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Protons are gaining increasing attention as neurotransmitters due to their
extraordinary abilities to rapidly transfer electrical charge, mobilize cellular
calcium and modulate ion channels. How all this is possible is currently the
subject of in-depth studies and discussions concerning not only
neurophysiology, but also biological materials for artificial intelligence.
This review describes some biochemical mechanisms by which protons, in
combination with calcium, can initiate firing in sensory neurons and

transmit impulses across synapses, thus supporting the action of Na+ and K+

ions shown by Hodgkin and Huxley[1]. Furthermore, mechanisms are put
forward concerning how many hydrolases and neurotransmitters,
particularly glutamate, gamma-aminobutyric acid, adenosine triphosphate
and acetylcholine, are able to generate protons.
The results of the numerous experimental works taken into consideration
indicate that protons can play a fundamental role both in the generation and
in the transmission of the sensory nerve impulse.
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1. Introduction

The importance of Na+ and K+ ions for nerve
transmission was demonstrated by eighteen years of

experimental work by Hodgkin and Huxley[1]. Other

ion, such as H+ and Ca2+, were studied less, although

Hodgkin and Huxley noted the significant role of Ca2+

as far back as 1949[2]  (Fig.7). Subsequent studies

confirmed the fundamental role of Ca2+ in proper

transmission[3][4][5][6][7][8][9]. Dysfunctions in Ca2+

homeostasis and abnormal Ca2+ concentration levels
characterize the pathological states of acidosis and

alkalosis. Acidosis and alkalosis are consequences of

opposite, extended changes in H+ concentration, i.e.

in pH, and can cause neurodegenerative diseases[5][10]

[11]  and cancer[12][13][14]. In fact, acidification in
acidosis depletes cellular calcium stores and depleted

stores release a reduced quantity of Ca2+ in response
to stimuli. On the contrary, in alkalosis, calcium
stores are overloaded and this can produce an
excessive response. Only a steady-state cell with
adequately full calcium stores can respond with the

right release of Ca2+ to the stimulus, thus transducing
the signal correctly. The pathological consequences of
poor/excessive responses to stimuli in
acidosis/alkalosis are beyond the scope of this review;
here the focus is on the physiological chemical
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mechanisms of neurotransmission, which underlie

the rapid and highly localized transient changes in H+

and Ca2+ concentrations, triggered by stimuli.
Unfortunately, the in vivo analytical quantification of

H+ and Ca2+ ions is very difficult, as they can interact
with a multitude of atomic and molecular species.
Moreover, fast nerve impulses can last no more than

10 ms[15][16], intracellular pH transients and calcium

spikes less than 2 ms. Consequently, H+ and Ca2+ ions

require sophisticated instruments for their study[17]

[18][19].

The interest in H+ ions, identified below with the
current terminology as “protons”, picked up after

1980[20][21][22]  and particularly with the technical

progress of the last 25 years[17][18][19][23].

Protons are tiny ionic particles that in an aqueous
environment are acidic and highly mobile, able to
rapidly transfer positive charges and to temporarily

modify pH, Ca2+ concentration, electrical potential
and the protein structure, as a result activating
numerous receptors. Due to these extraordinary
chemical and physical properties they are used in the
preparation of organic electro-conductive

materials[24][25]  and are attracting increasing

attention as neurotransmitters[26][27][28][29][30][31]

[32][33][34][35][36][37][38]. Protons have been shown to

have an essential role at the synaptic level[39][40][41]

[42][35]  and it has been posited that they are

responsible for conduction in axons[30]. Some authors
have also posited a significant role in the transmission
and modulation of the signal in the nervous system

generally[43][44][32][45]. However, the endogenous
sources of the protons have yet to be determined.
There are four candidates: Na-H exchangers, V-
ATPases, carbonic anhydrases and AE3 chloride-

bicarbonate exchangers[46][32][47][38], but they

appear to be insufficient[46]. Specifically, Soto and

colleagues[32] rightly observe: “A problem of classifying
protons as neurotransmitters is related to the fact that its
regulated release is always a co-release with classical
neurotransmitters”. In addition, some criticisms have
been levelled against the theory of Hodgkin and
Huxley; for example, it does not explain the origin of

the firing of neurons[48]. These problems could be
overcome more simply if neurotransmitters and

second messengers[49]  were included among the
possible sources of protons, given that these

molecules can generate protons, i.e., new mobile
charges.

The double purpose of this review is: 1) to highlight
several endogenous sources of protons, which have so
far been overlooked; 2) to suggest some biochemical
pathways for sensory impulse initiation/transmission

that can be activated by protons and Ca2+ ions.
Specifically, subsection 2.3 lists in Table 1 some
important enzymatic proton sources for cell
signalling. Subsection 2.4 describes how protons are
able to trigger the depolarization of sensorial neurons
by directly opening ionotropic channels or activating
GPCR receptors, via PLC/IP3 and the mobilization of

Ca2+, thereby contributing to the generation of the
action potential and the exocytosis of the vesicles.
Subsection 2.5 describes the mechanisms by which
neurotransmitters in the vesicles, such as glutamate
(Glu), gamma-aminobutyric acid (GABA), adenosine
5’-triphosphate (ATP) and acetylcholine (ACh), are
able to become the sources of protons, generating
them and, via the protons, fostering the transmission
of the impulse through the synaptic cleft to the
postsynaptic termination and beyond.

2. Results and Discussion
A review and critical assessment was made of the
scientific publications dealing with the topic between
01.01.1943 and 31.12.2023, all available online.

2.1. Properties of protons

With an atomic mass about 23 times lower than
sodium and a radius of about 0.08 nm, the proton is
the smallest and most mobile ion, despite the
limitations of its solvation structure, thanks to its

diffusion coefficients, in bulk water[50]. In its
hexahydrate form proton has a radius of about 0.25

nm against 0.95 nm of Na+. It diffuses faster along

and across membranes than in the cytoplasm[50]. The
level of proton permeability across the phospholipid
membrane is tightly controlled and depends on the

lipids and proteins in the membrane[51][52][53]. There
are several different routes for proton permeation, via
both passive and active transport. Due to different
experimental conditions, the results of many existing
studies are inconsistent, however, in most
measurements the proton permeability was ≥ that of

Na+[54]. Studies with weak acids on artificial vesicles
revealed that protons diffuse more rapidly than other
ions through lipid bilayers, mainly in the

undissociated acidic form[55][56]. Alternatively, in
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living cells, protons can cross the plasma membrane
much more rapidly through specific channels, such as
voltage-gated proton channels (Hv1), gramicidin A

channels, and mutated aquaporins[57][51]. Also, the
existence of CO2-permeable aquaporins has been

proved, but the permeation mechanism of CO2

through aquaporins is not yet resolved[58]. Carbonic
anhydrases, which have a fundamental role in proton
generation from CO2 in the whole organism, including

brain[44], could be less available with regards to

aquaporins[58]. Besides these routes, active
transporters such as pumps and exchangers can drive

protons across the plasma membrane[59][44].

The elemental charge of the proton is the same as for

other individual monovalent cations, at 1.602 x 10-19

C. Anyway, protons can transport the charge much

more quickly[60][61], via proton-hopping[62][50]. In
addition to interacting with water and the three
channels mentioned above, protons can

modulate[63] a large variety of channels and receptors.
Such as Voltage Gated Calcium Channels (VGCC/CaV)
[64][65], Store Operated Calcium channels (SOC)[66],

calcium-activated potassium channels (KCa)[67][68],

inward rectifier potassium channels (Kir)[69][70],

TWIK-related acid-sensitive K+ channel (TASK)[71],

proton gated Acid Sensing Ion Channels (ASIC)[72][73]

[45],multimodal Transient Receptor Potential

channels (TRP)[74][75], Pannexin 1 channels (Panx1)
[76], G-protein Coupled Receptors (GPCR)[77]  and

P2X2 purinergic receptors[78]. Furthermore, GLIC
channels in prokaryotes are proton-gated. The
interaction depends on the species, the extracellular
or intracellular position of the protons, their

concentration and the type of channel[79]. Many
channels, including ASIC and TRPV1, mainly trigger

activation; others, such as VGCC[80], Panx1[81], and

TRPV5[82], have a control or inhibitory function. X-
ray crystallography and cryo-electron microscopy
have revealed the structure of many ion channels in
the inactivated/open state and, in some cases, the

amino acid residues involved in gating[83]. However, a
knowledge of the structures of the intermediate states
at the atomic level is required in order to better
understand the origin of the movement of charges in

the gating mechanism[84]. Numerous studies on
proton mobility prove that protons can move and
interact in very short times with several chemical
players before neutralization. Therefore, the opinion

that the variations in proton concentrations are
physiologically negligible because they are quickly
neutralized is inexact.

2.2. The H+/Ca2+ correlation

It is known that both Ca2+ ions and protons are
ubiquitous in organisms, at concentrations that are

strictly correlated[85][86][87]. As mentioned in the
introduction, a widespread lasting increase in their
concentration produces the pathological condition

known as acidosis[88], whilst a local and temporary
increase is used currently by cells as a signal, in

physiological conditions[44][32][38]. In comparison

with proton and Na+ ion, Ca2+ has a higher atomic
mass (40 Da), carries a double positive charge and
possesses much less mobility. In cells, most calcium is
normally bound and the cytosolic concentration of

free Ca2+is very low. Its unique chemical
characteristics have allowed calcium to become a key

element in  cellular signalling[89]. The correlation

between protons and Ca2+ ions is fundamental for the
transmission of the signal and depends on the high
degree of solubility in an acid environment of
calcium-buffering molecules. In steady cells, most

calcium is bound within Ca2+ buffers, which are either

stationary or mobile[90]. When the stimulus reaches
the cell membrane activating an acidifying enzyme,
such as a lipase or an esterase, the enzymatic action
produces protons and hence locally and temporarily

lowers pH[86]. The acidity quickly dissolves part of the

Ca2+ buffers and Ca2+ can therefore pass into the

solution, producing calcium spikes[86], of intensity
and duration proportional to the quantity of protons

released[91][92][93][87]. It has been calculated that in
mitochondria a fall of one unit of pH produces a 100-

fold increase in the concentration of Ca2+[94].
Similarly, protons produce the release of other

bivalent and trivalent ions, such as Zn2+, Mg2+, or

Fe3+ and Mn3+. The intracellular increase in proton
concentrations produced by esterases and lipases can
transiently affect the structures of channels and
pumps, by modifying their conformation and action.
Clearly, the acidifying power of lipases and esterases,
including phosphatases, is a very important
characteristic that allows the transformation of the
chemical signal into transient electrical charges and
the continuation of the signal both through the

release of Ca2+ from cellular stores and through the

influx of extracellular Ca2+. However, scientific
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publications have almost entirely ignored this
characteristic. The existence in biological membranes
of voltage-sensing phosphatases (VSP) that produce
the opposite transformation from an electrical signal

to a chemical signal[95] may not be coincidental. This
allows us to argue that protons are at the basis of the
transformation of the signal from chemical to
electrical and vice versa. The old debate between
supporters of chemical versus electrical

transmission[96]  appears restrictive, because protons
possess both capabilities.

2.3. Endogenous sources of H+ ions, overlooked
until now

In two prior articles, we have described how protons
may be generated in different cells by second

messengers with the chemical structure of an ester or
anhydride, such as IP3, ATP, NAADP, cADPR, cAMP or

cGMP, by the hydrolytic action of specific enzymes[97]

[86]. The hydrolysis of an ester or anhydride produces
an acid, in most cases a phosphoric acid derivative,
which can rapidly dissociate, releasing protons. Table
1 provides some examples of lipases and esterases and
the acids they produce, which can solubilize calcium
at the cellular level. Schematic representations of the
reaction are available in many cases, for example for

ATP (Feng, equation 5)[98], IP3 (Huang,

Supplementary information, Fig.S1)[29], cAMP

(Barbosa, Fig.3)[99]  and cGMP (Rybalkin Fig.1)[100].
However, it is not easy to find the complete
representation, because most texts inexplicably fail to
mention protons. Worse yet, the names phosphate and
phosphoric acid are often used interchangeably.
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enzyme substrate acid product reference

phospholipase A2 PC arachidonic acid Sun[101]

phospholipase C PIP2 acid IP3 Molinari, Fig.1A[97]

phospholipase D PC phosphatidic acid Cazzolli[102]

ecto-ATPase ATP ADP + acid phosphate Kreitzer[103] 

phosphodiesterase cAMP acid AMP Delhaye[104]

phosphodiesterase cGMP acid GMP  Delhaye[104]

cADPR cyclase cADPR acid ADPR Young[105]

VSPs phosphoinositides acid inositol phosphate Okamura[95]

inositol 5-phosphatase IP3 not yet identified* Ooms[106]

S1P phosphatase S1P not yet identified* Wollny[107]

alkaline phosphatase NAADP not yet identified* Schmid[108]

acetylcholinesterase ACh acetic acid Fillafer[40]

Table 1. Examples of lipases and esterases, as possible sources of protons and Ca2+ spikes

*See the discussion in the section below.
Abbreviations: PC, phosphatidylcholine; PIP2,

phosphatidylinositol 4,5-bisphosphate; IP3, inositol

1,4,5-trisphosphate; ATP, adenosine 5’-triphosphate;
cAMP, cyclic adenosine monophosphate; cGMP, cyclic
guanosine monophosphate; cADPR, cyclic adenosine
diphosphate ribose; VSP, voltage-sensing phosphatase;
S1P, sphingosine 1-phosphate; NAADP, nicotinic acid
adenine dinucleotide phosphate; ACh, acetylcholine.
 

The products of enzymatic hydrolysis, listed in the
third column of Table 1, are acidic and can therefore
release protons, by dissociation. The ability of an acid

to generate protons and consequently Ca2+ spikes
depends on its dissociation constant (Ka): the higher
the Ka, the stronger the acid and the number of
dissociated protons. Dissociation is also largely
influenced by environmental pH and the pKa
corresponds to the pH value at which the acid is half
dissociated. Theoretically, all lipases and esterases
can generate protons, but only hydrolysis that
produces an acid with pKa lower than the cellular pH
will substantially release protons under physiological
conditions. The Drug Bank reports pKa 4.54 and 4.82
for acetic acid and arachidonic acid, respectively. The

three pKas of phosphoric acid are 2.1, 7.2, and 12.3. Its
partially esterified derivatives, such as phosphatidic
acid and the acids produced by hydrolysis of cyclic
nucleotides, have lower pKa1 and pKa2, since “the

replacement of a phosphoric acid hydrogen by a non-
acidic group leads to an increase in the acid

strength”[109].

Therefore, in physiological conditions,
phospholipases (i.e. PLA2, PLC, and PLD),
triphosphatases (i.e. ecto-ATPase) and
phosphodiesterases are acidifying enzymes, since
their acid derivatives have lower pKas than the
cellular pH. Numerous experimental studies support
this statement. Some doubts may arise about the
acidifying power of phosphomonoesterases
(phosphatases), due to the possible high pKa values of
their two products: the alcohol and the inorganic acid
phosphate. Phosphoric esters are stable compounds
and their spontaneous hydrolysis is very slow.
However, monoester monoanions with a typical
second pKa of 6-7 and dianions are relatively

reactive[110]  (Scheme 6 and respectively Scheme 5).
The reaction is a nucleophilic substitution SN2 (P)

which begins with the deprotonation of the
nucleophile (water) and proceeds through a transition
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state (TS) in which the phosphoryl group forms a

pentacoordinate intermediate[111]. This involves a

redistribution of charges and electrostatic effects[112],
with consequent stabilization of the TS. Alcoholic
leaving groups having pKa < 7 can promote the

reaction[111][110]  and release the proton after

hydrolysis[111][113]. The pH rate profiles for the
hydrolysis of phosphate monoesters showed
maximum rates at ≈ pH 4. Protein phosphatases such
as inositol phosphatase (EC 3.1.3.25) can enhance the

rate of hydrolysis by a factor of ≈ 1021[114]. They

generally use Zn2+ or Mg2+ as cofactors[115],[116]  (Fig
11, Fig 15 and Fig 16). These data taken together
suggest that the physiological hydrolysis of
phosphomonoesters can be acidifying, similar to
triesters and diesters. Unfortunately, experimental
confirmation is still lacking, as is the certain
identification of the acid products of the hydrolysis of
important monoesters, such as IP3, S1P and NAADP.

The acidifying power of phosphatases has so far been
studied in plant roots, soil microorganisms and

earthworms[117][118][119]  where the improvement of
calcium and phosphates solubility is important for
plant nutrition. For soils with pH around 6.0 a
decrease in pH was shown, specifically related to
phosphodiesterases and phosphomonoesterases

activity[117].  Unfortunately, the authors do not
measure the contribution of phosphodiesterases and
phosphomonoesterases separately.

2.4. Pre-synaptic transmission of the impulse
in sensory neurons

Protons can contribute to the generation and
transmission of impulses in sensory neurons via
biochemical mechanisms that differ in modality and

effects[120].

In the specific case of neurons sensitive to a sour
taste, it has been shown in mammals that protons can
directly cause firing by opening the OTOP1

channel[121][122][123].

“In response to acidic stimuli, the sour
receptor, OTOP1, conducts protons into the
cell cytosol. This changes the membrane
potential directly, and the change in
intracellular pH blocks KIR2.1 K+ channels,
which further depolarizes the membrane
potential. With sufficient depolarization,
voltage-gated Na+ channels open causing
a train of action potentials that open

voltage-gated calcium channels and lead

to neurotransmitter release”[124].

The pathway is more complex in the case of sensory
neurons with GPCR-type metabotropic receptors at
the distal termination of the axon. These are very

common in mammals[125][126] for the transmission of

visual stimuli[16], nociceptive stimuli[127], odor[128]

[129] and taste, limited to taste/flavour perceptions of

sweet, bitter, umami and kokumi[130][131][132]. In these
cases, the biochemical mechanism begins with the

activation of a phospholipase C (PLC)[133][134]  which
hydrolyzes the phosphatidylinositol (4,5)-
bisphosphate of the neuronal membrane. The reaction

for several enzyme isoforms is pH- and Ca2+-

dependent[135][136][137]. This means that the reaction

can be acidifying and autocatalytic[138], because the

hydrolysis produces IP3 and protons[29][97][139],

which in turn produce Ca2+ release[140][141][142][93]

[138], hence promoting a rapid increase in enzymatic
activity. The acidifying action has been confirmed

experimentally at the presynaptic termination[143]

[144][19].

The increase in cytosolic Ca2+ concentration, induced
by the direct proton influx or by the acidifying action
of PLC, can have a threefold contribution:

1. Solubilization of cytosolic Ca2+ buffers[86][93]

2. Ca2+ release from endoplasmic reticulum

stores[145]

3. Ca2+ influx by stimulation of the SOCs[146]

The latter is fundamental for neurotransmission,

since the influx of Ca2+ as well as the influx of protons
can constitute the first step of depolarization.

A second step may follow rapidly with the opening of:

low threshold VGCC/CaV channels[147][148][149]

[150] permeable to Ca2+

TRP[74][151][29][45]  and ASIC[152]  channels

permeable to Ca2+ and Na+[153].

These new influxes of Ca2+ and Na+ can further
promote depolarization. Moreover, the increase in

Ca2+ concentration in the cytosol modulates calcium-

activated potassium channels[154][155][156].

The above studies jointly demonstrate that protons,

together with Ca2+ ions, can start the process of
membrane depolarization not only in neurons
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sensitive to a sour taste, but also in many other
neurons with GPCR-type receptors. It is likely that the

three ions, H+, Ca2+ and Na+ contribute

cooperatively[157][158]  and to varying degrees to
depolarization until the threshold value is reached.

When the threshold value is exceeded Voltage Gated
Sodium Channels (NaV) open, generating the action

potential[159][1]. This produces the exocytosis of the
vesicles and the release of the neurotransmitters into

the synaptic cleft[160][15].

In the following repolarization phase the NaV

channels close and the Kv[161][1][162], KCa and Hv1

proton channels[57][163]  open enabling the efflux

respectively of the K+ ions and the protons leading to

the rebinding of Ca2+ and the return to static
conditions. Pumps and exchangers contribute to the

control of the entire process[5].

In the eye, the activation of GPCRs via the PLC/IP3

pathway occurs by means of the cells containing
melanopsin, whilst the cells of the retina containing
rhodopsin and the cells of the auricular cochlea follow

a different pathway, via PDE/cGMP[164][165]. In this
case, the protons are generated by the hydrolysis of
cGMP and the dissociation of acid glutamate, as
described below in subsection 2.5. The role of protons
in hair cell transmission is currently under

debate[166].

In relation to the sensory neurons that transmit
mechanical stimuli, it is believed that in mammals
these neurons generally respond via

mechanoelectrical channels[167]. The physical
stimulus induces the opening of ionic channels

enabling the influx of Ca2+, depolarization and the
generation of the action potential. The mechanisms

for the activation of the channels are not clear[168]. In

some cases, ASIC channels[169]  or GPCR

receptors[170]  are involved. Moreover, it has been
shown that the G protein-coupled receptor OGR1
(GPR68) responds to mechanical stimuli and to

protons via the PLC/IP3 pathway[171][172].

To sum up, for the above sensorial neurons, with
ionotropic channels of the OTOP, TRP, ASIC type or

metabotropic channels of the GPCR type, protons are

essential to increase the cytosolic Ca2+ concentration.
For all these cases it is therefore possible to find a
response with reference to the criticism advanced by

Deng[48], according to which the Hodgkin-Huxley
theory does not explain the origin of firing. The

response is: Protons, inducing with Ca2+ the initial
depolarization steps, via proton influx and/or proton-
induced calcium influx, may be at the origin of firing.
Scheme 1 provides a comprehensive, simplified
representation of the mechanisms of proton action at
the cellular level. Orange-colored arrows represent
the increasing depolarization.

2.5. Synaptic transmission of the impulse

Neurotransmitters include compounds, shown in
Table 1, with an ester, anhydride or acid-type
structure that can therefore generate protons. Below,
four fundamental neurotransmitters are considered,
released in the ribbon-type synapses by vesicle
exocytosis: ACh, ATP, GABA and Glu. ACh is an ester,
ATP is a phosphoanhydride, GABA and Glu are amino
acids. It is worth clarifying something regarding the
latter: glutamate is the name given to a neutral salt
and this can lead to confusion. In fact, for the acid
strength GABA and Glu are very similar amino acids:
they have respectively 4.0 and 4.3 pKa. For that

reason, in vesicles where the pH is acidic[173][174][175]

[176][177], they are both partially undissociated, in the
protonate form; therefore, for the sake of coherence,
like GABA, Glu should be called acid glutamate. When
they are released in a neutral or slightly alkaline
environment, such as the synaptic cleft in the static
state, these undissociated acid molecules tend to
dissociate, each in its respective anion and a proton,
as shown in Table 2.
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VESICLE LUMEN   SYNAPTIC CLEFT

acid glutamate ⇌ glutamate- + H+

γ-aminobutyric acid ⇌ γ-aminobutyrate- + H+

Table 2. Protonated and deprotonated states of acid neurotransmitters

Therefore, it is evident that vesicle exocytosis

produces inter-synaptic acidification[178][179][180][177]

[181][32][35]  through the release of protons due to the
acid content of vesicles and that the two acid
neurotransmitters Glu and GABA may be, in
glutamatergic or respectively GABAergic vesicles, the
principal source of the protons. The importance of
this source is shown by the fact that the organism
consumes energy to recycle the deprotonated Glu and
GABA in the vesicles sufficiently rapidly to protonate

and reuse them[182][183][184][185].

ATP is an important signalling molecule[186][187]  as
well as being a fundamental source of cellular energy,
produced by mitochondria and other cellular

structures[188]. Unlike Ca2+, its concentration is high
inside the cell and low outside. As an extracellular
neurotransmitter, ATP can be released, or co-released
from synaptic vesicles and activates two families of
purinergic receptors, P1 and P2, for adenosine and

ATP/ADP, respectively[186]. The hydrolysis of ATP
produces energy, ADP and acid phosphate, which in
turn releases a proton. Similarly, one more step can
lead to AMP. The products of hydrolysis can have a

modulatory effect on retinal synapses[103][81] or, if in

excess, cause inflammation and brain disorders[189]

[190][191].

Regarding the ACh, the protons are released by the
acetic acid produced by the hydrolytic split of the ester
bond by the cholinesterases: acetylcholinesterase and
butyryl-cholinesterase. The reaction is very rapid and
produces choline and acetic acid. For a long time, it
was believed that the acetic acid and choline,
constituting the ACh, were neurologically inactive
molecules. It is still believed that the activity of ACh
concerns the entire molecule because the limited use
of anticholinesterases inhibits the response in direct
proportion to the inhibitor dose and the response

increases with the accumulation of ACh[192]. From

this standpoint, cholinesterases have the sole
function of rapidly eliminating the ACh, after its
action. Today, we know that both constituents,
choline and acetic acid, carry out a specific

neurologically significant action[193][194]  and that
acetylcholinesterase may be indispensable for the

action of ACh[40][195]. In addition, it has been posited
that cholinergic transmission is due to the
protonation of the postsynaptic membrane, caused by

the acetic acid derived from the hydrolysis of ACh[40].

If the hypothesis that ACh can also act via its
constituents were confirmed, it would be easier to
clarify a number of questions that have been
perplexing for some time; first of all, why there are so
many different ACh receptors. In addition, the fact
that the four neurotransmitters ATP, ACh, Glu and
GABA can release protons explains the observation of

Soto et al. regarding co-release[32], as cited in the
introduction.

The protons released by Glu, GABA, ATP or ACh acidify
the inter-synaptic space and can activate acid-
sensitive receptors at the postsynaptic termination
together with specific receptors for Glu, GABA, ATP
and ACh. There are numerous proton-sensitive

receptors in the postsynaptic termination[196], both

ionotropic such as ASICs[169][72], TRPV1[75][197][198]

[199], CaV3[200]  and metabotropic, of the TASK

type[201]  and GPCRs[77]. The proton activation of the
postsynaptic receptor can foster the opening of ionic

channels[202][151], depolarization and the generation
of a new action potential, enabling the impulse to

continue[203][40][42].

Furthermore, many ligand receptors, specific for Glu,
GABA and ACh, of the GPCR type, such as Group1

Glu[204][205], GABAb[7], nicotinic α7[63][206]  and

muscarinic M1, M3 and M5[207][208]  receptors are
activated by protons generated by PLCs. Ionotropic

GABAa are also activated by the PLCs[209]. On the

qeios.com doi.org/10.32388/1XAQAQ.4 8

https://www.qeios.com/
https://doi.org/10.32388/1XAQAQ.4


contrary, most ionotropic postsynaptic receptors of
glutamate are inhibited by the protons, particularly

AMPARs[210], Kainate receptors[211] and NMDARs[212]

[213].

It is evident that protons may act at the synaptic level
in various ways and via a large number of receptors.
Scheme 2 provides a comprehensive, simplified
representation of the possible processes of proton
action at the synaptic level. Orange-colored arrows
represent the increasing depolarization.

2.6. Understanding the modes of action in
depth is difficult

Fully understanding how protons can perform their
neurotransmission function in each of the cases
described in subsections 2.4 and 2.5 is a formidable
challenge. The major difficulty is due to the high
reactivity of protons, which allows very short reaction
times with many different chemical species. While
protons are highly mobile and reactive, they have low
specificity. Therefore, it is logical to attribute to
protons mainly the quantitative aspects of the
mechanisms of neurotransmission, for example the
changes in electrical charge and in the concentration
of Ca2+. However, it cannot be ruled out that protons
may also modulate some qualitative aspects through
variations in the frequency, intensity and duration of
the proton impulse, or through a parallel series of
events such as variations in the concentration of other
ions, the type of other neurotransmitters involved,
the receptors activated, their interrelations and their
responses. In line with the general principle of co-

release and co-transmission[214][215].

3. Conclusions
The results of the numerous experimental works cited
in this review, taken together, provide an answer to
the dual objective of the work and support the

hypothesis that protons, with Ca2+ ions, may play a
fundamental role in both the generation and the
biochemical transmission of the nerve impulse.
Protons are small, charged particles that are very

mobile and can have many, different endogenous
sources. At the cellular level, the transient and

localized increase in protons and Ca2+ concentrations

can activate Na+ and K+ channels and promote
depolarization thus generating the action potential.

Likewise, at the synaptic level protons and Ca2+ can
activate post-synaptic channels and generate action
potential.

These conclusions open a new perspective on
neurotransmission; nevertheless, much remains to be
discovered. In particular, two relevant questions
require experimental answers for a better evaluation
of the role of protons in neurotransmission: a) Are
phosphomonoesterases able to release protons

and  consequently increase the Ca2+ concentration in
physiological conditions? b) Are cholinesterases
essential for the action of ACh, i.e. are the protons
released by cholinesterases essential for the action of
ACh?  The tests to answer the two questions do not
seem very difficult, especially the first one. Hopefully,
somebody will perform them.

Often, experimental studies on ionic
neurotransmission consider only a single step of the
process of neurotransmission and a single ion. This
leads to partial knowledge and the need to connect
them like dominoes. For better knowledge, at least
two ions should ideally be determined at the same
time, in subsequent steps. The interdependence of

protons and Ca2+ ions due to their chemical properties
suggests always measuring their concentration

together. The articles of Swietach et al.[87] and Liu et

al.[152]  can be useful examples for planning
experimental works on the reciprocal roles of protons

and Ca2+ ions in neurons. At present, several
fluorescent probes are available to measure organellar

pH[23]  and photostimulation techniques are often

used to study Ca2+[7]. Mathematical models can also

provide valuable help[216].

To conclude, the role of protons in neurotransmission
may be more important than has so far been believed.
New studies on the topic could lead to fundamental
discoveries and improvements in therapeutic agents
for the treatment of neurological diseases.
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