
On the Critical Distance in Rotating Frames and Its

Analogies to the Schwarzschild Radius

George Lavranos

E-mail: giorgoslavranos@gmail.com

Abstract. This paper explores the concept of a critical distance in rotating frames

where objects appear to move at the speed of light. Using principles from special

relativity and rotational dynamics, we derive a critical distance d = c2

2a . We discuss

the implications of this critical distance, drawing analogies to the Schwarzschild radius

of black holes. This analysis highlights the interconnectedness of relativistic effects in

different contexts and the role of the equivalence principle in bridging kinematic and

gravitational phenomena.

1. Introduction

The effects of relativistic speeds in rotating frames have long been a subject of interest

in both theoretical and experimental physics. While the relativistic time dilation and

length contraction effects in linear motion are well-studied, rotational dynamics present

unique challenges and insights. This paper aims to elucidate the concept of a critical

distance in rotating frames where objects appear to move at the speed of light, analogous

to the Schwarzschild radius in the context of black holes.

Rotating frames are common in various physical systems, from everyday occurrences

like spinning wheels to complex astrophysical phenomena such as rotating neutron stars

and black holes. Understanding the limits imposed by relativistic effects in these systems

is crucial for both theoretical investigations and practical applications.

2. Theoretical Background

2.1. Special Relativity and Rotational Dynamics

Special relativity, formulated by Albert Einstein in 1905, revolutionized our

understanding of space and time. It describes how measurements of various quantities

differ for observers in different inertial frames of reference. One of the cornerstones of

special relativity is that the speed of light c is constant in all inertial frames [1].

The equivalence principle, a key idea in general relativity, posits that the effects

of acceleration are locally indistinguishable from those of a gravitational field [2]. This

principle allows us to draw analogies between accelerating frames and gravitational

fields.
https://doi.org/10.32388/1Q7I5W
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In the context of rotating frames, the equivalence principle suggests that the effects

of rotation can be compared to those of a gravitational field. This analogy helps in

understanding the limits imposed by relativistic effects on the observation of objects in

rotating systems [3].

3. Derivation of the Critical Distance

Consider a rotating frame of reference. The tangential velocity v at a distance d from

the axis of rotation is given by:

v = ωd

where ω is the angular velocity.

The critical distance d is defined as the maximum distance at which objects can

be observed without appearing to exceed the speed of light c. This is given by the

relationship:

v = ωd ⇒ c = ωd ⇒ d =
c

ω

To understand this further, we need to analyze the proper time interval t′

experienced by the rotating observer. For the rotating observer, the time it takes for

light to travel the critical distance d is:

t =
d

c
=

1

ω

Thus, the proper time interval t′ for the rotating observer is:

t′ =
1

ω

This proper time interval is the time it takes for light to reach the observer at the critical

distance, considering the relativistic effects of rotation.

At this critical distance, the rotational speed equals the speed of light, leading to

significant relativistic time dilation and length contraction effects.

4. Relativistic Time Dilation

Using the time dilation factor γ:

γ =
1√

1− v2

c2

Since v2 = ad, we get:

γ =
1√

1− ad
c2

Relating the proper time interval t′ and coordinate time t as t′ = γt and d = ct:

t′ = γt
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Given t = d
c
, we substitute to get:

1

ω
=

1√
1− ad

c2

· d
c

Solving for ω:

1

ω
=

d

c
√

1− ad
c2

⇒ ω =

√
1− ad

c2
· c

d

Squaring both sides:

ω2d2 = (1− ad

c2
)c2 ⇒ ω2d2 = c2 − ad ⇒ ω2d =

c2

d
− a ⇒ a =

c2

d
− ω2d ⇒ a =

c2

2d
This derivation shows the interplay between rotational dynamics and relativistic

effects, leading to the conclusion that there is a maximum distance at which objects can

be observed without violating the principles of relativity.

5. Analogy to the Schwarzschild Radius

The Schwarzschild radius Rs defines the event horizon for a black hole:

Rs =
2GM

c2

Using the equivalence principle, we relate proper acceleration a to gravitational

acceleration g. The farthest distance d we can observe is given by:

d =
c2

2g

The gravitational acceleration g is given by:

g =
GM

d2

Substituting this into the equation for d:

d =
c2

2
· d2

GM
⇒ d =

d2c2

2GM
⇒ d =

2GM

c2

This is the Schwarzschild radius, which defines the event horizon beyond which nothing,

not even light, can escape from a black hole.

The analogy between the critical distance in rotating frames and the Schwarzschild

radius in black holes highlights the fundamental limits imposed by relativistic physics.

Both distances represent boundaries beyond which certain relativistic effects dominate,

leading to significant implications for observation and information transmission.

6. Calculations and Observations

6.1. Schwarzschild Radius

The Schwarzschild radius Rs is given by:

Rs =
2GM

c2
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6.2. Angular Frequency

The angular frequency ω is given by:

ω =
c√
2Rs

6.3. Constants

• G ≈ 6.67430× 10−11m3 kg−1 s−2

• c ≈ 2.998× 108m/s

• Mass of the sun M⊙ ≈ 1.989× 1030 kg

6.4. Stellar-Mass Black Hole (10 M⊙)

Mstellar = 10×M⊙

6.5. Supermassive Black Hole ( 106 M⊙)

Msupermassive = 106 ×M⊙

6.6. Calculations

• Stellar-Mass Black Hole:

Rs(stellar) =
2× 6.67430× 10−11 × 10× 1.989× 1030

(2.998× 108)2

Rs(stellar) ≈ 2.953× 104m

ω(stellar) =
2.998× 108√
2× 2.953× 104

ω(stellar) ≈ 7.178× 103 rad/s

• Supermassive Black Hole:

Rs(supermassive) =
2× 6.67430× 10−11 × 106 × 1.989× 1030

(2.998× 108)2

Rs(supermassive) ≈ 2.953× 107m

ω(supermassive) =
2.998× 108√
2× 2.953× 107

ω(supermassive) ≈ 7.178 rad/s
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6.7. Summary

• Stellar-Mass Black Hole:

– Schwarzschild Radius: Rs(stellar) ≈ 2.953× 104m

– Angular Frequency: ω(stellar) ≈ 7.178× 103 rad/s

• Supermassive Black Hole:

– Schwarzschild Radius: Rs(supermassive) ≈ 2.953× 107m

– Angular Frequency: ω(supermassive) ≈ 7.178 rad/s

These calculations show that the angular frequency decreases significantly with

increasing mass, corresponding to larger Schwarzschild radii for supermassive black

holes.

7. Comparison with Observed Data

To understand whether the theoretical calculations correlate with measured quantities,

we compare them with observed data from astrophysical sources.

7.1. Stellar-Mass Black Holes

Observations of X-ray binaries and stellar-mass black holes in our galaxy provide data

for rotational frequencies. For example, the black hole in the binary system Cygnus

X-1 has a mass of about 14.8M⊙ and shows high-frequency quasi-periodic oscillations

(QPOs) in the range of a few hundred Hz, corresponding to angular frequencies on the

order of 103 to 104 rad/s [6].

7.2. Supermassive Black Holes

Observations of supermassive black holes, such as those in active galactic nuclei (AGN)

or the supermassive black hole at the center of the Milky Way (Sgr A*), show rotational

periods of several hours to days. For example, Sgr A* with a mass of about 4× 106M⊙

has inferred rotational periods corresponding to angular frequencies on the order of

10−5 rad/s [7].

7.3. Comparison

• Stellar-Mass Black Holes:

– Theoretical Frequency: ω(stellar) ≈ 7.178× 103 rad/s

– Observed Frequencies: High-frequency QPOs in the range of 103 to

104 rad/s

The theoretical angular frequency derived from the Schwarzschild radius for a

stellar-mass black hole is consistent with the observed high-frequency QPOs.

• Supermassive Black Holes:
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– Theoretical Frequency: ω(supermassive) ≈ 7.178 rad/s

– Observed Frequencies: Rotational frequencies on the order of 10−5 rad/s

The theoretical angular frequency for a supermassive black hole is significantly

higher than observed rotational frequencies. This discrepancy can be attributed

to the fact that the actual rotational dynamics of supermassive black holes are

influenced by more complex factors, including the distribution of mass, the presence

of accretion disks, and relativistic frame-dragging effects not accounted for in the

simplified model.

8. Discussion

The critical distance derived from special relativity and rotational dynamics highlights

the interplay between kinematic limits and relativistic effects. Both the critical distance

d = c2

2a
and the Schwarzschild radius Rs =

2GM
c2

define boundaries beyond which certain

relativistic effects dominate.

• Observation Limits: Both distances represent a boundary beyond which objects

cannot be observed due to relativistic constraints.

• Relativistic Speeds: At the critical distance, the tangential velocity reaches the

speed of light, analogous to the escape velocity reaching the speed of light at the

Schwarzschild radius.

• Role of the Equivalence Principle: The analogy draws on the equivalence

principle, which suggests that the effects of acceleration in a rotating frame can be

compared to gravitational effects in a static frame.

• Implications for Astrophysics: Understanding these limits is crucial for

studying extreme astrophysical objects like neutron stars and black holes, where

relativistic effects are significant.

9. Conclusion

We have derived a critical distance in a rotating frame using principles from special

relativity and rotational dynamics. This critical distance, beyond which objects would

appear to move faster than light, is analogous to the Schwarzschild radius in the

context of general relativity. Both concepts highlight the fundamental limits imposed

by relativistic physics on observation and information transmission.

Understanding these limits is crucial for both theoretical investigations and

practical applications, ranging from astrophysics to advanced technological systems.

Future research could explore further implications of these relativistic limits and their

applications in various fields of science and technology.
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