title, keyword and abstract were collected using

the Scopus database. The used key was TITLE-ABS-KEY ( polyaniline ). The number of papers published per

year was plotted using QtiPlot Software. Articles with publication year of 2021 and 2022 were excluded, as

the final number of articles is not consolidated yet. The date of the retrieval was 2nd July, 2021. Then, a

second search key, more complex than the first, was used to refine the number of documents retrieved. In

its complete form, the second search key was written as: TITLE-ABS-KEY ( nano* AND polyaniline AND

improv* AND "electrical conductiv*" OR "electrical resistivit*" ) AND ( LIMIT-TO ( DOCTYPE , "ar")). Here,

there was no limitation of the researched years. The RIS file containing these data is available at

https://github.com/ftir-mc/Nanoparticles-improving-Pani-conductivity.git.

 

2.2. Scientific scenarios evaluation with VOSviewer

The bibliographical information for the documents containing abstract, author keyword and index

keywords were exported as a RIS document and imported by VOSviewer (version 1.6.10) software (128).

Different trending topics and themes were identified from the Titles and Abstracts. Then, the search was

refined again. In its complete form, the third search key was written as: TITLE-ABS-KEY ( nano* AND

polyaniline AND improv* AND "electrical conductiv*" OR "electrical resistivit*" AND graphene OR "carbon

nanotub*") AND ( LIMIT-TO ( DOCTYPE , "ar " ) ). Once more, there was no limitation of the researched

years.

 

2.3. Data Extraction

The articles were analyzed according the following criteria: nanofillers concentration in PAni, number of

replicates, and standard deviation. Based on the inclusion criteria, information from all eligible publications

were extracted. The following information were included in each study: name of first author, year of

publication, filler (CNT or graphene), number of replicates, and the correlation between the electrical

conductivity or electrical resistivity versus the percentual amount of nanofiller. When the document did not
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present the data tables, data was extracted from plots curves. Engauge Digitizer 3.0 (by Mark Mitchell)

software was used to extract data from these figures. From data extracted, the 95% confidence intervals

(CI95%) were calculated.

 

2.4. Statistical Analysis and Meta-analysis

As several electrical measurement techniques were performed, the effect of nanofillers on the electrical

conductivity of materials was evaluated by correlating the conductivity data and the mass quantity of the

nanofiller in the material. The Jamovi (version 1.6.23.0) module MAJOR (129) was used to obtain Meta-

analysis and Forest plot. The analysis was carried out using the Fisher r-to-z transformed correlation

coefficient as the outcome measure. A random-effects model was fitted to the data. The amount of

heterogeneity (i.e., tau²), was estimated using the restricted maximum-likelihood estimator (130). In

addition to the estimate of tau², the Q-test for heterogeneity (131) and the I² statistic are reported. In case

any amount of heterogeneity is detected (i.e., tau² > 0, regardless of the results of the Q-test), a prediction

interval for the true outcomes is also provided. Studentized residuals and Cook's distances are used to

examine whether studies may be outliers and/or influential in the context of the model. Studies with a

studentized residual larger than the 100 x (1 - 0.05/(2 X k))th percentile of a standard normal distribution

are considered potential outliers (i.e., using a Bonferroni correction with two-sided alpha = 0.05 for k

studies included in the meta-analysis). Studies with a Cook's distance larger than the median plus six times

the interquartile range of the Cook's distances are considered to be influential. The rank correlation test

and the regression test, using the standard error of the observed outcomes as predictor, are used to check

for funnel plot asymmetry. 

 

 

 

3. RESULTS

From the Scopus database, 29584 documents were collected between 1969 and 2022. All the conference

papers (3,028), reviews (533), book chapters (252), and conference reviews (188) were excluded from the

search. Thus, the documents were restricted to articles, remaining 25,396 titles. The number of documents

published per year is shown in Figure 1.
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Figure 1 - Number of documents published per year using the key TITLE-ABS-KEY (polyaniline).

 

The data in Figure 1 follow a polynomial of order 2. The coefficient of determination (R2) found was equal to

0.989. The model and the associated R2 numerically demonstrate that interest in the PAni topic is

accelerating since the 1980s. With the advent of nanotechnology, it is evident that these numbers will

continue to grow over the next years.

Then, focusing on the key question of this research, 392 documents were found using the search key

TITLE-ABS-KEY ( nano* AND polyaniline AND improv* AND "electrical conductiv*" OR "electrical resistivit*" )

AND ( LIMIT-TO ( DOCTYPE , "ar")). The titles and abstracts of these documents were saved in RIS format

and analyzed using VOSviewer software. The obtained results are shown in Figure 2. Besides, the *MAP.txt

and *NET.txt files generated by VOSviewer are available at https://github.com/ftir-mc/Nanoparticles-

improving-PAni-conductivity.git.
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Figure 2 – VOSviewer network (a) and overlay visualizations (b) from the key TITLE-ABS-KEY (nano* AND

polyaniline AND improv* AND "electrical conductiv*" OR "electrical resistivit*" ) AND ( LIMIT-TO ( DOCTYPE ,

"ar")).
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Figure 2 (a) shows the existence of three main clusters. The first one, in red, is dominated by several nodes

related to the characterization techniques used by the authors in their studies. The second cluster, in blue,

is dominated by the "carbon nanotube" node, a key constituent for the production of nano-modified

materials based on PAni. Finally, the third cluster, in green, is dominated by the performance, stability, and

electrode nodes. Afterward, the most important material node is the "graphene", showing that this

material is another relevant nanofiller in the context of improving the electrical properties of PAni. The

comparison between the strengths of the terms CNT and graphene was calculated based on the "Total link

strength" values recorded in the *MAP.txt file. The calculation allows inferring that graphene corresponds

to 68.3% of the relative strength of the CNTs in the references analyzed. Furthermore, Figure 2 (b) allows

determining that the year of maximum interest for the terms carbon nanotube (2015.65) and graphene

(2016.89) nanofillers differs by about 1.24 years. So, they are contemporary themes.

Thus, two new keywords, "carbon nanotubes" and "graphene", gained relevance. So these two new words

were added to the search key (TITLE-ABS-KEY ( nano* AND polyaniline AND improv* AND "electrical

conductiv*" OR "electrical resistivit*" AND graphene OR "carbon nanotub*") AND ( LIMIT-TO ( DOCTYPE ,

"ar " ) )), in a new refinement, which returned 177 documents (132–308).

All of these 177 documents were downloaded and their data were scratched looking for statistically

relevant information for constructing the analysis here proposed. Table 1 shows the 1st author of the study

and the year of publication, the used nanofiller as well as the number of experimental conditions tested,

the total number of replicates, and the Adjusted Correlation (adjR).

From the 177 selected documents, 15 presented useful data for the proposed meta-analysis. However,

among the documents evaluated, some had more than one useful case. So, a total of k=20 studies were

included in the analysis. The observed Fisher r-to-z transformed correlation coefficients ranged from

0.3713 to 3.1320, with the majority of estimates being positive (100%). The estimated average Fisher r-to-

z transformed correlation coefficient based on the random-effects model was û = 1.6441 (95% CI: 1.3285

to 1.9596). Therefore, the average outcome differed significantly from zero (z = 10.2119, p < 0.0001).

According to the Q-test, the true outcomes appear to be heterogeneous (Q(19) = 165.5133, p < 0.0001,

tau² = 0.4428, I² = 86.1258%). A 95% prediction interval for the true outcomes is given by 0.3022 to

2.9859. Hence, even though there may be some heterogeneity, the true outcomes of the studies are

generally in the same direction as the estimated average outcome. An examination of the studentized

residuals revealed that none of the studies had a value larger than ± 3.0233 and hence there was no

indication of outliers in the context of this model. According to the Cook's distances, none of the studies

could be considered to be overly influential. Neither the rank correlation nor the regression test indicated

any funnel plot asymmetry (p = 0.7584 and p = 0.3707, respectively).
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Table 1 – Statistically relevant data scratched from selected documents

Authors Year Filler Experiments Total replicates adjR

Tung et al. (258) 2011 Graphene 5 15 0.9880

Abadad et al. (218) 2013 Graphene 11 33 0.9962

Liu & Yu. (303) 2014 CNT 5 15 0.9403

Wang et al. (274) 2015 DWCNT 4 12 0.9592

Wang et al. (274) 2015 DWCNT 6 18 0.9302

Wang et al. (178) 2016 CNT 8 24 0.9732

Yazdi & Motlagh. (295) 2017 Graphene 5 15 0.5220

Mao et al. (146) 2018 CNT 5 15 0.7332

Li et al. (228) 2018 CNT 8 24 0.5138

Kumar et al. (270) 2018 MWCNT 5 15 0.8398

Pathak et al. (220) 2019 Graphene 6 18 0.7614

Li et al. (236) 2019 CNT 5 15 0.3551

Zhang et al. (260) 2020 Graphene 5 15 0.9503

Amirabad et al. (264) 2020 Graphene 5 15 0.9643

Feng et al. (197) 2021 CNT 5 15 0.9338

Feng et al. (197) 2021 CNT 5 15 0.9812

Cho et al. (245) 2021 SWCNT 5 15 0.9233

Cho et al. (245) 2021 DWCNT 5 15 0.9785

Cho et al. (245) 2021 MWCNT 5 15 0.9236

Cho et al. (245) 2021 Graphene 6 18 0.9241

 

 

Funnel plot is shown in Figure 3. 
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Figure 3 – Funnel plot for the selected studies.

 

Fisher's transformation is commonly used to eliminate a possible bias in the untransformed correlation

coefficient (309). As the population value of correlation becomes further from zero, the sampling

distribution of correlation coefficients becomes skewed, and Fisher's transformation normalizes this

sampling distribution. Empirical evidence suggests that transforming the correlation coefficient can be

beneficial (310). Mainly because many meta-analytic methods assume that the sampling distribution of

observed results is normal. When the correlation in a particular study is far from zero, and the sample size

is small, then the gross sample distribution of the correlation becomes skewed, no longer being closely

approximated by a normal distribution. In this context, Fisher's r-to-z transformation is an effective

normalization transformation, which makes the statistical analysis of correlations independent of unknown

quantities (311).

On Fisher's transformation of the correlation coefficient, the actual effect is 1.64. Most studies are in the

Standard Error region between 0.25 and 0.33, that is, at the base of the Funnel Plot. As described in line

287 of Jamovi MAJOR Module source code (312), the data are distributed among regions comprising 90%
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(white), 95% (gray), 99% (dark gray), and the rest are beyond 99% (red) probability.

Forest plots are a key-graphical method used in meta-analysis. The forest plot is the graphical

representation resulting from quantitative systematic reviews. This representation is designed to compare

the effects of treatments in quantitative studies. The term "forest" comes from the idea that the graph

resembles a forest of lines. Originally the forest plot was designed to compare randomized clinical trials

that addressed a common theme. Currently, however, this representation is quite prevalent in

observational studies, to visually present the mathematical significance of the joint conclusions of several

works analyzed as a block (313–315).

The Forest Plot, shown in Figure 4, lists all selected studies. The relevance of the studies is presented in

percentage form. All studies had similar percentage relevance. The effects and their 95% probability

confidence limits are shown to the right side of the percent relevance. 

 

Figure 4 – Forest plot for the selected studies.

 

The modeled effect is equal to 1.64, with the lower bound equal to 1.33 and the upper bound equal to 1.96.

Thus, the modeled effect is positive and nonzero. So, the meta-analysis proved that the nanofillers in this

study increase the conductivity of PAni. Therefore, graphene and CNT should be prioritized in future works

involving PAni until new evidence suggests the use of different nanofillers.
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4. CONCLUSIONS

This study conducted a systematic search for several scientific pieces of research that would allow us to

understand the effect of nanofillers on the electrical conductivity of PAni. Thousands of works were

analyzed using VOSviewer, which allowed us to conclude that graphene and carbon nanotubes are the two

most studied nanofillers. Thus, hundreds of works involving modified PAni via the use of these nanofillers

were identified. However, only fifteen of them presented information able to be extracted and used in the

meta-analysis. Meta-analysis proved that these nanofillers can effectively increase the conductivity of

PAni. Therefore, graphene and CNT should be prioritized in future works involving PAni until new evidence

suggests the use of different nanofillers.
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