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Abstract

Cancer cells have unique metabolic activity in the glycolysis pathway compared to normal cells, which allows them to

sustain their growth and proliferation. Therefore, inhibiting glycolytic pathways may provide a promising therapeutic

approach to cancer treatment. In this first-of-its-kind study, we analyzed the genetic responses of cancer cells to

stressors, particularly drugs that target the glycolysis pathway. Gene expression data for experiments on different types

of cancer cells were retrieved from the Gene Expression Omnibus and expression fold-change was then clustered after

dimensionality reduction. We identified four response clusters, the first and third are affected the most by anti-glycolytic

drugs, consisting mainly of squamous and mesenchymal tissues, showing higher mitotic inhibition and apoptosis.

Drugs acting on several glycolytic targets at once resulted in such responses. The second and fourth clusters were

relatively unaffected by the treatments, succumbing the least to glycolysis inhibitors. These clusters are mainly

gynecological and hormone-sensitive, with drugs acting on hexokinases mainly inducing this response. This study

highlights the importance of analyzing the molecular states of cancer cells to identify potential targets for personalized

cancer treatments and to improve our understanding of the disease.
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Introduction

In the 1920s, Otto Warburg and his colleagues observed a notable uptake of glucose in tumors in comparison to that

observed in the surrounding tissues. Subsequent investigation revealed glucose fermentation, resulting in lactate

production even in the presence of oxygen, a phenomenon termed "aerobic glycolysis" [1][2]. This paradoxical prevalence

of glycolysis in cancer cells is referred to as the "Warburg effect." The catabolism of glucose to lactate yields a relatively
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low amount of energy, thereby necessitating high rates of glucose consumption to meet the energetic and anabolic

demands of cancer cells [3]. In addition to providing energy, glycolysis generates metabolic intermediates that enable de

novo synthesis of nucleotides, amino acids, lipids, and NADPH, all of which are essential for rapid cell proliferation.

Cancer cells thus possess a distinct metabolic profile that permits a high rate of proliferation and resistance to apoptosis

signals [4].

Inhibition of glycolytic pathways could be a promising selective approach in cancer research for developing targeted

anticancer agents. Chen [5] and Abdel-Wahab [6] and colleagues have evaluated various inhibitory drug modalities that

forestall glucose utilization. These drugs have been tested on cancer cells, followed by gene expression evaluation to

identify more potent agents with a lethal metabolic impact on cancer cells. Currently, many glycolytic inhibitors are

undergoing preclinical and clinical studies, demonstrating promising results [5][7][8].

While many studies have described the effects of glycolysis inhibitory drugs on various cancers, there has been no effort

to identify a common thread among the outcomes of these treatments. This study aims to fill that gap by examining how

cancer cells respond to stressful environments, specifically those induced by glycolysis inhibitory drugs. By making use of

fundamental cancer characteristics such as the drugs applied and their molecular targets, along with cancer

“iClusters”extracted using an integrative clustering technique proposed by Shen et al. [9][10], we hope to uncover hidden

patterns that summarize cancer cell behavior under such conditions. The iClusters, which were obtained in a 2018 article

by Hoadly et al., represent a new way of classifying cancer based on molecular signatures rather than histology [11]. In

their latest research, Hoadly et al. expanded on this concept by analyzing approximately 33 tumor types or 10,000

samples and identifying 28 distinct iClusters using various types of data, including chromosome arm-level aneuploidy,

DNA methylation, mRNA and miRNA expression, and protein expression13. With the insights gained from this study, we

can hopefully make strides towards developing more effective cancer treatments [12].

Results

Two matrices were constructed, the first containing 199 experiments and the second 666. The rows amount to 33622,

representing the studied genes as expression foldchanges. The adjust_matrix() function of the cola package was used to

clean the matrices.

k 1-PAC Mean Silhouette Concordance

2 0.989 0.97 0.987

3 0.87 0.907 0.958

4 1 0.963 0.98

5 0.949 0.888 0.949

6 0.851 0.802 0.887

Table 1. Clustering evaluation indices for a

maximum k of 6
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In the main matrix of 199 columns, 4 treatments were removed because more than 80% of their values were missing,

leaving us  195 samples and 16127 genes filtered for analysis. Consensus partitioning recommended grouping the

experiments into 5 classes, and alternatively into 2 or 4. Table 1 shows the 1-PAC, mean silhouette, and concordance

evaluation indices for all classes with a maximum of 6. Having calculated the product of 1-PAC, concordance, and

silhouette for all 3 suggested k, k = 4 classes was the highest k with a product ≥ 0.90 and is hence preferred. The

cumulative distribution function (CDF) curves for a maximum k of 6 and the PCA plot for k equal to 4 are shown in Figure

1a and Figure 1b. Only treatments with silhouette scores ≥0.5 were retained in their corresponding classes, resulting in a

new total of 193 analyzable experiments.

Figure 1. eCDF curve and PCA plot of the consensus clustering.  (a) eCDF curve of the consensus matrix from partition by ATC:skmeans, a

good k can be selected by aiming at the flatness of the eCDF curve. (b) PCA on 5000 rows with the highest ATC scores, 193 out of 195 confident

samples were kept in their classes (silhouette > 0.5)

Samples were not unequally distributed (p = 0.054), with class 1 having 61 experiments, class 2 having 54, class 3 with

38, and class 4 having 40 experiments. The treatments were then classified by molecular mechanisms and the goodness-

of-fit test was applied to the frequency of experiments in each class. Table 2 lists the treatments used and their respective
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molecular mechanism as explained by Abdel-Wahab. Treatments acting on Hexokinase 2 (HK2) showed a significant

preference for class 2, and those acting on variants of mTORC (1/2) demonstrated high affinity for class 1. Combination of

treatments acting on the mitochondrion (e.g., biguanides) with those acting on HK2 or with glucose restricting, constituting

a type of “pan-glycolysis” inhibition, had a preference for class 3. This classification in class 3 was also seen with glucose

starvation, a true “pan-glycolysis” inhibition, which additionally showed an affinity for class 1.  Nevertheless, it should be

noted that drugs targeting mitochondrial function and the KRAS pathway, alone, did not show a predilection for any class,

proving their wide range of activity. The results described are visualized in Figure 2.

Action Drug Action Drug

Akt Afuresertib

Mitochondria

Buformin

GLUT Silybin Metformin

Glucose No Glucose Phenformin

HK2

2DG

mTORC

Everolimus

Genistein MLN128

Resveratrol PP242

KRAS
Mutations

Selumetinib BEZ235

Sorafenib Rapamycin

Trametinib
Temsirolimus

PDK DCA

Table 2. Actions of the studied drugs on the

glycolytic pathway

Qeios, CC-BY 4.0   ·   Article, March 22, 2023

Qeios ID: 1T88E3.3   ·   https://doi.org/10.32388/1T88E3.3 4/16



Figure 2. Relationship between the drugs studied, their molecular activity, and response clusters. The Sankey diagram shows molecular

activity of each drug. Cluster designations are shown on the right.

In terms of cell type, Cluster 1 appears to harbor the majority of cells, comprising iClusters 15 (C15) and C24, almost

exclusively comprising SKCM (skin/new melanoma) and LAML (myeloid leukemia), respectively. C15 is affected by UVB

exposure and has the highest median mutation per megabase, and C24 is known to have the lowest median mutation per

megabase among all iClusters. Similarly, C10, C25 and C27 (partitioning all squamous cell cancers) were predominantly

classified in group 1 alongside group 3, as were C22, C7, C3, enriched in SARC (sarcomas, primarily bone). One cell type

predominates in C10 and C27, namely lung and cervical squamous cell cancers, the latter being HPV-related. Moreover,

C10, C25, and C27 were enriched with squamous-cell and proliferation-related pathways, relatively high level of hypoxia,

immune-related signaling and basal signaling. Of note, C25 was specifically enriched with chr11 amplification. As for C22,

C7, and C3, these iClusters were predominantly mesenchymal, most commonly having a chr9 deletion, and were

enriched in gene programs representing PD1, CTLA4, and JAK2/STAT1, 3, 6 signaling. Cluster 2 was primarily enriched

in C8 and C19, themselves known to cluster BRCA and UCEC (breast and uterus), with C8 also found almost exclusively

in cluster 4. C8 is also a homogeneous iCluster, dominated by a single tumor type, with the POLE mutation present in

highly somatically mutated cells. Together with C19, they both demonstrate hormone and cell of origin dependence, with

C19 furthermore expressing the estrogen signaling gene program. Figure 3 summarizes this repartitioning and

Supplementary file S3 illustrates the analysis process described for the drugs and tissue group distribution.
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Figure 3. Relationship between TCGA tumor type, iCluster, and response clusters. The Sankey diagram shows the tumor type composition of

each iCluster. Cluster designations are shown on the right.

Signature genes were identified using a false discovery rate (FDR) threshold of <0.001. Clustering of genes by K-means

yielded 5 signature functions, 2 of which were biologically more significant than the others. Functional analysis of the first

function-group using Gene Ontology (GO) terms for biological properties resulted in 17 term clusters (Figure 4). Function

A addresses cell cycle inhibition, including (i) DNA replication and repair, as well as RNA splicing and telomere

maintenance, and (ii) mitotic cell cycle and regulation. Function B addresses cancer adaptation and molecular quality

control mechanisms describing (i) apoptosis and the unfolded protein response (UPR) and related aspects of (ii) RNA and

protein transport and localization in cells, (iii) organ development (perception and learning), and (iv) ion homeostasis. The

activity of these functions in each group relative to the others (maximum 
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Figure 4. Heatmap of the GO term similarities from the 195-sample gene list . The terms resulted from the enrichment of the genes in either

group (using FDR < 0.01). The green-red columns show for which group the respective GO terms are significant. The word cloud keywords highlight

the biological functions in each GO group.
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Figure 5. Heatmap of the signature genes and their regulation in each class. 9368signature genes (58.1% of total genes) chosen for an FDR <

0.01. This heat map represents the differences in expression relative to the average FC for each gene. Table 3. Summarizes these differences.

Cluster\Function
A: mitotic
activity 
& DNA repair

B: Quality control, 
UPR 
& apoptosis

1 ↓ –

2 ↑ –

3 ↓ ↑

4 – ↓

Table 3. Function clusters to antiglycolytic agents
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The previously listed functions describe the expression of biological pathways that are different between classes,

regardless of whether they are up- or down-regulated in each experiment (significantly high FC). That said, up- or down-

regulated responses remain to be explored. Because our data were quantile-normalized, a FC ≥ 0.5 or ≤ -0.5 was

considered to define an up- or downregulated gene, respectively. Only classes 1 and 3 could be enriched, showing

downregulation in mitotic activity and DNA replication, and class 3 showed additional upregulation in apoptotic activity and

cellular stress response, cellular differentiation, and immune activation of cells.

Additional consensus clustering was performed on 341 sorafenib-treated and 325 rapamycin-treated samples (from

accession of 1014 samples), with each treatment having primarily 3 available doses given for 3 exposure times.

Consensus partitioning of rapamycin samples resulted in 3 classes and 4 classes of sorafenib. This classification takes

into account the drug used and leaves room for classification and interpretation based on tissue, dose, and time. The

classes obtained for both treatments simply split the samples almost evenly between them, which is true for tissue,

treatment duration, and dose if tissue-dose and tissue-duration interactions were considered. Therefore, no hidden trends

or categorization of these parameters could be inferred. It should be noted, however, that when tissue, treatment duration,

and dose were not considered, there was a preference for certain classes (P <0.01). Treatment signature genes were also

classified and resulted in the same biological processes as described above, with organ development/differentiation being

more vascular.

It was deemed unnecessary to combine the 666 experiments with the 195 and perform a clustering analysis because of

the potential bias that could result from adding more than 300 samples treated with only 2 agents, to 195 samples treated

with a total of 26 agents. In addition, partitioning that holds the tissue variable constant and allows for a treatment-based

study was also deemed inefficient due to the limited number of samples per tissue.

Discussion

This study used gene expression data from the Gene Expression Omnibus (GEO) to cluster cancer gene responses to

stressors, specifically drugs that inhibit the glycolysis pathway. Unsupervised clustering after dimensionality reduction

revealed four response clusters, which showed distinct molecular characteristics and sensitivity to different classes of

drugs.

Our findings first highlight the importance of “pan-glycolysis” targets, especially glucose restriction, which showed the best

anti-cancer effect among all other treatments. This pan-glycolytic effect can also be achieved by combining compounds,

the most potent one being those affecting simultaneously the cytoplasmic and mitochondrial phases of glucose oxidation.

The only treatments seemingly effective as a monotherapy are those targeting mTOR variants, which are known to play

an important role in cancer growth and metabolism [13], which stresses the importance of multi-target therapies for

targeting cancer. Secondly, it came clear that patients with mesenchymal and squamous tumors may benefit from mTOR

and pan-glycolytic targets. However, patients with hormone-sensitive tumors probably do not benefit from any anti-

glycolytic drug but can consider those acting on mitochondrial proteins and KRAS mutations. One can also consider the
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latter cells to adapt well to hypoglycemic and glycolysis-challenged environments.

Clusters 1 and 3 showed significant gene regulation that is worth elaborating upon. On the first hand, tumors classified in

these clusters showed downregulation in mitosis, DNA replication, and all associated pathways and quality control

checkpoints. This should mean that the drugs induced Warburgian stress that disrupted normal cell cycle processes,

potentially slowing down or halting cell growth and division. On the other hand, cluster 3 showed the detection of immune-

related gene expression. Knowing that cell culture lacks immune cells from its microenvironment, this expression can be

due to various factors, including autocrine immune-related signaling [14], stress-induced signaling and death associated

with exposure and production of damage-associated molecular patterns (DAMPs) [15], and persistence of immune cell

from the original tissue. The additional detection of genes related to development and differentiation can be due to the

initiation of adaptative responses to the stressful environment by evolutionary favoring of more resistant mutants through,

for instance, incomplete epithelial-mesenchymal transition (EMT) or mesenchymal-epithelial transition (MET) [16][17], and

the ability of cancer cells to dedifferentiation or transdifferentiation into different cell types [18].

All of the studies we reviewed for data interrogation, which investigated the response of specific cell lines to a single dose

and duration of exposure of an antiglycolytic drug, demonstrated similar biological functions to ours (GEO accession

numbers of the studies that demonstrated deregulation of class 1 and 3: GSE31058, GSE97346, GSE59882, GSE79316,

GSE73923, GSE59228, GSE36847, GSE25412, GSE114060, GSE96794, GSE79246, GSE9008, GSE62663,

GSE116387, GSE137553, GSE112079; and class 2 and 4 dysregulation: GSE59704, GSE5200, GSE85257,

GSE112079. See supplementary Table S1).

The distribution of cancer cells and drugs is not binary and must be considered when interpreting results due to the

complex and diverse nature of the experiments. The differences are attributed primarily to the heterogeneity of the

experiments, acting on the unique metabolism of each of the 79 cell lines tested by exposing them to different doses and

time frames of 26 reagents. The varying levels of activity of biological pathways in each cell are due to developmental and

differentiation programs, and epigenetic states of the cells of origin in conjunction with exogenous factors, such as

mutagenic exposures, pathogens, and inflammation. This explanation should be extended to cover cancer’s

microenvironment when translating the findings on cancer responses to in vivo studies. We should therefore mention that

cancer’s microenvironment, which includes neighboring cells, blood vessels, and extracellular matrix, can affect the

expression of glycolysis-related genes [19][20], limit drug delivery to the tumor cells, and alter the immune response to the

tumor [21][22].

It is reasonable to mention at this point that further in silico studies are needed to validate our observations. Future

studies should concentrate on quantifying the reactions in a cell through genomic, proteomic, and other omic module

detection, rather than weighing the intensity of gene expression, and then comparing those biological modules between

cells [23]. Asking for more in vitro experiments to obtain more statistically significant results is theoretically advantageous,

but practically useless knowing that we are asking for more combinations of experiments that distances us from the

study’s purpose. We believed that there must be a hidden pattern, imperceptible to the human brain, that links human

cancers together allowing their positioning on a categorizable continuum. This explicates why we used iClusters in place
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of tissues to categorize cells and explore what is beyond simplistic tissue-based classifications.

Conclusions

While several studies have examined the effects of a single antiglycolytic drug on specific cell lines, none, to our

knowledge, have used response clustering to analyze cancer. Our study aimed to fill this gap by identifying categories of

cancer cell responses to a wide range of antiglycolytic agents. This classification can provide insight into the expected

effects of any drug targeting glycolysis, helping to predict the response of cancer cells to such drugs.

Our results revealed unique molecular characteristics and varying levels of sensitivity to different drug classes,

highlighting the importance of multi-targeted therapies in cancer treatment. Patients with mesenchymal and squamous

tumors may benefit from mTOR and pan-glycolytic targets, whereas those with hormone-sensitive tumors are unlikely to

benefit from anti-glycolytic drugs; however, drugs such as biguanides and those targeting KRAS mutations may be

considered for the latter. Finally, it is important to consider the cancer microenvironment when applying these findings to in

vivo studies.

Methods

Data Processing. Gene expression profiles were downloaded from the GEO (Gene Expression Omnibus) database. The

terms entered in the search engine were “Cancer” followed by the name of the agent, or any of the alternative names for

the same agent. All the dataset accession numbers and their respective drugs and cell lines can be found in

Supplementary Table S1. The raw data were also provided in Supplementary Tables S3 and S4. The filters used with

every search were “Homo sapiens” for organisms, “Expression profiling by array” for the study type, and “Series” under the

entry type. The inclusion criteria we based our judgment on for choosing the datasets were:

1. Expression data should only be from single-channel microarray chips. Agilent, Affymetrix, and Illumina are the only

accepted manufacturers

2. Cells should be treated in an artificial in vitro milieu (no mice xenografts etc.)

3. Cells should not have been transfected or mutated to affect the targeted pathway or been made resistant to treatment

(only wild cell types under the influence of chemicals)

4. Cells should not have undergone secondary treatments (other than the vehicle and the drug of interest) before RNA

extraction

5. Coding RNA, particularly cytoplasmic or total extractions, is preferred

6. The glucose deprivation medium should contain less than 1g/L, i.e., 5.6 mM, of glucose

7. Cells should be cancerous, not benign, with no other superimposed disease

8. The data series should contain both controls and treatments.

The raw files downloaded were either in CEL or TXT format. Few TXT files contained processed data, and these were
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simply used as-is. For the Illumina Beadchips, R’s limma [24][25] package was used and the function neqc() was employed

to perform background correction followed by quantile normalization. It should be noted that negative control probes were

not always available, therefore the detection p-values of each probe were exploited instead. For probe annotation, the

annotate package was chosen [26], with illuminaHumanv3.db as the annotation data [27], and “gene symbol” as the

annotation. For Affymetrix chips, limma, affy [28], and oligo [29] were used to process the CEL files. The rma() function

normalized the microarray signals, and the annotation data packages were adapted to the version of Affymetrix chips

available [30][31][32][33][34][35][36][37]. The Agilent chips were read using likewise the limma package, annotated according to

the chip versions [38][39][40], background-corrected following the normal-exponential method, and quantile normalized.

After reading and normalizing the signals, the controls and their respective treatments were exported into excel files. This

resulted in a total of 798 microarrays (517 treated assays and 281 controls) comprising 73 cell lines from 17 different

tissues treated with 26 different anti-glycolytic agents. An additional 1014 microarrays were also downloaded on only one

study (666 treated assays and 348 controls), which included 59 cell lines from 11 tissues treated with either sorafenib or

rapamycin at different drug doses and exposure durations. The log base 2 foldchange (FC) was then calculated for each

treated chip, and all the FCs were lastly fitted into two matrices: the first consisted of 199 foldchange retrievals, the

second 666. The matrices thus contain expression data in form of FCs.

Consensus clustering. Consensus clustering was performed using the cola package (version 1.8.1) [41]. This data

classification technic was, foremost, done on the 199 experiments found on the GEO, to find a common denominator

function for all glucose-challenged cells. Clustering was also performed on specific treatments, namely rapamycin and

sorafenib from the 1014-sample accession, to study the effect of sample classification, while holding the treatment

constant. Before performing the consensus partitioning, an important step was to clean up and perform data imputation to

the input matrix. The adjust_matrix() function provided by cola was hence used

After cleaning, quantile normalization was performed on each sample. This scaling method was used as it demonstrated

better results compared to other scaling methods. For dimensionality reduction, the top 5000 features were first selected

by the ATC top-value method (or "Ability To Correlate to other rows"). Then, the matrix was scaled by the selected rows

and randomly sampled; these samples were partitioned by the skmeans (or "Spherical k-means") clustering method, a

variant of the standard k-means clustering. Finally, the sampling and partitioning process was repeated 50 times to obtain

a list of partitions.

The best-fitting number "k" of subgroups was evaluated using the average silhouette score, PAC score, concordance, and

Jaccard index. The PAC score measures the proportion of ambiguous samples; 1-PAC thus represents the unambiguous

sub-grouped samples. The best number of subgroups was the subgroup with the largest k having a product of the 3

scores greater than 0.9. The chi-square test was used to investigate the null hypothesis of whether the sample

frequencies are equally distributed among the partitioned clusters, and the Wilson interval with continuity correction was

applied to estimate the population proportions in each cluster.

Functional analysis. The “signature genes” were then identified using the F-test for differential analysis. Signatures are
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simply the rows that show statistically significant specificity in one or more subgroups. These were further grouped by

patterns among subgroups using k-means clustering and the appropriate number of signature groups was automatically

selected. Functional enrichment was applied to each group of signatures separately. Gene ontology (GO) enrichment

analysis was performed by applying the R package ClusterProfiler [42] with cola’s function functional_enrichment(). GO

terms were then clustered and visualized as heatmaps by the R package simplifyEnrichment [43].

Supplementary Information

Supplementary Table S1. Samples accessions. 

Supplementary Table S2. 195-sample classification.

Supplementary Table S3. 195-sample raw data.

Supplementary Table S4. 666-sample raw data.
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