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Designing an ef�cient and effective neural network has remained a prominent topic in computer vision research. Depthwise

onvolution (DWConv) is widely used in ef�cient CNNs or ViTs, but it needs frequent memory access during inference, which

leads to low throughput. FasterNet attempts to introduce partial convolution (PConv) as an alternative to DWConv but

compromises the accuracy due to underutilized channels. To remedy this shortcoming and consider the redundancy between

feature map channels, we introduce a novel Partial visual ATtention mechanism (PAT) that can ef�ciently combine PConv

with visual attention. Our exploration indicates that the partial attention mechanism can completely replace the full attention

mechanism and reduce model parameters and FLOPs. Our PAT can derive three types of blocks: Partial Channel-Attention

block (PAT_ch), Partial Spatial-Attention block (PAT_sp) and Partial Self-Attention block (PAT_sf). First, PAT_ch integrates the

enhanced Gaussian channel attention mechanism to infuse global distribution information into the untouched channels of

PConv. Second, we introduce the spatial-wise attention to the MLP layer to further improve model accuracy. Finally, we

replace PAT_ch in the last stage with the self-attention mechanism to extend the global receptive �eld. Building upon PAT, we

propose a novel hybrid network family, named PATNet, which achieves superior top-1 accuracy and inference speed compared

to FasterNet on ImageNet-1K classi�cation and excel in both detection and segmentation on the COCO dataset. Particularly,

our PATNet-T2 achieves 1.3% higher accuracy than FasterNet-T2, while exhibiting 25% higher GPU throughput and 24%

lower CPU latency.

1. Introduction

To design an ef�cient network, many prior works adopt depthwise separable convolution (DWConv)[1] as a substitute for regular

dense convolution. For instance, some CNN-based models[2][3]  leverage DWConv to reduce the model’s FLOPs and parameters,

while Hybrid-based models[4][5][6]  employ DWConv to simulate self-attention operations to decrease computation complexity.

Nevertheless, some studies[7][8]  have revealed that DWConv may suffer from frequent memory access and low parallelism.

Recent works have attempted to optimize the network’s inference speed on speci�c hardware[9][10][11][12][13]. From the

perspective of versatility, regular convolution (Conv) still has certain advantages.

Notably, FasterNet[9]  proposes to use partial convolution (PConv) as an alternative to DWConv. Based on PConv, the FasterNet

family achieves exceptional speed across various devices. PConv leverages redundancy within feature maps to selectively apply

Conv to a subset of input channels, leaving the remaining channels untouched. That leads to lower FLOPs compared to regular

Conv and higher FLOPS1 than DWConv[9]. However, we analyze that PConv underutilizes the untouched part and is constrained

by the local dependencies inherent to CNNs, which may compromise accuracy. The primary reason for the decrease in accuracy is

that PConv employs sparse (partial) parameters. So, how to maintain the inference speed of PConv while further enhancing its

accuracy? Our motivation is integrating visual attention into partial convolution to enhance the feature representation ability of

the untouched channels. We introduce a novel partial visual attention mechanism that can completely replace the conventional
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full attention mechanism without compromising accuracy and can reduce the model’s parameter count and FLOPs compared

with the full attention mechanism. The approach mainly involves substituting partial convolution with partial attention

convolution, which is illustrated in Figure 1 (a).

Figure 1. Comparison of different convolution types and ef�cient networks. Our PATNet incorporates the visual attention mechanism in

Partial Convolution named Partial Attention Convolution, which surpasses the performance of FasterNet[9] on various model variants.

How to choose a proper visual attention mechanism to achieve the optimal trade-off between model inference speed and

accuracy? To address this problem, we propose three novel ef�cient partial visual attention blocks, i.e., Partial Channel-Attention

block (PAT_ch), Partial Spatial-Attention block (PAT_sp) and Partial Self-Attention block (PAT_sf). Firstly, we construct PAT_ch by

integrating an enhanced Gaussian channel attention mechanism[14], facilitating richer inter-channel information interaction.

Secondly, we extend the concept of partial convolution to MLP layer to further improve model performance. The convolution part

of PA_sp can be fused with the Conv1 1 in the MLP during inference, resulting in ef�cient computation. Unlike previous spatial-

wise attention[15], our approach is simple and effective, involving only a Conv1 1 operation and Hard-Sigmoid[16]  activation.

Lastly, we refer to the MetaFormer-based[17]  paradigm and integrate global self-attention into the last stage of the CNN

architecture to expand its global receptive �eld. The proposed PAT_sf substantially boosts model accuracy in the ImageNet1k

classi�cation task.

In conclusion, the enhanced model is dubbed PATNet, which achieves overall performance exceeding FasterNet in the

ImageNet1K classi�cation task while maintaining similar throughput, as is presented in Figure 1 (b). Our main contributions can

be described as:

We are the �rst to propose a novel partial visual attention mechanism that integrates visual attention into PConv, which can

signi�cantly improve model performance while minimizing the impact on inference speed.

We develop three types of partial visual attention blocks including of PAT_ch, PAT_sp, and PAT_sf. The PAT_ch exhibits high

potential as a replacement for regular convolution and DWConv. PAT_sp can effectively reinforce MLP layers at minimal cost,

while PAT_sf integrates local and global features, achieving higher accuracy.

Building upon PAT, we design a new hybrid-based model family named PATNet that shows improved performance on

standard vision benchmarks over FasterNet with higher throughput and lower latency.

×

×
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2. Related Work

Ef�cient CNNs and ViTs. DWConv is widely adopted in the design of ef�cient neural networks, such as MobileNets[2][18],

Ef�cientNets[3][19], MobileViT[20], and EdgeViT[21]. Despite its ef�ciency limitations on modern parallel devices, DWConv still

holds unparalleled advantages on mobile devices. Given the drawbacks of DWConv, numerous works have aimed to improve it.

For example, RepLKNet[8]  uses larger-kernel DWConv to alleviate the issue of underutilized calculations. PoolFormer[17],

following the MetaFormer principles, achieves strong performance through spatial interaction with pooling operations alone.

Recently, FasterNet[9]  reduces FLOPs and memory accesses simultaneously by introducing partial convolution. Nevertheless,

FasterNet does not outperform other vision models in accuracy. In contrast, our proposed PATNet addresses this limitation by

integrating the visual attention mechanism into partial convolution, effectively enhancing the performance of FasterNet.

Attention Mechanism. Why are Vision Transformers (ViTs) so effective? Some studies attribute their success to the role of

attention mechanisms[22][23]. In visual tasks, attention mechanisms are commonly categorized into three types: Channel

Attention, Spatial Attention, and Self-Attention. Some works[24][6][25][26]  employ various techniques to implement the Self-

Attention mechanism ef�ciently, e.g., Linear Attention[27][26]. Furthermore, the effectiveness of Channel Attention and Spatial

Attention has already been validated in SRM[28], SE-Net[14] and CBAM[15]. Similarly, we have incorporated attention mechanisms,

but with a partial attention mechanism to mitigate the impact of element-wise multiplication on overall inference speed.

Additional Enhanced Technology Some State-Of-The-Art networks employ additional technologies. For instance,

MobileNetV3[18]  utilizes NAS[29]  techniques to attain an optimal network structure. Networks like MobileOne[12]  and

RIFormer[11] rely on structured re-parameterization[30] techniques, involving the addition of branches during training to expand

its width and the merging of branches during inference to compress it. Furthermore, RIFormer[11], LeViT[31], SwiftFormer[25], and

RepViT[32]  leverage knowledge distillation[33]  technology to transfer prior knowledge from large models to student models,

thereby improving accuracy. Self-supervised pre-training[34]  technology is employed in models like ConvNeXtV2[35]  to achieve

better model initialization. However, our PATNet follows regular training as the same FasterNet[9]  without using bells and

whistles.

3. Methodology

In this section, we �rst elaborate on our motivation for integrating the visual attention mechanism into partial convolution and

introduce Partial visual Attention mechanism (PAT). Subsequently, we delve into our innovative Partial Channel-Attention block

(PAT_ch), Partial Spatial-Attention block (PAT_sp), and Partial Self-Attention block (PAT_sf). Finally, we design PATNet

architecture and explain its details.
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Figure 2. The overall architecture of our PATNet, consisting of four hierarchical stages, each incorporating a series of PATNet blocks

followed by an embedding or merging layer. The last three layers are dedicated to feature classi�cation. Where   and   denote element-

wise multiplication and matrix multiplication respectively.

3.1. Partial Visual Attention Mechanism

Generally, designing an ef�cient and effective neural network necessitates comprehensive consideration and optimization from

various perspectives, including fewer FLOPs, smaller model sizes, lower memory access, and comparable accuracy. Recently, the

emerging FasterNet[9] may have met the aforementioned requirements to some degree and demonstrated its effectiveness across

various vision tasks and terminal devices without additional technology enhancements. However, it does not exhibit a noticeable

accuracy advantage when compared to models with similar parameters or FLOPs.

We empirically analyze that FasterNet mainly conducts Conv3 3 operations on a portion of input channels of PConv, leaving the

rest as direct identity mappings. These identity mappings are then concatenated with the processed Conv3 3 portion. While this

approach signi�cantly reduces FLOPs and latency, it results in limited feature interaction and fusion, lacking global information

interaction. Natural, we explore the integration of the visual attention mechanism into the identity mapping part (untouched

part). Previous research[36][9]  has demonstrated that redundancy exists among feature map channels, making attention

operations applied to the untouched parts a form of global information interaction.

Unlike regularly dense visual attention methods, our PAT is more ef�cient due to using only a subset of channels for the

computationally expensive element-wise multiplication. Indeed, running two operations in parallel on separate branches allows

for simultaneous computation, optimizing resource utilization on the GPU[37]. We also �nd that PAT is not only capable of

applying channel-wise and spatial-wise mixing to enhance global information but also combines self-attention mechanisms to

expand the model receptive �eld, proving to be highly effective. Below, We describe our PAT mechanism in formula.

Suppose the input and output of our PAT is  , where  ,  ,    represent the number of channels, height and

width of a channel, respectively. We keep the number of channels unchanged after PAT. Then, the output can be formulated as

⊙ ⊗

×

×

X, Y ∈ R
H×W×C C H W
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where the symbol   denotes the concatenation operation.   denotes for regular convolution function and   denotes for

attention function, which can be one of channel attention, spatial attention and self attention. And   is de�ned as the

number of front or last consecutive partial channels of the feature map.    is a hyperparameter representing the   used to

select a portion of the channels. Detailed hyperparameter setup refer to the appendix.

3.2. Ef�cient Integrated Visual Attention Information

In this section, we explain our three types of partial visual attention in detail.

PAT_ch: We integrate channel attention and Conv3 3 because both involve spatial information interaction: Conv3x3 convolves

and sums pixels within a local window, while our enhanced Gaussian-SE module computes channels’ mean and variance to

squeeze global spatial information. Unlike SENet[14], it only considers the mean information of the channel and ignores the

statistical information of std. Considering that the feature maps obey an approximately normal distribution[38][39]  during

training, we fully utilize the Gaussian statistical to express the channel-wise representation information, as shown in

Figure 3 (a).

PAT_sp: We integrate spatial attention with Conv1 1 because both operations mix channel wise information. Our spatial

attention employs a point-wise convolution to squeeze global channel information into tensor with only 1 single channel. After

passing through a Hard-Sigmoid activation, this tensor serves as the spatial attention map to weight features. We position PAT_sp

after the MLP layer, enabling the Conv1 1 component of PAT_sp to merge with the second Conv1 1 in the MLP layer during

inference, as shown in Figure 3 (b) and Figure 3 (d). This setup further minimizes the impact of attention on inference speed.

PAT_sf: Since PAT_sf also engages with spatial information interaction, it can replace PAT_ch and extend the model’s effective

receptive �eld. However, because the computational complexity of self-attention operations increases quadratically with the size

of the feature map, we restrict the use of PAT_sf to the last stage to achieve a superior speed-accuracy trade-off. Beside, we

employee relative position encoding (RPE) [40] into the attention map, which can further enhances model accuracy, as shown in

Figure 3 (c).

Notable, unlike conventional CNNs combined with attention, which process steps one after the other, we process steps

simultaneously on the same input, improving the balance between speed and accuracy. In addition, our PAT is not limited to the

above three combinations, it can be ef�ciently combined with more visual attention modules. Hence, the combination of the

above three types of PAT blocks into a ef�cient PATNet.

Y = ∪ = Conv( ) ∪ Atten( )Y Cp Y C−Cp X Cp X C−Cp (1)

∪ Conv Atten

= × CCp rp

rp ratio

×

×

× ×
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Figure 3. Combination of different partial visual attention blocks. Where   and   denote element-wise multiplication and matrix

multiplication respectively, and  .

3.3. PATNet Architecture

Our proposed PATNet refer to the recently introduced FasterNet[9]. The overall architecture, as depicted in Figure 2, consists of

four hierarchical stages, each of which precedes an embedding layer (a regular Conv4 4 with stride 4) or a merging layer (a

regular Conv2 2 with stride 2). These layers serve for spatial downsampling and channel number expansion. Each stage

comprises a set of PATNet blocks. In the �rst three stages of the PATNet, we employ "PATNet Block v1" including PAT_ch block

and PAT_sp block, as shown in Figure 2 (a). However, we employ "PATNet Block v2" by replacing PAT_ch with PAT_sf in the last

stage and modifying the shortcut connection way to achieve stable training, as shown in Figure 2 (d). Furthermore, we adjust the

depth ratios across the four stages. In previous designs[17][41][9], the depth of the last stage equals that of the �rst or second stage.

We experimental �nd the critical importance of the last stage for network accuracy. Consequently, we adjusted the depth of the

last stage to twice that of the �rst two stages. This adjustment substantially enhances model accuracy while minimally affecting

throughput and latency.

Following the FasterNet design principles, we maintain normalization or activation layers only after each intermediate Conv1 1

to preserve feature diversity and achieve higher throughput. We also incorporate batch normalization into adjacent Conv layers

to expedite inference without sacri�cing performance. For the activation layer, the smaller PATNet variant uses GELU[42], while

the larger PATNet variant employs ReLU. Similarly, the last three layers consist of global average pooling, Conv1 1, and a fully

connected layer[18]. These layers collectively serve for feature transformation and classi�cation. We offer tiny, small, medium,

and large variants of PATNet, which are denoted as PATNet-T0/1/2, PATNet-S, PATNet-M, and PATNet-L. These variants share a

similar architecture but differ in depth and width. The width of PATNet has been reduced compared to FasterNet to achieve faster

inference speed. Detailed architectural speci�cations refer to the appendix.

⊙ ⊗

C = +Cp Cp′

×

×

×

×
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4. Experiments

Network Type
Params

(M)

FLOPs

(G)

Throughput V100 (FPS) Throughput MI250 (FPS) Latency CPU (ms) Top-1 (%)

Shuf�eNetV2 x1.5[7] cnn 3.5 0.30 5315 6642 13.7 72.6

MobileNetV2[2] cnn 3.5 0.31 3924 7359 13.7 72.0

FasterNet-T0[9] cnn 3.9 0.34 8546 10612 10.5 71.9

MobileViTv2-0.5[24] hybrid 1.4 0.46 3094 3135 15.8 70.2

PATNet-T0(ours) hybrid 4.3 0.25 7777 11744 12.2 73.9

Ef�cientNet-B0[3] cnn 5.3 0.39 2934 3344 22.7 77.1

Shuf�eNetV2 x2[7] cnn 7.4 0.59 4290 5371 22.6 74.9

MobileNetV2 x1.4[2] cnn 6.1 0.60 2615 4142 21.7 74.7

FasterNet-T1[9] cnn 7.6 0.85 4648 7198 22.2 76.2

PATNet-T1(ours) hybrid 7.8 0.55 4403 7379 21.5 78.1

Ef�cientNet-B1[3] cnn 7.8 0.70 1730 1583 35.5 79.1

ResNet50[43] cnn 25.6 4.11 1258 3135 94.8 78.8

FasterNet-T2[9] cnn 15.0 1.91 2455 4189 43.7 78.9

PoolFormer-S12[17] hybrid 11.9 1.82 1927 3558 56.1 77.2

MobileViTv2-1.0[24] hybrid 4.9 1.85 1391 1543 41.5 78.1

Ef�cientViT-B1[26] hybrid 9.1 0.52 3072 3387 25.7 79.4

PATNet-T2(ours) hybrid 12.6 1.03 3074 4761 35.2 80.2

Ef�cientNet-B3[3] cnn 12.0 1.80 768 926 73.5 81.6

ConvNeXt-T[41] cnn 28.6 4.47 902 1103 99.4 82.1

FasterNet-S[9] cnn 31.1 4.56 1261 2243 96.0 81.3

PoolFormer-S36[17] hybrid 30.9 5.00 675 1092 152.4 81.4

MobileViTv2-2.0[24] hybrid 18.5 7.50 551 684 103.7 81.2

Swin-T[44] hybrid 28.3 4.51 808 1192 107.1 81.3

PATNet-S(ours) hybrid 29.0 2.71 1559 2422 72.5 82.1

Ef�cientNet-B4[3] cnn 19.0 4.20 356 442 156.9 82.9

ConvNeXt-S[41] cnn 50.2 8.71 510 610 185.5 83.1

FasterNet-M[9] cnn 53.5 8.74 621 1098 181.6 83.0

↑ ↑ ↓ ↑
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Network Type
Params

(M)

FLOPs

(G)

Throughput V100 (FPS) Throughput MI250 (FPS) Latency CPU (ms) Top-1 (%)

PoolFormer-

M36[17]
hybrid 56.2 8.80 444 721 244.3 82.1

Swin-S[44] hybrid 49.6 8.77 477 732 199.1 83.0

PATNet-M(ours) hybrid 61.3 6.69 799 1280 155.3 83.1

Ef�cientNet-B5[3] cnn 30.0 9.90 246 313 333.3 83.6

ConvNeXt-B[41] cnn 88.6 15.38 322 430 317.1 83.8

FasterNet-L[9] cnn 93.5 15.52 384 709 312.5 83.5

PoolFormer-

M48[17]
hybrid 73.5 11.59 335 556 322.3 82.5

Swin-B[44] hybrid 87.8 15.47 315 520 333.8 83.5

PATNet-L(ours) hybrid 104.3 11.91 426 765 272.5 83.9

Table 1. Comparison on ImageNet-1k Benchmark: models with similar top-1 accuracy are grouped together. The best results are in bold.

Full comparison please refer to appendix.

4.1. PATNet on ImageNet-1k Classi�cation

Setup. ImageNet-1K[45]  is one of the most extensively used datasets in computer vision. It encompasses 1K common classes,

consisting of approximately 1.3M training images and 50K validation images. We train our model on the ImageNet-1k dataset for

300 epochs using AdamW optimizer with 20 epochs linear warm-up. And we use the same regularization and augmentation

techniques and multi-scale training as FasterNet[9]. For detailed experimental settings, please refer to the appendix. In inference

speed, we test the model’s throughput in Nvidia V100 and AMD Instinct MI250 GPUs with batch size of 256, we test latency in

AMD   73F3 CPU with one core.

Results. Table 1 provides a comparison of our proposed PATNet models (T0, T1, T2, S, M, and L) with previous state-of-the-art

cnn-based and hybrid-based models. The experimental results demonstrate that PATNet consistently surpasses recent models

like FasterNet[9]  across all model variants. For example, PATNet-T2 achieves 1.3% higher accuracy than FasterNet-T2 while

exhibiting around 25.2%(or 13.7%) increase in V100(or MI250) throughput and 24.1% lower CPU latency. This comprehensive

evaluation underscores the advantages of PATNet regarding accuracy and throughput (or latency) across various model sizes. So,

it also demonstrates that the combination of visual attention and partial convolution signi�cantly improves model performance

without impacting throughput.

4.2. PATNet on Downstream Tasks

Setup. We utilize the ImageNet1K pre-trained PATNet as the backbone within the Mask-RCNN[46] detector for object detection

and instance segmentation on the MS-COCO 2017 dataset[47], comprising 118K training images and 5K validation images. To

↑ ↑ ↓ ↑
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highlight the effectiveness of the backbone itself, we follow the FasterNet[9]  approach and employ the AdamW[48]  optimizer,

conduct training of 12 epochs, use a batch size of 16, image size of 1333 800, and maintain other training settings without

further hyperparameter tuning.

Backbone Params (M) FLOPs (G) Throughput MI250 (FPS)

ResNet50[43] 44.2 253 121 38.0 58.6 41.4 34.4 55.1 36.7

PoolFormer-S24[17] 41.0 233 68 40.1 62.2 43.4 37.0 59.1 39.6

PVT-Small x1.5[49] 44.1 238 98 40.4 62.9 43.8 37.8 60.1 40.3

FasterNet-S[9] 49.0 258 121 39.9 61.2 43.6 36.9 58.1 39.7

PATNet-S(ours) 46.9 216 122 42.7 64.9 46.5 39.3 61.8 42.2

ResNet101[20] 63.2 329 62 40.4 61.1 44.2 36.4 57.7 38.8

ResNeXt101-32 4d[50] 62.8 333 51 41.9 62.5 45.9 37.5 59.4 40.2

PoolFormer-S36[17] 50.5 266 44 41.0 63.1 44.8 37.7 60.1 40.0

PVT-Medium[49] 63.9 295 52 42.0 64.4 45.6 39.0 61.6 42.1

FasterNet-M[9] 71.2 344 62 43.0 64.4 47.4 39.1 61.5 42.3

PATNet-M(ours) 78.2 295 65 44.3 65.8 48.5 40.6 63.3 43.7

ResNeXt101-64 4d[50] 101.9 487 29 42.8 63.8 47.3 38.4 60.6 41.3

PVT-Large 4d[49] 81.0 358 26 42.9 65.0 46.6 39.5 61.9 42.5

FasterNet-L[9] 110.9 484 35 44.0 65.6 48.2 39.9 62.3 43.0

PATNet-L(ours) 122.0 397 39 44.7 66.3 49.0 41.0 63.7 44.2

Table 2. Results using PATNet as a backbone on dense prediction tasks: Object detection and instance segmentation benchmark on the

COCO dataset.

Results. Table  2 presents a comparison of PATNet with representative models, reporting performance in terms of average

precision (mAP) for both detection and instance segmentation. As shown in Table 2, PATNet consistently outperforms FasterNet,

achieving higher average precision (AP) while maintaining similar latency. The results further con�rm the generalization

capabilities of our proposed PATNet across various tasks.

4.3. Ablation Studies

Partial Attention vs. Full Attention. To prove the superiority of our PAT over full attention mechanisms, we conduct comparative

experiments on the PATNet_T2, as shown in Table 3. Speci�cally, We replace PAT blocks with corresponding full visual attention

for comparison respectively. Full visual attention involves conducting visual attention calculations on all channels of the input

×

↑ AP b

↑
AP b

50 AP b
75 AP m AP m

50 AP m
75

×

×

×
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feature map, without considering the split operation and convolution operation of another branch, which is the common way of

conventional visual attention mechanism. The results demonstrate the feasibility of performing attention operations on part

channels and also con�rm the effectiveness of our improved visual attention mechanism. The results indicate that our PAT

achieves a superior balance between inference speed and performance compared to the Full visual attention counterpart.

ch sp sf Params (M) FLOPs (G) Throughput (FPS) Latency (ms) Top-1 (%)

P P P 12.6 1.03 4761 35.2 80.2

F P P 13.0 1.04 4662 36.5 80.1

P F P 12.6 1.04 4688 35.6 79.9

P P F 14.5 1.12 4600 38.6 80.2

Table 3. Comparison on PATNet-T2 of partial attention (P), and full attention (F) on ImageNet1K dataset. Where the "ch", "sp", and "sf"

denote channel-wise attention, spatial-wise attention, and self-attention respectively.

Effect of PAT blocks. To demonstrate the individual effects of our three PAT blocks, we conducted ablation studies by

progressively adding each PAT block one by one, as indicated in Table 4. Experiment results indicate that the three proposed PAT

blocks consistently enhance model performance.

Stages PAT_ch PAT_sp PAT_sf Params (M) FLOPs (G) Throughput (FPS) Latency (ms) Top-1 (%)

2-2-6-4 11.1 0.92 6405 25.7 76.0

2-2-6-4 ✓ 11.1 0.92 5440 30.9 77.4

2-2-6-4 ✓ ✓ 11.5 0.92 5157 31.7 78.9

2-2-6-4 ✓ ✓ ✓ 12.6 1.03 4761 35.2 80.2

2-2-8-2 ✓ ✓ ✓ 9.7 0.98 4976 32.7 78.8

Table 4. Ablation experiments of PATNet-T2 with different con�gurations of PAT blocks across different model stages on the

ImageNet1K dataset.

Different Stage Settings. We adhere to the model design convention of utilizing four stages. However, previous works overlook

the importance of the last stage, e.g., FasterNet[9]  and MetaFormer[17]. We conduct the comparative experiments between

different stage settings (2-2-6-4 vs. 2-2-8-2). The last two rows of Table 4 show that our adjusted stage depths (i.e., 2-2-6-4) can

bring more accuracy gain (78.8% 80.2%) with a slight performance drop.

↑ ↓ ↑

↑ ↓ ↑

→
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Partial Visual Convolution vs. Regular (or DepthWise) Convolution. To further verify the advantages of our proposed partial

visual convolution (PAT_ch) over regular convolution (Conv), we conducted ablation experiments on PATNet-T2 in Table  5. To

make a fair comparison, we widen DWConv to keep the throughput of the three convolution types in the same range.

Experimental results show that our proposed PAT_ch surpasses regular (or DepthWise) convolution in all metrics including

Params, Flops, throughput, latency and Top-1 accuracy, which validates the ef�ciency and effectiveness of PAT.

Conv3 3 Params (M) FLOPs (G) Throughput (FPS) Latency (ms) Top-1 (%)

PAT_ch 12.6 1.03 4761 35.2 80.2

Conv 15.8 2.12 4190 49.9 79.9

DWConv 15.8 1.28 4017 35.4 79.6

Table 5. Ablation on PATNet-T2 with different convolution types on ImageNet.

5. Conclusion

This paper introduces the concept of partial visual attention mechanism which strategically integrates visual attention

mechanisms into partial convolution. We propose three novel partial visual attention blocks including of Partial Channel-

Attention block, Partial Spatial-Attention block, and Partial Self-Attention block, which enable models to achieve higher

performance while maintaining ef�ciency. Building upon these innovations, we introduce the PATNet network which

outperforms the recent FasterNet network in ImageNet1K classi�cation, as well as COCO detection and segmentation tasks. This

underscores the effectiveness of the Partial visual Attention mechanism and signi�es a novel convolution approach that strikes

an optimal balance between high accuracy and ef�ciency for various vision tasks. The idea of partial attention still has great

potential in the natural language processing (NLP) or large language model (LLM) domains.

Appendix

A.1. Overview

In this supplementary material, we present more explanations and experimental results.

We �rst make detailed explanations of our experimental setting and different PATNet variants.

We then present a full comparison on ImageNet-1k Benchmark.

We also provide further ablation studies for our proposed Partial Visual Attention mechanism (PAT).

A.2. Clari�cations on Experimental Setting

Firstly, the con�gurations of different PATNet variants are presented in Table  6. We also provide ImageNet-1k training and

evaluation settings in Table 7. They can be used for reproducing our main results in Figure 1 of the main paper. Different PATNet

variants vary in the magnitude of regularization and augmentation techniques. The magnitude increases as the model becomes

larger to alleviate over�tting and improve accuracy. Note that most of the compared works in  Figure 1 of the main paper, e.g.,

× ↑ ↓ ↑
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MobileViT, FastNet, ConvNeXt, Swin, etc., also adopt such advanced training techniques (ADT). Some even heavily rely on the

hyper-parameter search. For others w/o ADT, e.g., Shuf�eNetV2, MobileNetV2, and GhostNet, though the comparison is not totally

fair, we include them for reference.
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Name
Output

size
Layer speci�cation T0 T1 T2 S M L

Embedding Conv_4_ _4, BN
# Channels 

32 48 64 96 128 160

Stage 1 # Blocks  1 2 2 2 2 2

Merging Conv_2_ _2, BN
# Channels 

64 96 128 192 256 320

Stage 2 # Blocks  2 2 2 2 3 3

Merging Conv_2_ _2, BN
# Channels 

128 192 256 384 512 640

Stage 3 # Blocks  6 6 6 9 16 20

Merging Conv_2_ _2, BN
# Channels 

256 384 512 768 1024 1280

Stage 4 # Blocks  4 4 4 4 4 4

Classi�er Global average pool, Conv_1_1280_1, Acti, FC_1000 Acti GELU GELU ReLU ReLU ReLU ReLU

Params (M) 4.3 7.8 12.6 29.0 61.3 104.4

FLOPs (G) 0.25 0.55 1.03 2.71 6.69 11.91

Table 6. Con�gurations of different PATNet variants. “Conv_ _ _ ” means a convolutional layer with the kernel size of  , the output

channels of  , and the stride of  . “PAT_ch ” means a partial convolution with an extra parameter, the partial ratio of  .

“FC_1000” means a fully connected layer with 1000 output channels.   is the input size while   is the number of PATNet blocks at

stage  . The FLOPs are calculated given the input size of  .
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Variants T0 T1 T2 S M L

Train Res Random select from {128,160,192,224,256,288}

Test Res 224

Epochs 300

# of forward pass 188k

Batch size 4096 4096 4096 4096 2048 2048

Optimizer AdamW

Momentum 0.9/0.999

LR 0.004 0.004 0.004 0.004 0.002 0.002

LR decay cosine

Weight decay 0.005 0.01 0.02 0.03 0.05 0.05

Warmup epochs 20

Warmup schedule linear

Label smoothing 0.1

Dropout ✗

Stoch. Depth ✗ 0.02 0.05 0.1 0.2 0.3

Repeated Aug ✗

Gradient Clip. ✗ ✗ ✗ ✗ 1 0.01

H. �ip ✓

RRC ✓

Rand Augment ✗ 3/0.5 5/0.5 7/0.5 7/0.5 7/0.5

Auto Augment ✗

Mixup alpha 0.05 0.1 0.1 0.3 0.5 0.7

Cutmix alpha 1.0

Erasing prob. ✗

Color Jitter ✗

PCA lighting ✗

SWA ✗

EMA ✗

Layer scale ✗

CE loss ✓
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Variants T0 T1 T2 S M L

BCE loss ✗

Mixed precision ✓

Test crop ratio 0.9

Top-1 acc. (%) 73.9 78.1 80.2 82.1 83.1 83.9

Table 7. ImageNet-1k training and evaluation settings for different PATNet variants.

For object detection and instance segmentation on the COCO2017 dataset, we equip our PATNet backbone with the popular Mask

R-CNN detector. We use ImageNet-1k pre-trained weights to initialize the backbone and Xavier to initialize the add-on layers.

Detailed settings are summarized in Table 8.

Variants S M L

Train and test Res shorter side   800, longer side   1333

Batch size 16 (2 on each GPU)

Optimizer AdamW

Train schedule 1  schedule (12 epochs)

Weight decay 0.0001

Warmup schedule linear

Warmup iterations 500

LR decay StepLR at epoch 8 and 11 with decay rate 0.1

LR 0.0002 0.0001 0.0001

Stoch. Depth 0.15 0.2 0.3

Table 8. Experimental settings of object detection and instance segmentation on the COCO2017 dataset.

A.3. Full Comparison on ImageNet-1k Benchmark

The full Comparison on ImageNet-1k Benchmark please refer to Table 9, which complements the results provided in Table 1 of

the main paper.

= ≤

×
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Network Type
Params

(M)

FLOPs

(G)

Throughput V100 (FPS) Throughput MI250 (FPS) Latency CPU (ms) Top-1 (%)

Shuf�eNetV2 x1.5[7] cnn 3.5 0.30 5315 6642 13.7 72.6

MobileNetV2[2] cnn 3.5 0.31 3924 7359 13.7 72.0

FasterNet-T0[9] cnn 3.9 0.34 8546 10612 10.5 71.9

MobileViT-XXS[20] hybrid 1.3 0.42 2900 3321 16.7 69.0

MobileViTv2-0.5[24] hybrid 1.4 0.46 3094 3135 15.8 70.2

PATNet-T0(ours) hybrid 4.3 0.25 7777 11744 12.2 73.9

Ef�cientNet-B0[3] cnn 5.3 0.39 2934 3344 22.7 77.1

GhostNet x1.3[36] cnn 7.4 0.24 3788 3620 16.7 75.7

Shuf�eNetV2 x2[7] cnn 7.4 0.59 4290 5371 22.6 74.9

MobileNetV2 x1.4[2] cnn 6.1 0.60 2615 4142 21.7 74.7

FasterNet-T1[9] cnn 7.6 0.85 4648 7198 22.2 76.2

Ef�cientViT-B1-

192[26]
hybrid 9.1 0.38 4072 3912 19.3 77.7

MobileViT-XS[20] hybrid 2.3 1.05 1663 1884 32.8 74.8

PATNet-T1(ours) hybrid 7.8 0.55 4403 7379 21.5 78.1

Ef�cientNet-B1[3] cnn 7.8 0.70 1730 1583 35.5 79.1

ResNet50[43] cnn 25.6 4.11 1258 3135 94.8 78.8

FasterNet-T2[9] cnn 15.0 1.91 2455 4189 43.7 78.9

PoolFormer-S12[17] hybrid 11.9 1.82 1927 3558 56.1 77.2

MobileViT-S[20] hybrid 5.6 2.03 1219 1370 52.4 78.4

MobileViTv2-1.0[24] hybrid 4.9 1.85 1391 1543 41.5 78.1

Ef�cientViT-B1[26] hybrid 9.1 0.52 3072 3387 25.7 79.4

PATNet-T2(ours) hybrid 12.6 1.03 3074 4761 35.2 80.2

Ef�cientNet-B3[3] cnn 12.0 1.80 768 926 73.5 81.6

ConvNeXt-T[41] cnn 28.6 4.47 902 1103 99.4 82.1

FasterNet-S[9] cnn 31.1 4.56 1261 2243 96.0 81.3

PoolFormer-S36[17] hybrid 30.9 5.00 675 1092 152.4 81.4

MobileViTv2-1.5[24] hybrid 10.6 4.00 812 1000 104.4 80.4

MobileViTv2-2.0[24] hybrid 18.5 7.50 551 684 103.7 81.2

↑ ↑ ↓ ↑
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Network Type
Params

(M)

FLOPs

(G)

Throughput V100 (FPS) Throughput MI250 (FPS) Latency CPU (ms) Top-1 (%)

Swin-T[44] hybrid 28.3 4.51 808 1192 107.1 81.3

PATNet-S(ours) hybrid 29.0 2.71 1559 2422 72.5 82.1

Ef�cientNet-B4[3] cnn 19.0 4.20 356 442 156.9 82.9

ConvNeXt-S[41] cnn 50.2 8.71 510 610 185.5 83.1

FasterNet-M[9] cnn 53.5 8.74 621 1098 181.6 83.0

PoolFormer-M36[17] hybrid 56.2 8.80 444 721 244.3 82.1

Swin-S[44] hybrid 49.6 8.77 477 732 199.1 83.0

PATNet-M(ours) hybrid 61.3 6.69 799 1280 155.3 83.1

Ef�cientNet-B5[3] cnn 30.0 9.90 246 313 333.3 83.6

ConvNeXt-B[41] cnn 88.6 15.38 322 430 317.1 83.8

FasterNet-L[9] cnn 93.5 15.52 384 709 312.5 83.5

PoolFormer-M48[17] hybrid 73.5 11.59 335 556 322.3 82.5

Swin-B[44] hybrid 87.8 15.47 315 520 333.8 83.5

PATNet-L(ours) hybrid 104.3 11.91 426 765 272.5 83.9

Table 9. Full comparison on ImageNet-1k Benchmark: models with similar top-1 accuracy are grouped together. The best results are in

bold.

A.4. Ablation Studies

Partial Visual Attention vs. Conventional Visual Attention. To further prove the superiority of our PAT, we present experiment

results for the combination of our partial attention and classic visual attention networks, and the results are shown in Table 10.

The results demonstrate the effectiveness of our enhanced Gaussian-SE module.

Visual type Params(M) FLOPs(G) Throughput(fps) latency(ms) Acc1(%)

SRM[28] 12.2 1.03 4751 35.2 79.6

SE-NET[14] 12.3 1.04 4910 32.3 79.8

PAT(ours) 12.6 1.03 4761 35.2 80.2

Table 10. Comparison on PATNet-T2 of partial visual attention and conventional visual attention on ImageNet1K dataset.

↑ ↑ ↓ ↑

↑ ↓ ↑
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Comparison On ImageNet-1k Under Same Training Settings. In order to further verify the effectiveness and fair comparison of

our PATNet, we reproduce the results of FastNet on ImageNet-1k but based on our training experiment con�guration, the results

are shown in Table 11. It can be seen from the results that our PATNet still has great advantages.

Network Type Params (M) FLOPs (G) Throughput V100 (FPS) Throughput MI250 (FPS) Latency CPU (ms) Top-1 (%)

FasterNet-T0[9] cnn 3.9 0.34 8546 10612 10.5 71.9

FasterNet-T0*[9] cnn 3.9 0.34 8546 10612 10.5 71.0

PATNet-T0(ours) hybrid 4.3 0.25 7777 11744 12.2 73.9

FasterNet-T1[9] cnn 7.6 0.85 4648 7198 22.2 76.2

FasterNet-T1*[9] cnn 7.6 0.85 4648 7198 22.2 76.5

PATNet-T1(ours) hybrid 7.8 0.55 4403 7379 21.5 78.1

FasterNet-T2[9] cnn 15.0 1.91 2455 4189 43.7 78.9

FasterNet-T2*[9] cnn 15.0 1.91 2455 4189 43.7 79.2

PATNet-T2(ours) hybrid 12.6 1.03 3074 4761 35.2 80.2

FasterNet-S[9] cnn 31.1 4.56 1261 2243 96.0 81.3

FasterNet-S[9] cnn 31.1 4.56 1261 2243 96.0 81.5

PATNet-S(ours) hybrid 29.0 2.71 1559 2422 72.5 82.1

FasterNet-M[9] cnn 53.5 8.74 621 1098 181.6 83.0

FasterNet-M*[9] cnn 53.5 8.74 621 1098 181.6 83.0

PATNet-M(ours) hybrid 61.3 6.69 799 1280 155.3 83.1

FasterNet-L[9] cnn 93.5 15.52 384 709 312.5 83.5

FasterNet-L*[9] cnn 93.5 15.52 384 709 312.5 83.6

PATNet-L(ours) hybrid 104.3 11.91 426 765 272.5 83.9

Table 11. Comparison on ImageNet-1k. The "*" denotes reproduction results based on our experimental setup.

Footnotes

1 FLOPs stands for �oating-point operations, representing the number of arithmetic operations performed. FLOPS stands for

�oating-point operations per second, indicating the rate or speed at which these operations are executed within a given

timeframe.

↑ ↑ ↓ ↑
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