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Abstract. In this paper, Thomas Precession is derived using the Selleri Transformations. These 

transformations belong to a set of “equivalent” transformations derived by Selleri which differ 

by a single parameter and include the Lorentz Transformations corresponding to a particular 

non-zero value of  and the Selleri Transformations corresponding to . 
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1. Introduction 

 Thomas Precession is named after Llewellyn Thomas who analyzed its action in 1926 

[1]. It is a relativistic effect that occurs in the spin of an elementary particle or the movement 

of a gyroscope. Specifically, it refers to the rotation of a moving body which occurs when the 

body changes its velocity direction because of some external force. The action is predicted by 

the Lorentz transformations [2, 3] and occurs as a result of the application of two successive 

Lorentz transformations in two different directions. The rotation always occurs in the plane of 

the two velocities. According to Dragan [4], “Whenever a moving body changes the direction 

of velocity due to some external forces, it must rotate. This happens because the change of 

motion can be seen as a composition of two Lorentz transformations. Therefore any object 

moving along a curvilinear trajectory has to rotate, even if no torque is directly applied. This 

geometrical effect is called Thomas precession.”  

 In this paper, we demonstrate precession and derive the associated angular velocity using 

the Selleri transformations for the first time. Selleri has studied these (inertial) transformations 

extensively [5-7] and has shown that they reproduce many of the predictions of the Lorentz 

transformations including length contraction [5], time dilation [5], Doppler effect [8], 

Aberration [8], the Sagnac effect [9] and clock synchronization [9] without any inconsistencies. 

He has also applied the transformations to dynamics involving particle collisions [10] and 

Buonaura [11] has applied the Selleri transformations to the area of electromagnetism. We here 

derive precession using the Selleri transformations and a very simple and elegant method 

developed by Dragan [4]. 
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2. Selleri Transformations 

 Consider an inertial system with space and time coordinates in which the speed 

of light is , and another inertial system having space and time coordinates which 

is moving at speed relative to along the axis. The two systems are coincident at . 

Using two-way light speed constancy and experimentally confirmed dilated muon decay, 

Selleri [5-7] derived a set of transformations which differed by a single parameter . This set 

can be written as 

     (1) 

           (2) 

           (3) 

          (4) 

where , and is now the only unknown parameter. Here the Lorentz 

transformations correspond to and the Selleri transformations correspond to 

 which are 

     (5) 

           (6) 

           (7) 

            (8) 

Selleri referred to the set contained in (1)-(4) as the “Equivalent” transformations since all 

members of the set (including the Lorentz transformations) are “equivalent” in the sense that 

they differ only by the clock synchronization parameter in the time component of the 

transformations and make the same predictions for many (but not all) phenomena. It is well 

known that the Lorentz transformations predict Thomas precession and its occurrence in 

orbiting electrons is considered experimental verification of the relativistic kinematics of the 

Lorentz transformations.  

2.1 Generalized Selleri Transformations  

 In order to treat with frames moving in directions that are different from the direction of 

the axis, we need generalized transformations. Consider a coordinate vector and a 
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velocity of the frame. Now the component of that is perpendicular to the velocity 

vector is unaffected by the transformation while the component that is parallel to the 

velocity vector does change. Here and where  is the unit vector 

parallel to . Therefore, the space transformation becomes 

         (9) 

where and 

        (10) 

Since , the new space transformation for the Selleri Transformations is given by 

       (11) 

The Selleri time transformation is from (8) given by . Hence the generalized Selleri 

transformations are 

         (12) 

           (13) 

A generalized velocity transformation formula can now be derived. Taking differentials in (12) 

and (13) we get 

        (14) 

and  

           (15) 

Dividing (14) by (15) gives  

    (16) 
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        (17) 

which is the generalized velocity transformation formula under the Selleri transformations.  

3. Thomas Precession 

 Consider a stationary observer and an observer moving at velocity relative to . If

velocity changes by an infinitesimal value relative to his initial reference frame , then 

observer sees velocity change from to and new frame is rotated by an 

angle  relative to frame. The angle  can be viewed as the angle between the velocity 

of with respect to and its approximation . For a small angle , 

. Noting that , the value of  can be found by taking the vector product 

of and giving  

      (18)  

Using the generalized velocity transformation (17) with and gives 

     (19) 

Again using , we vector multiply equation (19) by  to get 

        (20) 

Substituting (20) in (18) results in 

      (21) 

Dividing both sides by the infinitesimal time gives 

         (22) 

Setting and , (22) becomes 
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          (23) 

This is the Thomas precession rate [3] which can be written as 

          (24) 

For , (24) reduces to  

          (25) 

 Fig.1 taken from Christodoulides [3] shows the precession of an orbiting electron. Here 

the electron orbits the nucleus with a velocity , centripetal acceleration , spin and angular 

momentum . The spin vector precesses about the normal to the orbital plane (which is in the 

same direction as ) at an angular velocity . Thus, the Selleri transformations are able to 

correctly predict Thomas precession.  

 

Fig.1 Thomas Precession occurring when an Electron orbits the Nucleus 

4. Conclusion  

 Thomas precession using the Selleri transformations is demonstrated in this paper for the 

first time. This phenomenon, like the transverse Doppler effect and relativistic elastic 

collisions, is a strictly relativistic effect that has no counterpart in classical mechanics.  
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