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About 10 years ago, a substantial paradigm shift, both in some statistical circles and, even more so, in social sciences

and psychology, led to a strong discouragement or even a full prohibition of the use of statistical testing by a number of

applied journals (Wasserstein and Lazar, 2016; Wasserstein et al., 2019). Even though the ASA statement itself was

rather balanced and encouraged the use of effect sizes with their confidence intervals, statistical inference itself, and

therefore techniques such as confidence intervals or Bayesian methods, was also forbidden in some journals, and only

descriptive statistics were permitted (Trafimow and Marks, 2015).

To oppose this prohibition, the author demonstrates that, for small to medium sample sizes, the probability of obtaining

non-zero effect sizes (ES) is rather high. Thus, it is proposed to use the p-values for the test of ρ = 0 based on the Fisher’s

z-transformed zr scores to filter the obtained effect sizes.

The article is aimed at applied researchers who lack sophisticated statistical knowledge. To demonstrate how this works,

the author simulated Pearson correlation coefficients under the null hypothesis of no correlation ρ = 0 for sample sizes 

n = 4, 30, 100, 1000 and 2000. For each simulation, he calculated the number of sample correlation coefficients r ≥ 0.1

 (J. Cohen’s threshold for small ES). These values of r ≥ 0.1 are termed to be of ‘Substantive Significance’.

These simulations demonstrate that the number of ES above 0.1 that also reach statistical significance at the 5%-level is

not very large even for n = 4 and quickly decreases for larger sample sizes, as does the number of effect sizes above 0.1

itself, whereas the empirical significance level of the test of ρ = 0 does not depend on sample size.

I strongly agree with the author that the idea of cancelling statistical inference is hugely detrimental to the development of

science. However, I suggest some corrections and improvements to the content of this article.

Fisher’s z-transform transforms Pearson’s correlation coefficient r to an approximately normal z-score 

z(r) = ln((1 + r)/(1 − r))/2. For large enough sample sizes, z(r) has an approximately normal distribution with the mean 

ln((1 + ρ)/(1 − ρ))/2 and the variance 1/(n − 3). These variances, for the sample sizes used in simulations, are provided in

row 2 of Table 1. Thus, when n = 4, the variance is rather large at 1, explaining the large scatter of the r values, including

their large proportion above 0.1. However, the variance quickly decreases with n, reaching 0.01 for n = 100 and 0.001 for 

n = 1000. Therefore, the distribution of z-scores becomes tightly concentrated around its mean value of zero, and the
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values above 0.1 practically disappear. This is the intuition behind the findings from the simulations.

In the discussion, the author claims that ‘no statistical theory predicts the percentage of effect size errors to expect under

a true null hypothesis’. However, it is rather straightforward to calculate the probabilities of finding the r values above 0.1

for z-scores: P( | r | ≥ 0.1) = P( |z(r) | ≥ |z(0.1) | ) = 2Φ( − z(0.1) ∗ √n − 3), where Φ( ⋅ ) is the standard normal distribution

function and z(0.1) = 0.1003353.  I calculated these probabilities for the sample sizes in question. These probabilities and

their empirical counterparts from simulations by the author are provided in the lowest two rows of Table 1 and demonstrate

good agreement.

Sample size 4 30 100 1000 2000

Frequency∗  ( | r | ≥ 0.1) 4428 2983 1556 8 0

Variance of z(r) 1.0000 0.0370 0.0103 0.0010 0.0005

Probability∗ ∗  P( | r | ≥ 0.1) 0.9201 0.6021 0.3231 0.0015 7.33e − 06

Empirical fraction∗  ( | r | ≥ 0.1) 0.8945 0.6026 0.3143 0.0016 0

Variances, probabilities and empirical fractions for simulated r values.

∗from simulations by E. Komaroff, 4950 repetitions each; ∗ ∗using normal approximation.

 

Overall, the author’s suggestion of using the p-values to filter out non-significant values of the effect sizes makes perfect

sense. However, there is an equivalent, well-established, and more informative option. This option is to report any effect

sizes with accompanying confidence intervals. An equivalence between a p-value of a test at a significance level α and a

corresponding confidence interval at 1 − α confidence level is well known. Non-significant p-values p > 0.05 correspond to

95%-confidence intervals which cross zero, and the p-values below 0.05 to those which do not. A confidence interval will

also provide additional information on its width.

To summarise, I urge all applied researchers to report any effect sizes with their confidence intervals, and I also urge all

Editorial Teams to include the reporting of confidence intervals in their editorial guidelines.
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