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Abstract

Protons are gaining increasing attention as neurotransmitters due to their extraordinary abilities to rapidly transfer

electrical charge, mobilize cellular calcium and modulate ion channels. How all this is possible is currently the subject of

in-depth studies and discussions concerning not only neurophysiology, but also biological materials for artificial

intelligence.

This review describes some biochemical mechanisms by which protons, in combination with calcium, can initiate firing

in sensory neurons and transmit impulses across synapses, thus supporting the action of Na+ and K+ ions shown by

Hodgkin and Huxley. Furthermore, mechanisms are put forward concerning how many hydrolases and

neurotransmitters, particularly glutamate, gamma-aminobutyric acid, adenosine triphosphate and acetylcholine, are

able to generate protons.

The results of the numerous experimental works taken into consideration indicate that protons can play a fundamental

role both in the generation and in the transmission of the sensory nerve impulse.
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The importance of Na+ and K+ ions for nerve transmission was demonstrated by eighteen years of experimental work by

Hodgkin and Huxley (A. Hodgkin & Huxley, AF, 1952). Other ion, such as H+ and Ca2+, were studied less, although

Hodgkin and Huxley noted the significant role of Ca2+ as far back as 1949 (A. L. Hodgkin, 1976) (Fig.7). Subsequent

studies confirmed the fundamental role of Ca2+ in proper transmission (Augustine et al., 2003; Bagur & Hajnóczky, 2017;

Brini et al., 2014; Clapham, 2007; Moccia et al., 2023; Neher & Sakaba, 2008; Pozzan et al., 1994). Dysfunctions in Ca2+

homeostasis and abnormal Ca2+ concentration levels characterize the pathological states of acidosis and alkalosis.

Acidosis and alkalosis are consequences of opposite, extended changes in H+ concentration, i.e. in pH, and can cause

neurodegenerative diseases (Brini et al., 2014; Verma et al., 2022; Zündorf & Reiser, 2011) and cancer (Papavassiliou &

Papavassiliou, 2021; Salucci et al., 2023; Zheng et al., 2023). In fact, acidification in acidosis depletes cellular calcium

stores and depleted stores release a reduced quantity of Ca2+ in response to stimuli. On the contrary, in alkalosis, calcium

stores are overloaded and this can produce an excessive response. Only a steady-state cell with adequately full calcium

stores can respond with the right release of Ca2+ to the stimulus, thus transducing the signal correctly. The pathological

consequences of poor/excessive responses to stimuli in acidosis/alkalosis are beyond the scope of this review; here the

focus is on the physiological chemical mechanisms of neurotransmission, which underlie the rapid and highly localized

transient changes in H+ and Ca2+ concentrations, triggered by stimuli. Unfortunately, the in vivo analytical quantification of

H+ and Ca2+ ions is very difficult, as they can interact with a multitude of atomic and molecular species. Moreover, fast

nerve impulses can last no more than 10 ms (Lemaréchal et al., 2022; Wolfel & Schneggenburger, 2003), intracellular pH

transients and calcium spikes less than 2 ms. Consequently, H+ and Ca2+ ions require sophisticated instruments for their

study (Bekku & Salzer, 2021; Horiuchi et al., 2020; L. Zhang et al., 2016).

The interest in H+ ions, identified below with the current terminology as “protons”, picked up after 1980 (Bevan, S & Yeats,

J, 1991; Gruol et al., 1980; Krishtal & Pidoplichko, 1980) and particularly with the technical progress of the last 25 years

(Barth & Corrie, 2002; Freeman et al., 2023; Steinegger et al., 2020).

Protons are tiny ionic particles that in an aqueous environment are acidic and highly mobile, able to rapidly transfer

positive charges and to temporarily modify pH, Ca2+ concentration, electrical potential and the protein structure, as a

result activating numerous receptors. Due to these extraordinary chemical and physical properties they are used in the

preparation of organic electro-conductive materials (Song et al., 2020; Yao et al., 2020) and are attracting increasing

attention as neurotransmitters (Beg et al., 2008; Davies et al., 1988; Diering & Numata, 2014; J. Huang et al., 2010; Kier,

2017; Ruffin et al., 2014; Soto et al., 2018; Tombaugh & Somjen, 1996; Traynelis & Cull-Candy, 1991; Uchitel et al., 2019;

Ueno et al., 1992; Willoughby & Schwiening, 2002; Zeng & Xu, 2012). Protons have been shown to have an essential role

at the synaptic level (Du et al., 2014; Fillafer & Schneider, 2016; González-Inchauspe et al., 2017; Highstein et al., 2014;

Uchitel et al., 2019) and it has been posited that they are responsible for conduction in axons (Kier, 2017). Some authors

have also posited a significant role in the transmission and modulation of the signal in the nervous system generally

(Malchow et al., 2021; Ruusuvuori & Kaila, 2014; Soto et al., 2018; Zeng et al., 2015). However, the endogenous sources

of the protons have yet to be determined. There are four candidates: Na-H exchangers, V-ATPases, carbonic anhydrases

and AE3 chloride-bicarbonate exchangers (Country & Jonz, 2017; Soto et al., 2018; Warren et al., 2016; Zeng & Xu,

2012), but they appear to be insufficient (Country & Jonz, 2017). Specifically, Soto and colleagues (Soto et al., 2018)
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rightly observe: “A problem of classifying protons as neurotransmitters is related to the fact that its regulated release is

always a co-release with classical neurotransmitters”. In addition, some criticisms have been levelled against the theory of

Hodgkin and Huxley; for example, it does not explain the origin of the firing of neurons (Deng, 2017). These problems

could be overcome more simply if neurotransmitters and second messengers (Newton et al., 2016) were included among

the possible sources of protons, given that these molecules can generate protons, i.e., new mobile charges.

The double purpose of this review is: 1) to highlight several endogenous sources of protons, which have so far been

overlooked; 2) to suggest some biochemical pathways for sensory impulse initiation/transmission that can be activated by

protons and Ca2+ ions. Specifically, subsection 2.3 lists in Table 1 some important enzymatic proton sources for cell

signalling. Subsection 2.4 describes how protons are able to trigger the depolarization of sensorial neurons by directly

opening ionotropic channels or activating GPCR receptors, via PLC/IP3 and the mobilization of Ca2+, thereby contributing

to the generation of the action potential and the exocytosis of the vesicles. Subsection 2.5 describes the mechanisms by

which neurotransmitters in the vesicles, such as glutamate (Glu), gamma-aminobutyric acid (GABA), adenosine 5’-

triphosphate (ATP) and acetylcholine (ACh), are able to become the sources of protons, generating them and, via the

protons, fostering the transmission of the impulse through the synaptic cleft to the postsynaptic termination and beyond.

2. Results and Discussion

A review and critical assessment was made of the scientific publications dealing with the topic between 01.01.1943 and

31.12.2023, all available online.

2.1. Properties of protons

With an atomic mass about 23 times lower than sodium and a radius of about 0.08 nm, the proton is the smallest and

most mobile ion, despite the limitations of its solvation structure, thanks to its diffusion coefficients, in bulk water

(Silverstein, 2021). In its hexahydrate form proton has a radius of about 0.25 nm against 0.95 nm of Na+. It diffuses faster

along and across membranes than in the cytoplasm (Silverstein, 2021). The level of proton permeability across the

phospholipid membrane is tightly controlled and depends on the lipids and proteins in the membrane (DeCoursey &

Hosler, 2014; Endeward et al., 2014; Kratochvil et al., 2023). There are several different routes for proton permeation, via

both passive and active transport. Due to different experimental conditions, the results of many existing studies are

inconsistent, however, in most measurements the proton permeability was ≥ that of Na+ (Bozdaganyan et al., 2019).

Studies with weak acids on artificial vesicles revealed that protons diffuse more rapidly than other ions through lipid

bilayers, mainly in the undissociated acidic form (Anderson Norris & Powell, 1992; Tivony et al., 2022). Alternatively, in

living cells, protons can cross the plasma membrane much more rapidly through specific channels, such as voltage-gated

proton channels (Hv1), gramicidin A channels, and mutated aquaporins (DeCoursey, 2018; DeCoursey & Hosler, 2014).

Also, the existence of CO2-permeable aquaporins has been proved, but the permeation mechanism of CO2 through

aquaporins is not yet resolved (J. Chen et al., 2023). Carbonic anhydrases, which have a fundamental role in proton

generation from CO2 in the whole organism, including brain (Ruusuvuori & Kaila, 2014), could be less available with
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regards to aquaporins (J. Chen et al., 2023). Besides these routes, active transporters such as pumps and exchangers

can drive protons across the plasma membrane (Doyen et al., 2022; Ruusuvuori & Kaila, 2014).

The elemental charge of the proton is the same as for other individual monovalent cations, at 1.602 x 10-19 C. Anyway,

protons can transport the charge much more quickly (Brünig et al., 2022; Volkov et al., 2020), via proton-hopping (Agmon

et al., 2016; Silverstein, 2021). In addition to interacting with water and the three channels mentioned above, protons can

modulate (J. R. King et al., 2018) a large variety of channels and receptors. Such as Voltage Gated Calcium Channels

(VGCC/CaV) (Sharma et al., 2023; Simms & Zamponi, 2014), Store Operated Calcium channels (SOC) (Kraft, 2015),

calcium-activated potassium channels (KCa) (Guéguinou et al., 2014; Sancho & Kyle, 2021), inward rectifier potassium

channels (Kir) (Hibino et al., 2010; Ye et al., 2016), TWIK-related acid-sensitive K+ channel (TASK) (Duprat, 1997), proton

gated Acid Sensing Ion Channels (ASIC) (Rook et al., 2021; Storozhuk et al., 2021; Zeng et al., 2015),multimodal

Transient Receptor Potential channels (TRP) (Cao, 2020; Kweon et al., 2015), Pannexin 1 channels (Panx1) (Whyte-

Fagundes & Zoidl, 2018), G-protein Coupled Receptors (GPCR) (Sisignano et al., 2021) and P2X2 purinergic receptors

(Burnstock, 2018). Furthermore, GLIC channels in prokaryotes are proton-gated. The interaction depends on the species,

the extracellular or intracellular position of the protons, their concentration and the type of channel (de la Roche et al.,

2013). Many channels, including ASIC and TRPV1, mainly trigger activation; others, such as VGCC (Almanza et al.,

2008), Panx1 (Vroman et al., 2014), and TRPV5 (Fluck et al., 2022), have a control or inhibitory function. X-ray

crystallography and cryo-electron microscopy have revealed the structure of many ion channels in the inactivated/open

state and, in some cases, the amino acid residues involved in gating (Catterall et al., 2020). However, a knowledge of the

structures of the intermediate states at the atomic level is required in order to better understand the origin of the

movement of charges in the gating mechanism (Catacuzzeno & Franciolini, 2022). Numerous studies on proton mobility

prove that protons can move and interact in very short times with several chemical players before neutralization.

Therefore, the opinion that the variations in proton concentrations are physiologically negligible because they are quickly

neutralized is inexact.

2.2. The H+/Ca2+ correlation

It is known that both Ca2+ ions and protons are ubiquitous in organisms, at concentrations that are strictly correlated

(Deplazes et al., 2019; Molinari & Nervo, 2021; Swietach et al., 2013). As mentioned in the introduction, a widespread

lasting increase in their concentration produces the pathological condition known as acidosis (Hamroun et al., 2020),

whilst a local and temporary increase is used currently by cells as a signal, in physiological conditions (Ruusuvuori & Kaila,

2014; Soto et al., 2018; Zeng & Xu, 2012). In comparison with proton and Na+ ion, Ca2+ has a higher atomic mass (40

Da), carries a double positive charge and possesses much less mobility. In cells, most calcium is normally bound and the

cytosolic concentration of free Ca2+is very low. Its unique chemical characteristics have allowed calcium to become a key

element in cellular signalling (Carafoli & Krebs, 2016). The correlation between protons and Ca2+ ions is fundamental for

the transmission of the signal and depends on the high degree of solubility in an acid environment of calcium-buffering

molecules. In steady cells, most calcium is bound within Ca2+ buffers, which are either stationary or mobile (Eisner et al.,

2023). When the stimulus reaches the cell membrane activating an acidifying enzyme, such as a lipase or an esterase, the
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enzymatic action produces protons and hence locally and temporarily lowers pH (Molinari & Nervo, 2021). The acidity

quickly dissolves part of the Ca2+ buffers and Ca2+ can therefore pass into the solution, producing calcium spikes

(Molinari & Nervo, 2021), of intensity and duration proportional to the quantity of protons released (Garciarena et al.,

2018; S. Huang et al., 2023; OuYang, JB et al., 1994; Swietach et al., 2013). It has been calculated that in mitochondria a

fall of one unit of pH produces a 100-fold increase in the concentration of Ca2+ (Nicholls & Chalmers, 2004). Similarly,

protons produce the release of other bivalent and trivalent ions, such as Zn2+, Mg2+, or Fe3+ and Mn3+. The intracellular

increase in proton concentrations produced by esterases and lipases can transiently affect the structures of channels and

pumps, by modifying their conformation and action. Clearly, the acidifying power of lipases and esterases, including

phosphatases, is a very important characteristic that allows the transformation of the chemical signal into transient

electrical charges and the continuation of the signal both through the release of Ca2+ from cellular stores and through the

influx of extracellular Ca2+. However, scientific publications have almost entirely ignored this characteristic. The existence

in biological membranes of voltage-sensing phosphatases (VSP) that produce the opposite transformation from an

electrical signal to a chemical signal (Okamura et al., 2018) may not be coincidental. This allows us to argue that protons

are at the basis of the transformation of the signal from chemical to electrical and vice versa.

2.3. Endogenous sources of H+ ions, overlooked until now

In two prior articles, we have described how protons may be generated in different cells by second messengers with the

chemical structure of an ester or anhydride, such as IP3, ATP, NAADP, cADPR, cAMP or cGMP, by the hydrolytic action

of specific enzymes (Molinari, 2015; Molinari & Nervo, 2021). The hydrolysis of an ester or anhydride produces an acid, in

most cases a phosphoric acid derivative, which can rapidly dissociate, releasing protons. Table 1 provides some

examples of lipases and esterases and the acids they produce, which can solubilize calcium at the cellular level.

Schematic representations of the reaction are available in many cases, for example for ATP (Feng, equation 5) (Feng,

PX, 2017), IP3 (Huang, Supplementary information, Fig.S1) (J. Huang et al., 2010), cAMP (Barbosa, Fig.3) (Barbosa et

al., 2011) and cGMP (Rybalkin Fig.1) (Rybalkin et al., 2013). However, it is not easy to find the complete representation,

because most texts inexplicably fail to mention protons. Worse yet, the names phosphate and phosphoric acid are often

used interchangeably.

Table 1. Examples of lipases and esterases, as possible sources of protons and Ca 2+ spikes

Qeios, CC-BY 4.0   ·   Article, July 31, 2024

Qeios ID: 1XAQAQ.3   ·   https://doi.org/10.32388/1XAQAQ.3 5/27



enzyme substrate acid product reference

phospholipase A2 PC arachidonic acid Sun (G. Y. Sun et al., 2004)

phospholipase C PIP2 acid IP3 Molinari, Fig.1A (Molinari, 2015)

phospholipase D PC phosphatidic acid Cazzolli (Cazzolli et al., 2006)

ecto-ATPase ATP ADP + acid phosphate Kreitzer (Kreitzer et al., 2023) 

phosphodiesterase cAMP acid AMP Delhaye (Delhaye & Bardoni, 2021)

phosphodiesterase cGMP acid GMP Delhaye (Delhaye & Bardoni, 2021)

cADPR cyclase cADPR acid ADPR Young (Young & Kirkland, 2008)

VSPs phosphoinositides acid inositol phosphate Okamura (Okamura et al., 2018)

inositol 5-phosphatase IP3 not yet identified* Ooms (Ooms et al., 2009)

S1P phosphatase S1P not yet identified* Wollny (Wollny et al., 2017)

alkaline phosphatase NAADP not yet identified* Schmid (Schmid et al., 2012)

acetylcholinesterase ACh acetic acid Fillafer (Fillafer et al., 2021)

*See the discussion in the section below.

Abbreviations: PC, phosphatidylcholine; PIP2, phosphatidylinositol 4,5-bisphosphate; IP3, inositol 1,4,5-trisphosphate;

ATP, adenosine 5’-triphosphate; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate;

cADPR, cyclic adenosine diphosphate ribose; VSP, voltage-sensing phosphatase; S1P, sphingosine 1-phosphate;

NAADP, nicotinic acid adenine dinucleotide phosphate; ACh, acetylcholine.

 

The products of enzymatic hydrolysis, listed in the third column of Table 1, are acidic and can therefore release protons,

by dissociation. The ability of an acid to generate protons and consequently Ca2+ spikes depends on its dissociation

constant (Ka): the higher the Ka, the stronger the acid and the number of dissociated protons. Dissociation is also largely

influenced by environmental pH and the pKa corresponds to the pH value at which the acid is half dissociated.

Theoretically, all lipases and esterases can generate protons, but only hydrolysis that produces an acid with pKa lower

than the cellular pH will substantially release protons under physiological conditions. The Drug Bank reports pKa 4.54 and

4.82 for acetic acid and arachidonic acid, respectively. The three pKas of phosphoric acid are 2.1, 7.2, and 12.3. Its

partially esterified derivatives, such as phosphatidic acid and the acids produced by hydrolysis of cyclic nucleotides, have

lower pKa1 and pKa2, since “the replacement of a phosphoric acid hydrogen by a non-acidic group leads to an increase in

the acid strength” (Kumler & Eiler, 1943).

Therefore, in physiological conditions, phospholipases (i.e. PLA2, PLC, and PLD), triphosphatases (i.e. ecto-ATPase) and

phosphodiesterases are acidifying enzymes, since their acid derivatives have lower pKas than the cellular pH. Numerous

experimental studies support this statement. Some doubts may arise about the acidifying power of

phosphomonoesterases (phosphatases), due to the possible high pKa values of their two products: the alcohol and the

inorganic acid phosphate. However, the mechanism of hydrolysis of phosphomonoesters by phosphatases can be of

considerable importance. Phosphoric esters are stable compounds and their spontaneous hydrolysis is very slow.

Monoester monoanions with a typical second pKa of 6-7 and dianions are relatively reactive (Kirby & Nome, 2015)
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(Scheme 6 and respectively Scheme 5). The reaction is a nucleophilic substitution SN2 (P) which begins with the

deprotonation of the nucleophile (water) and proceeds through a transition state (TS) in which the phosphoryl group forms

a pentacoordinate intermediate (Duarte et al., 2016). This involves a redistribution of charges and electrostatic effects (De

Vivo et al., 2007), with consequent stabilization of the TS. Alcoholic leaving groups having pKa < 7 can promote the

reaction (Duarte et al., 2016; Kirby & Nome, 2015) and release the proton after hydrolysis (Duarte et al., 2016; Onyido et

al., 2023). Protein phosphatases such as inositol phosphatase (EC 3.1.3.25) can enhance the rate of hydrolysis by a

factor of ≈ 1021 (Lad et al., 2003). They generally use Zn2+ or Mg2+ as cofactors (Gill et al., 2005), (Kimura, 2012) (Fig 11,

Fig 15 and Fig 16). These data taken together suggest that the physiological hydrolysis of phosphomonoesters can be

acidifying, similar to triesters and diesters. Unfortunately, experimental confirmation is still lacking, as is the certain

identification of the acid products of the hydrolysis of important monoesters, such as IP3, S1P and NAADP. The acidifying

power of phosphatases has so far been studied in plant roots, soil microorganisms and earthworms (Moro et al., 2021;

Tibbett, 2002; Vos et al., 2023) where the improvement of calcium and phosphates solubility is important for plant

nutrition. For soils with pH around 6.0 a decrease in pH was shown, specifically related to phosphodiesterases and

phosphomonoesterases activity (Moro et al., 2021). Unfortunately, the authors do not measure the contribution of

phosphodiesterases and phosphomonoesterases separately.

2.4. Pre-synaptic transmission of the impulse in sensory neurons

Protons can contribute to the generation and transmission of impulses in sensory neurons via biochemical mechanisms

that differ in modality and effects (Silbering & Benton, 2010).

In the specific case of neurons sensitive to a sour taste, it has been shown in mammals that protons can directly cause

firing by opening the OTOP1 channel (Chang et al., 2010; Teng et al., 2022; Tu et al., 2018).

“In response to acidic stimuli, the sour receptor, OTOP1, conducts protons into the cell cytosol. This changes the

membrane potential directly, and the change in intracellular pH blocks KIR2.1 K+ channels, which further

depolarizes the membrane potential. With sufficient depolarization, voltage-gated Na+ channels open causing a

train of action potentials that open voltage-gated calcium channels and lead to neurotransmitter release” (Liman &

Kinnamon, 2021).

The pathway is more complex in the case of sensory neurons with GPCR-type metabotropic receptors at the distal

termination of the axon. These are very common in mammals (Imenez Silva & Wagner, 2022; Liccardo et al., 2022) for

the transmission of visual stimuli (Xue et al., 2011), nociceptive stimuli (Geppetti, P et al., 2015), odor (G. Liu et al., 2006;

Szebenyi et al., 2014) and taste, limited to taste/flavour perceptions of sweet, bitter, umami and kokumi (Ahmad & Dalziel,

2020; Deshpande et al., 2010; Lee & Owyang, 2017). In these cases, the biochemical mechanism begins with the

activation of a phospholipase C (PLC) (Balla, 2010; Weernink et al., 2007) which hydrolyzes the phosphatidylinositol (4,5)-

bisphosphate of the neuronal membrane. The reaction for several enzyme isoforms is pH- and Ca2+-dependent (Banno &

Nozawa, 1987; Nakamura & Fukami, 2017; Roy et al., 1991). This means that the reaction can be acidifying and
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autocatalytic (Thakur et al., 2020), because the hydrolysis produces IP3 and protons (J. Huang et al., 2010; Molinari,

2015; Randall et al., 2015), which in turn produce Ca2+ release (W. Chen et al., 2001; Križaj et al., 2011; Nedergaard,

1995; OuYang, JB et al., 1994; Thakur et al., 2020), hence promoting a rapid increase in enzymatic activity. The acidifying

action has been confirmed experimentally at the presynaptic termination (Caldwell et al., 2013; Rossano et al., 2013; L.

Zhang et al., 2016).

The increase in cytosolic Ca2+ concentration, induced by the direct proton influx or by the acidifying action of PLC, can

have a threefold contribution:

1. Solubilization of cytosolic Ca2+ buffers (Molinari & Nervo, 2021; OuYang, JB et al., 1994)

2. Ca2+ release from endoplasmic reticulum stores (Woll & Van Petegem, 2022)

3. Ca2+ influx by stimulation of the SOCs (D. Wei et al., 2017)

The latter is fundamental for neurotransmission, since the influx of Ca2+ as well as the influx of protons can constitute the

first step of depolarization.

A second step may follow rapidly with the opening of:

low threshold VGCC/CaV channels (Dolphin, 2020; Harding & Zamponi, 2022; Ramachandran et al., 2022; Tombaugh

& Somjen, 1997) permeable to Ca2+

TRP (Cao, 2020; Henrich & Buckler, 2009; J. Huang et al., 2010; Zeng & Xu, 2012) and ASIC (X. Liu et al., 2020)

channels permeable to Ca2+ and Na+(Hu et al., 2021).

These new influxes of Ca2+ and Na+ can further promote depolarization. Moreover, the increase in Ca2+ concentration in

the cytosol modulates calcium-activated potassium channels (Hou et al., 2008; Orfali & Albanyan, 2023; Shah et al.,

2022).

The above studies jointly demonstrate that protons, together with Ca2+ ions, can start the process of membrane

depolarization not only in neurons sensitive to a sour taste, but also in many other neurons with GPCR-type receptors. It

is likely that the three ions, H+, Ca2+ and Na+ contribute cooperatively (Dixon et al., 2022; Moreno et al., 2016) and to

varying degrees to depolarization until the threshold value is reached.

When the threshold value is exceeded Voltage Gated Sodium Channels (NaV) open, generating the action potential

(Catterall et al., 2005; A. Hodgkin & Huxley, AF, 1952). This produces the exocytosis of the vesicles and the release of

the neurotransmitters into the synaptic cleft (Ge et al., 2022; Wu et al., 2014).

In the following repolarization phase the NaV channels close and the Kv (Grider et al., 2022; A. Hodgkin & Huxley, AF,

1952; Kariev & Green, 2022), KCa and Hv1 proton channels (DeCoursey, 2018; Han et al., 2022) open enabling the efflux

respectively of the K+ ions and the protons leading to the rebinding of Ca2+ and the return to static conditions. Pumps and

exchangers contribute to the control of the entire process (Brini et al., 2014).

In the eye, the activation of GPCRs via the PLC/IP3 pathway occurs by means of the cells containing melanopsin, whilst
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the cells of the retina containing rhodopsin and the cells of the auricular cochlea follow a different pathway, via PDE/cGMP

(C.-K. Chen et al., 2015; Marchetta et al., 2022). In this case, the protons are generated by the hydrolysis of cGMP and

the dissociation of acid glutamate, as described below in subsection 2.5. The role of protons in hair cell transmission is

currently under debate (Contini et al., 2022).

In relation to the sensory neurons that transmit mechanical stimuli, it is believed that in mammals these neurons generally

respond via mechanoelectrical channels (Douguet & Honoré, 2019). The physical stimulus induces the opening of ionic

channels enabling the influx of Ca2+, depolarization and the generation of the action potential. The mechanisms for the

activation of the channels are not clear (Bavi et al., 2017). In some cases, ASIC channels (Cheng et al., 2018) or GPCR

receptors (Lin et al., 2022) are involved. Moreover, it has been shown that the G protein-coupled receptor OGR1 (GPR68)

responds to mechanical stimuli and to protons via the PLC/IP3 pathway (Iliff, AJ & Xu, XZS, 2018; W.-C. Wei et al., 2018).

To sum up, for the above sensorial neurons, with ionotropic channels of the OTOP, TRP, ASIC type or metabotropic

channels of the GPCR type, protons are essential to increase the cytosolic Ca2+ concentration. For all these cases it is

therefore possible to find a response with reference to the criticism advanced by Deng (2017), according to which the

Hodgkin-Huxley theory does not explain the origin of firing. The response is: Protons, inducing with Ca2+ the initial

depolarization steps, via proton influx and/or proton-induced calcium influx, may be at the origin of firing. Scheme 1

provides a comprehensive, simplified representation of the mechanisms of proton action at the cellular level. Orange-

colored arrows represent the increasing depolarization.

2.5. Synaptic transmission of the impulse

Neurotransmitters include compounds, shown in Table 1, with an ester, anhydride or acid-type structure that can therefore

generate protons. Below, four fundamental neurotransmitters are considered, released in the ribbon-type synapses by

vesicle exocytosis: ACh, ATP, GABA and Glu. ACh is an ester, ATP is a phosphoanhydride, GABA and Glu are amino

acids. It is worth clarifying something regarding the latter: glutamate is the name given to a neutral salt and this can lead

to confusion. In fact, for the acid strength GABA and Glu are very similar amino acids: they have respectively 4.0 and 4.3
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pKa. For that reason, in vesicles where the pH is acidic (Anderson & Orci, 1988; Egashira et al., 2016; Fuldner, HH &

Stadler, H, 1982; Michaelson, DM & Angel, I, 1980; Miesenbock, G & De Angelis, DA, 1998), they are both partially

undissociated, in the protonate form; therefore, for the sake of coherence, like GABA, Glu should be called acid

glutamate. When they are released in a neutral or slightly alkaline environment, such as the synaptic cleft in the static

state, these undissociated acid molecules tend to dissociate, each in its respective anion and a proton, as shown in Table

2.

VESICLE LUMEN  SYNAPTIC CLEFT

acid glutamate ⇌ glutamate- + H+

γ-aminobutyric acid ⇌ γ-aminobutyrate- + H+

Table 2. Protonated and deprotonated

states of acid neurotransmitters

Therefore, it is evident that vesicle exocytosis produces inter-synaptic acidification (Ahdut-Hacohen et al., 2004; DeVries,

2001; Kolen et al., 2023; Miesenbock, G & De Angelis, DA, 1998; Palmer et al., 2003; Soto et al., 2018; Uchitel et al.,

2019) through the release of protons due to the acid content of vesicles and that the two acid neurotransmitters Glu and

GABA may be, in glutamatergic or respectively GABAergic vesicles, the principal source of the protons. The importance

of this source is shown by the fact that the organism consumes energy to recycle the deprotonated Glu and GABA in the

vesicles sufficiently rapidly to protonate and reuse them (Eriksen et al., 2016; Marx et al., 2015; Pathak et al., 2015;

Pulido, C & Ryan, TA, 2021).

ATP is an important signalling molecule (Burnstock, 2020; Dunn & Grider, 2023) as well as being a fundamental source of

cellular energy, produced by mitochondria and other cellular structures (Morelli et al., 2020). Unlike Ca2+, its concentration

is high inside the cell and low outside. As an extracellular neurotransmitter, ATP can be released, or co-released from

synaptic vesicles and activates two families of purinergic receptors, P1 and P2, for adenosine and ATP/ADP, respectively

(Burnstock, 2020). The hydrolysis of ATP produces energy, ADP and acid phosphate, which in turn releases a proton.

Similarly, one more step can lead to AMP. The products of hydrolysis can have a modulatory effect on retinal synapses

(Kreitzer et al., 2023; Vroman et al., 2014) or, if in excess, cause inflammation and brain disorders (Di Virgilio et al., 2023;

Dias et al., 2023; Vultaggio-Poma et al., 2022).

Regarding the ACh, the protons are released by the acetic acid produced by the hydrolytic split of the ester bond by the

cholinesterases: acetylcholinesterase and butyryl-cholinesterase. The reaction is very rapid and produces choline and

acetic acid. For a long time, it was believed that the acetic acid and choline, constituting the ACh, were neurologically

inactive molecules. It is still believed that the activity of ACh concerns the entire molecule because the limited use of

anticholinesterases inhibits the response in direct proportion to the inhibitor dose and the response increases with the

accumulation of ACh (Malik, 1970). From this standpoint, cholinesterases have the sole function of rapidly eliminating the

ACh, after its action. Today, we know that both constituents, choline and acetic acid, carry out a specific neurologically

significant action (Mike, A et al., 2000; Wang et al., 2011) and that acetylcholinesterase may be indispensable for the
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action of ACh (Fillafer et al., 2021; Fillafer & Schneider, 2016). In addition, it has been posited that cholinergic

transmission is due to the protonation of the postsynaptic membrane, caused by the acetic acid derived from the

hydrolysis of ACh (Fillafer et al., 2021).

If the hypothesis that ACh can also act via its constituents were confirmed, it would be easier to clarify a number of

questions that have been perplexing for some time. In addition, the fact that the four neurotransmitters ATP, ACh, Glu and

GABA can release protons explains the observation of Soto et al. regarding co-release (Soto et al., 2018), as cited in the

introduction.

The protons released by Glu, GABA, ATP or ACh acidify the inter-synaptic space and can activate acid-sensitive

receptors at the postsynaptic termination together with specific receptors for Glu, GABA, ATP and ACh. There are

numerous proton-sensitive receptors in the postsynaptic termination (Holzer, 2011), both ionotropic such as ASICs

(Cheng et al., 2018; Rook et al., 2021), TRPV1 (Kweon et al., 2015; Leffler, A et al., 2006; Ryu et al., 2007; Semtner et

al., 2007), CaV3 (Lipkin et al., 2021) and metabotropic, of the TASK type (Fan et al., 2022) and GPCRs (Sisignano et al.,

2021). The proton activation of the postsynaptic receptor can foster the opening of ionic channels (Boillat, A et al., 2014;

Henrich & Buckler, 2009), depolarization and the generation of a new action potential, enabling the impulse to continue

(Burke & Bender, 2019; Fillafer et al., 2021; Highstein et al., 2014).

Furthermore, many ligand receptors, specific for Glu, GABA and ACh, of the GPCR type, such as Group1 Glu (Suh et al.,

2018; Y.-G. Sun et al., 2016), GABAb (Negri et al., 2022), nicotinic α7 (J. R. King et al., 2018; Papke, RI & Lindstrom, JM,

2020) and muscarinic M1, M3 and M5 (Brown, 2019; Sam & Bordoni, 2022) receptors are activated by protons generated

by PLCs. Ionotropic GABAa are also activated by the PLCs (Nicholson et al., 2018). On the contrary, most ionotropic

postsynaptic receptors of glutamate are inhibited by the protons, particularly AMPARs (Ihle, Eva C. & Patneau, Doris K.,

2000), Kainate receptors (Mott et al., 2003) and NMDARs (Dravid et al., 2007; J.-B. Zhang et al., 2018).

It is evident that protons may act at the synaptic level in various ways and via a large number of receptors. However,

since they are highly mobile and reactive but have low specificity, it is logical to attribute to protons mainly the quantitative

aspects of the mechanisms of neurotransmission. Whilst the qualitative aspects could be modulated by variations in the

frequency, intensity and duration of the proton impulse, by a parallel series of events such as variations in the

concentration of other ions, the type of other neurotransmitters involved, the receptors activated, their interrelations and

their responses. In line with the general principle of co-release and co-transmission (Hunt et al., 2022; Svensson et al.,

2019).

Scheme 2 provides a comprehensive, simplified representation of the possible processes of proton action at the synaptic

level. Orange-colored arrows represent the increasing depolarization.

3. Conclusions

The results of the numerous experimental works cited in this review, taken together, provide an answer to the dual
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objective of the work and support the hypothesis that protons, with Ca2+ ions, may play a fundamental role in both the

generation and the biochemical transmission of the nerve impulse. Protons are small, charged particles that are very

mobile and can have many, different endogenous sources. At the cellular level, the transient and localized increase in

protons and Ca2+ concentrations can activate Na+ and K+ channels and promote depolarization thus generating the action

potential. Likewise, at the synaptic level protons and Ca2+ can activate post-synaptic channels and generate action

potential.

These conclusions open a new perspective on neurotransmission; nevertheless, much remains to be discovered. In

particular, two relevant questions require experimental answers for a better evaluation of the role of protons in

neurotransmission: a) Are phosphomonoesterases able to release protons and consequently increase the Ca2+

concentration in physiological conditions? b) Are cholinesterases essential for the action of ACh, i.e. are the protons

released by cholinesterases essential for the action of ACh? The tests to answer the two questions do not seem very

difficult, especially the first one. Hopefully, somebody will perform them.

Often, experimental studies on ionic neurotransmission consider only a single step of the process of neurotransmission

and a single ion. This leads to partial knowledge and the need to connect them like dominoes. For better knowledge, at

least two ions should ideally be determined at the same time, in subsequent steps. The interdependence of protons and

Ca2+ ions due to their chemical properties suggests always measuring their concentration together. The articles of

Swietach et al. (P. Swietach, 2013) and Liu et al. (X. Liu et al., 2020) can be useful examples for planning experimental

works on the reciprocal roles of protons and Ca2+ ions in neurons. At present, several fluorescent probes are available to

measure organellar pH (Freeman et al., 2023) and photostimulation techniques are often used to study Ca2+ (Moccia et

al., 2023). Mathematical models can also provide valuable help (J. King et al., 2021).

To conclude, the role of protons in neurotransmission may be more important than has so far been believed. New studies

on the topic could lead to fundamental discoveries and improvements in therapeutic agents for the treatment of

neurological diseases.
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