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In the past over two decades, very fruitful results have been obtained in information theory in the

study of the Shannon entropy. This study has led to the discovery of a new class of constraints on the

Shannon entropy called non-Shannon-type inequalities. Intimate connections between the Shannon

entropy and different branches of mathematics including group theory, combinatorics, Kolmogorov

complexity, probability, matrix theory, etc, have been established. All these discoveries were based on a

formality introduced for constraints on the Shannon entropy, which suggested the possible existence

of constraints that were not previously known. We assert that the same formality can be applied to

inequalities beyond information theory. To illustrate the ideas, we revisit through the lens of this

formality three fundamental inequalities in mathematics: the AM-GM inequality in algebra, Markov’s

inequality in probability theory, and the Cauchy-Scharwz inequality for inner product spaces.

Applications of this formality have the potential of leading to the discovery of new inequalities and

constraints in different branches of mathematics.
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1. Introduction

Inequality de�ned on the ordered �eld of real numbers is one of the most fundamental concepts in

mathematics. In particular, a universally quanti�ed inequality is one that holds for all members in the

domain of discourse satisfying certain conditions. Examples are

�. For all  ,  .

�. For all  ,  .

The latter may simply be written as “If  , then  ”. Essentially, any inequality in mathematics

that bears a name is a universally quanti�ed inequality, for example, the AM-GM inequality, the Cauchy-

Schwarz inequality, Jensen’s inequality, and Minkowski’s inequality. The list goes on and on.

Qeios

x ∈ R ≥ 1 + xex

x ∈ {y ∈ R : y ≥ 5} x ≥ 4

x ≥ 5 x ≥ 4
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The main contribution of this paper is to introduce a framework that gives a geometrical interpretation

of such inequalities. This framework has its origin in information theory [1], speci�cally in the study of

inequalities on the Shannon entropy (or simply entropy when there is no ambiguity) in the late 1990s [2].

This study has led to the discovery of so-called non-Shannon-type entropy inequalities, namely

inequalities on the Shannon entropy beyond what were known before then (collectively called Shannon-

type entropy inequalities). Subsequently, intimate relations between the Shannon entropy and different

branches of mathematics including group theory, combinatorics, Kolmogorov complexity, probability,

matrix theory, etc, have been established. Inspired by this development, there has also been a wave of

pursuit of new inequalities on the von Neumann entropy, a generalization of the Shannon entropy to the

quantum case.

We assert that this geometrical framework which has led to very fruitful results in the study of entropy

inequalities can also be applied to general universally quanti�ed inequalities. In this paper, we will

develop the concepts starting with a very simple example, and then apply the concepts to increasingly

elaborate examples. The results are presented in a logical order instead of the chronological order that the

results were obtained.

The rest of the paper is organized as follows. In Section  2, we discuss the well-known inequality of

arithmetic and geometric means (AM-GM inequality) in algebra, and show that the AM-GM inequality

completely characterizes the relation between the AM and GM of a �nite collection of nonnegative

numbers. In Section  3, we discuss Markov’s inequality in probability theory. We show that for a

nonnegative random variable    and a nonnegative value  , Markov’s inequality essentially completely

characterizes the relation between the two quantities    (expectation of  ) and  . In

Section 4, we discuss the Cauchy-Schwarz inequality for real inner product spaces. We show that for two

vectors  , where    is a real inner product space, the Cauchy-Schwarz inequality  completely

characterizes the relation among the three quantities  ,  , and   if and only if   (the

dimension of  ) is at least 2. Nevertheless, there exists no inequality on the quantities  ,  , and 

 that holds for all inner product space   (regardless of the value of  ) which is not implied by

the Cauchy-Schwarz inequality. The results in Sections 2 to 4 are new to our knowledge. In Section 5, we

give an exposition of the study on entropy inequalities in information theory since the late 1990s. We also

brie�y discuss the relations between the Shannon entropy and network coding, conditional

independence of random variables, �nite groups, positive semi-de�nite matrices, Kolmogorov

complexity, and quantum mechanics. The paper is concluded in Section 6.

T c

E[T ] T Pr{T ≥ c}

u, v ∈ V V

⟨u, u⟩ ⟨v, v⟩ ⟨u, v⟩ dim(V )

V ⟨u, u⟩ ⟨v, v⟩

⟨u, v⟩ V dim(V )
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2. The AM-GM Inequality

The inequality of arithmetic and geometric means, or the AM-GM inequality in brief, is elementary in

algebra. In this section, we use this very simple inequality as an example to illustrate the concepts we will

develop in this work.

The arithmetic mean and geometric mean of a �nite list of nonnegative numbers   are

and

respectively. The AM-GM inequality says that

For a collection of proofs of the AM-GM inequality, we refer the reader to [3]. Throughout this section, we

will use AM and GM to denote the arithmetic mean and the geometric mean of some �nite list of

nonnegative numbers, respectively.

Traditionally, the AM-GM inequality is interpreted as either a lower bound on the AM or an upper bound

on the GM. Here, we take a somewhere different view on the AM-GM inequality that will be elaborated in

the rest of the section.

For a �nite list of nonnegative numbers, the AM and GM are quantities of interest, and we are interested

in the relation between these two quantities. The AM-GM inequality is a characterization of this relation.

Since   for all  , we immediately have   and  . These inequalities come directly from

the setup of the problem. In fact, from    and  , we can obtain  . Therefore, 

 is redundant.

We now introduce a geometrical framework for understanding the relation between the quantities AM

and GM. Let    and    be the coordinates of  , the 2-dimensional Euclidean space, where    and 

 correspond to AM and GM, respectively. De�ne the region

where in the above,   and   correspond to   and  , respectively. See Figure 1 for

an illustration of  .

, , … ,x1 x2 xn

AM = ( + … + )
1

n
x1 xn

GM = ,⋅ … ⋅x1 xn
− −−−−−−−−√n

AM ≥ GM. (1)

≥ 0xi i AM ≥ 0 GM ≥ 0

GM ≥ 0 AM ≥ GM AM ≥ 0

AM ≥ 0

a g R2 a

g

Υ = {(a, g) ∈ : g ≥ 0 and a ≥ g}.R2

g ≥ 0 a ≥ g GM ≥ 0 AM ≥ GM

Υ
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Figure 1. The region   in   and an inequality   implied by   and  .

We now ask a very basic question: Are there constraints on AM and GM other than    and 

? As we will see, the answer to this question hinges on the next proposition.

Proposition 1. For any  , there exist   such that

i.e.,   and   are the AM and GM of the list of nonnegative numbers  , respectively.

Proof. Consider a �xed ordered pair  . Since  , we have   and  . Let

where    are unknowns. Here,    and    can be obtained by solving the above simultaneous

equations, which is elementary. Note that if  , then    in the above cannot be satis�ed, but

this is not the case since  . The solution to (2) is

Υ R2 f(a, g) ≥ 0 g ≥ 0 a ≥ g

GM ≥ 0

AM ≥ GM

(a, g) ∈ Υ x,y ≥ 0

a = and g = ,
x + y

2
xy−−√

a g x,y

(a, g) ∈ Υ (a, g) ∈ Υ g ≥ 0 a ≥ g

a = and g = ,
x + y

2
xy−−√ (2)

x,y ∈ R x y

g < 0 g = xy−−
√

(a, g) ∈ Υ

x = a ± and y = a ∓ ,−a2 g2
− −−−−−

√ −a2 g2
− −−−−−

√
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where    since  . Therefore,    and    are always real. Finally, it follows from 

 that   and   are always nonnegative. The proposition is proved. 

An ordered pair   is an achievable pair, or simply achievable,1 if   and   are respectively the AM and

GM of some �nite list of nonnegative numbers. The next theorem is a consequence of Proposition 1.

Theorem 1. An ordered pair   is achievable if and only if  .

Proof. Proposition  1 implies that every ordered pair    is achievable. On the other hand, if an

ordered pair    is achievable, then    where AM and GM are respectively the

arithmetic mean and geometric mean of some �nite list of nonnegative numbers. Therefore, 

 and  , i.e.,   and  , implying that  . Hence, an ordered

pair   is achievable if and only if  . The theorem is proved. 

Theorem  1 says that    is precisely the set of all achievable pairs, thus completely characterizing the

relation between the arithmetic and geometric means of a �nite list of nonnegative numbers. Since   is

de�ned by   (corresponding to  ) and   (corresponding to the AM-GM inequality), where

the former comes directly from the setup of the problem and can be regarded as given, we say that the

AM-GM inequality completely characterizes the relation between the AM and GM of a �nite list of

nonnegative numbers.

An inequality in the quantities AM and GM has the general form

where  .2 For example, if  , then (3) becomes the AM-GM inequality. Let

be the region in   induced by  . If (3) is satis�ed for all �nite lists of nonegative numbers, we say

that the inequality is valid.

Theorem 2. The inequality (3) is valid if and only if

Proof. We �rst prove the “if” part. Assume that (4) holds. Consider any �nite list of nonnegative numbers

and let AM and GM be the arithmetic mean and geometric mean, respectively. Then    is

achievable, and so by Theorem  1,  . Then by (4),  , implying that 

. This shows that the inequality (3) is valid.

− ≥ 0a2 g2 a ≥ g x y

≤ a−a2 g2− −−−−−
√ x y □

(a, g) a g

(a, g) ∈ R2 (a, g) ∈ Υ

(a, g) ∈ Υ

(a, g) (a, g) = (AM,GM)

g = GM ≥ 0 a = AM ≥ GM = g g ≥ 0 a ≥ g (a, g) ∈ Υ

(a, g) (a, g) ∈ Υ □

Υ

Υ

g ≥ 0 GM ≥ 0 a ≥ g

f(AM,GM) ≥ 0, (3)

f : → RR2 f(a, g) = a − g

= {(a, g) ∈ : f(a, g) ≥ 0}Rf R2

R2 f ≥ 0

Υ ⊂ .Rf (4)

(AM,GM)

(AM,GM) ∈ Υ (AM,GM) ∈ Rf

f(AM,GM) ≥ 0
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Next, we prove the “only if” part by contradiction. Assume that the inequality (3) is valid, i.e., 

 is satis�ed by all �nite lists of nonnegative numbers, but

Then there exists an ordered pair   such that  . Since  , by Theorem 1, 

 is achievable, which means that  , where AM* and GM* are respectively

the arithmetic mean and geometric mean of some �nite list of nonnegative numbers. In other words, we

have  , which is a contradiction to the assumption that 

 is satis�ed by all �nite lists of nonnegative numbers. The theorem is proved. 

Theorem 2 gives a complete characterization of all valid inequalities in AM and GM. Speci�cally, 

 is a valid inequality in AM and GM if and only if  , the region induced by  ,

is an outer bound on  . This is illustrated in Figure 1.

In Theorem 2, the set inclusion in (4) is equivalent to

Upon replacing the dummy variables   and   by AM and GM, respectively, the above becomes

meaning that any valid inequality in AM and GM is implied by the inequalities   and  .

Hence, we conclude that there exists no inequality in AM and GM other than these two inequalities. As

discussed, since the inequality    comes directly from the setup of the problem and can be

regarded as given, in view of (5), we say that the AM-GM inequality is sharp.

We end this section with a remark on the tightness of a valid inequality. Let   be a valid

inequality. By Theorem 2, the set inclusion in (4) holds. If    is tight, then 

 for some achievable pair  , which by Theorem 1 is in  . If the boundary of

the region   is equal to

then   is in   as well as on the boundary of  . This implies that the boundary of   touches

the region   at the point where   is tight, providing a geometrical interpretation of the tightness of a

valid inequality.

f(AM,GM) ≥ 0

Υ ⊄ {(a, g) ∈ : f(a, g) ≥ 0}.R2

( , ) ∈ Υa0 g0 f( , ) < 0a0 g0 ( , ) ∈ Υa0 g0

( , )a0 g0 ( , ) = (A ,G )a0 g0 M ∗ M ∗

f(A ,G ) = f( , ) < 0M ∗ M ∗ a0 g0

f(AM,GM) ≥ 0 □

f(AM,GM)) ≥ 0 Υ ⊂ Rf f ≥ 0

Υ

} ⇒ f(a, g) ≥ 0.
g ≥ 0

a ≥ g

a g

} ⇒ f(AM, GM) ≥ 0,
GM ≥ 0

AM≥ GM
(5)

GM ≥ 0 AM ≥ GM

GM ≥ 0

f(AM, GM) ≥ 0

f(AM, GM) ≥ 0

f( , ) = 0AM∗ GM∗ ( , )AM∗ GM∗ Υ

Rf

{(a, g) ∈ : f(a, g) = 0},R2

( , )AM∗ GM∗ Υ Rf Rf

Υ f ≥ 0
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As an example, the inequality   is equivalent to   with  . It is a

valid inequality because  . Moreover,    is tight for the list of nonnegative number, 0,

with  . Accordingly, the boundary of  , namely the set

touches the region   at the origin. This is illustrated in Figure 2.

Figure 2. An illustration of the region   for  .

3. Markov’s Inequality

In probability theory, Markov’s inequality asserts that for a nonnegative random variable    and any

�xed  ,

2AM ≥ GM f(AM, GM) ≥ 0 f(a, g) = 2a − g

Υ ⊂ Rf 2AM ≥ GM

( , ) = (0, 0)AM∗ GM∗ Rf

{(a, g) ∈ : 2a = g},R2

Υ

Rf f = 2a − g

T

c > 0

Pr{T ≥ c} ≤ ,
E[T ]

c
(6)
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where   denotes the expectation of  . Here,   and   are two quantities of interest for any

nonnegative random variable  , and we are interested in the relation between them. Markov’s inequality

gives a characterization of this relation.

Let    in (6) be �xed, and let    denote the probability distribution of  , i.e.,  . The

following is a proof of (6):

Then (6) is obtained by dividing both sides about by  . In the above, the inequality i) is tight if and only if

or

Note that although   can be strictly positive, it would not in any case make any contribution to

(7). On the other hand, the inequality ii) is tight if and only if

or equivalently,

If (6) is tight, i.e., i) and ii) are tight simultaneously, then   can only have two point masses, one at 0 and

the other at  , with

As a sanity check, for this distribution, from (8), we have

or

E[T ] T Pr{T ≥ c} E[T ]

T

c FT T (t) = Pr{T ≤ t}FT

E[T ] = td (t)∫
t≥0

FT

= td (t) + td (t)∫
0≤t<c

FT ∫
t≥c

FT

td (t)≥
i)
∫
t≥c

FT

c d (t)≥
ii)
∫
t≥c

FT

= cPr{T ≥ c}.

c

td (t) = 0,∫
0≤t<c

FT (7)

Pr{0 < T < c} = 0.

Pr{T = 0}

Pr{T > c} = 0,

Pr{T ≥ c} = Pr{T = c}. (8)

FT

c

Pr{T = 0} + Pr{T = c} = 1.

E[T ] = c ⋅ Pr{T = c} = c ⋅ Pr{T ≥ c},
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Thus (6) indeed holds with equality.

Note that the above discussion holds regardless of the value of    (which can be any number

between 0 and 1). Thus Markov’s inequality can hold with equality for all values of  .

We can obtain further insight on Markov’s inequality by means of a geometrical framework similar to the

one discussed in Section 2 for the AM-GM inequality. Continue to assume that   is �xed. Let   and 

  be real numbers such that    and    for some nonnegative random variable  .

Then from (6), we have  . Since   is a probability, we also have  . Now regard   and   as

the two coordinates in  , and de�ne the region

See Figure 3.

Figure 3. The region   in  .

For real numbers   and  , if there exists a nonnegative random variable   such that   and 

, we say that the ordered pair   is achievable (by the random variable  ). Note that

Pr{T ≥ c} = .
E[T ]

c
(9)

Pr{T ≥ c}

Pr{X ≥ c}

c > 0 p

m p = Pr{T ≥ c} m = E[T ] T

m ≥ cp p 0 ≤ p ≤ 1 p m

R2

= {(p,m) ∈ : 0 ≤ p ≤ 1 and m ≥ cp}.Ψc R2

Ψc R2

p m T p = Pr{T ≥ c}

m = E[T ] (p,m) ∈ R2 T
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an ordered pair in   may be achievable by more than one nonnegative random variable, i.e.,

where   and   have different probability distributions.

We will show that almost all ordered pairs in   are achievable. We �rst de�ne the achievable region

Since for any nonnegative random variable  ,   and Markov’s inequality is satis�ed,

if   is achievable, then  . Consequently,  .

Theorem 3.  .

Proof. First, we prove that  . Since  , we only need to show that 

 is not achievable for all  . When  , we have  , or  .

This implies that  . In other words, every ordered pair   where   is not achievable.

Now, we prove that  . For any  , consider any    and the

following probability mass function for a random variable  :

Since  , we have  , and so

and  . Therefore,    is achieved by the random variable    as constructed. Note

that unless  ,   can always be achieved by more than one probability distribution.

It remains to prove that every ordered pair    with    is achievable. This can be done by

noting that such an ordered pair can be achieved by any random variable   with  . The

theorem is proved. 

The region    is de�ned by Markov’s inequality together with the constraint    which comes

from the setup of the problem, and we have shown that for any �xed  , every ordered pair in 

 except for a region with Lebesgue measure 0 (namely the region  ) is achievable by

some random variable  . Speci�cally:

When  , Markov’s inequality, namely

R2

(p,m) = (Pr{T ≥ a},E[T ]) = (Pr{ ≥ a},E[ ])T ′ T ′

T T ′

Ψc

= {(p,m) ∈ : (p,m) is achievable}.Ψ∗
c R2

T 0 ≤ Pr{T ≥ c} ≤ 1

(p,m) (p,m) ∈ Ψc ⊂Ψ∗
c Ψc

= ∖ {(0,m) : m ≥ c}Ψ∗
c Ψc

⊂ ∖ {(0,m) : m ≥ c}Ψ∗
c Ψc ⊂Ψ∗

c Ψc

(0,m) m ≥ c p = 0 Pr{T ≥ c} = p = 0 Pr{0 ≤ T < c} = 1

m = E[T ] < c (0,m) m ≥ c

∖ {(0,m) : m ≥ c} ⊂Ψc Ψ∗
c 0 < p ≤ 1 (p,m) ∈ Ψc

T

Pr{T = 0} = 1 − p and Pr{T = m/p} = p.

m ≥ cp m/p ≥ c

Pr{T ≥ c} = Pr{T = m/p} = p,

E[T ] = p(m/p) = m (p,m) T

m = cp (p,m)

(0,m) 0 ≤ m < c

T Pr{T = m} = 1

□

Ψc 0 ≤ p ≤ 1

c > 0

Ψc {(0,m) : m ≥ c}

T

Pr{T ≥ c} > 0

E[T ] ≥ c ⋅ Pr{T ≥ c}, (10)
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which gives a lower bound on  , is the only constraint on   in terms of  .

When  , Markov’s inequality as in (10), which becomes  , continues to be valid.

However, we also have

Combining (10) and (11), we have

See Figure 3 for an illustration. Since every ordered pair in   except for a region with Lebesgue measure

0 is achievable, or equivalently,  , we say that Markov’s inequality almost completely

characterizes the relation between   and  .

Now consider an inequality in the quantities   and  :

where  . For example, if  , then the inequality in (12) becomes (6), namely

Markov’s inequality. Let

be the region in   induced by  .

If (12) holds for all nonnegative random variable  , we say that the inequality is valid. Markov’s

inequality is such an example. The fundamental importance of the achievable region   is explained in

the next theorem, which asserts that an inequality    is valid if and only if 

. This implies that the region   completely characterizes all valid inequalities of the form (12).

Theorem 4. The inequality (12) is valid if and only if  .

Proof. We �rst show that if  , then (12) holds for all nonnegative random variable  . Assume that 

. Consider any nonnegative random variable   and the ordered pair  . By the

de�nition of  , we have  , so that  . It then

follows from the de�nition of   that  .

Next, we show that if (12) holds for all nonnegative random variable  , then  . Consider any 

. Then    for some nonnegative random variable  . Since by our

assumption (12) holds for all nonnegative random variable  , we see that  , and hence 

.

E[T ] E[T ] Pr{T ≥ c}

Pr{T ≥ c} = 0 E[T ] ≥ 0

E[T ] < c. (11)

0 ≤ E[T ] < c.

Ψc

=Ψ∗
c

¯ ¯¯̄¯̄ Ψc

Pr{T ≥ c} E[T ]

Pr{T ≥ c} E[T ]

f(Pr{T ≥ c},E[T ]) ≥ 0, (12)

f : → RR2 f(m,p) = m − cp

= {(p,m) ∈ : f(p,m) ≥ 0}Rf R2

R2 f ≥ 0

T

Ψ∗
c

f(Pr{T ≥ c},E[T ]) ≥ 0

⊂Ψ∗
c Rf Ψ∗

c

⊂Ψ∗
c Rf

⊂Ψ∗
c Rf T

⊂Ψ∗
c Rf T (Pr{T ≥ c},E[T ])

Ψ∗
c (Pr{T ≥ c},E[T ]) ∈ ⊂Ψ∗

c Rf (Pr{T ≥ c},E[T ]) ∈ Rf

Rf f(Pr{T ≥ c},E[T ]) ≥ 0

T ⊂Ψ∗
c RF

(p,m) ∈ Ψ∗
c (p,m) = (Pr{T ≥ c},E[T ]) T

T (p,m) ∈ Rf

⊂Ψ∗
c Rf
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Combining the above, we conclude that    is a necessary and suf�cient condition for the

inequality set (12) to be valid. The theorem is proved. 

We now consider a �nite set of inequalities on   and  ,

where  . We say that   is valid if   is valid for all  . Let

be the region in   induced by  . The following is a corollary of Theorem 4.

Corollary 1. The set of inequalities (13) is valid if and only if  .

Proof. Let

Then   if and only if   for all  . In other words, the set of inequalities (13) is valid if

and only if    is valid, and hence  . Then the corollary is proved by applying

Theorem 4. 

We end this section with an example for Corollary 1.

Example 1. Let

and  . Then    becomes  . Since    is

valid for  , so is the inequality set  . Then by Corollary 1,  , which is indeed the case.

4. Cauchy-Schwarz Inequality

The Cauchy-Schwarz inequality, which applies to a general inner product space, is among the most

important inequalities in mathematics. For the purpose of this work, it suf�ces to con�ne our discussion

to real inner product spaces.

De�nition 1. A real inner product space is a vector space    over    together with an inner product 

 that satis�es the following for any vectors   and any scalars  :

�. (Symmetry) 

�. (Linearity) 

⊂Ψ∗
c Rf

□

Pr{T ≥ c} E[T ]

F = { (Pr{T ≥ c},E[T ]) ≥ 0, 1 ≤ i ≤ k},fi (13)

: → Rfi R2 F (Pr{T ≥ c},E[T ]) ≥ 0fi i

= {(p,m) ∈ : (p,m) ≥ 0, 1 ≤ i ≤ m}RF R2 fi

R2 F

⊂Ψ∗
c RF

(p,m) = {f
~ 1

−1

if  (p,m) ≥ 0 for all ifi

otherwise.

(p,m) ≥ 0f
~

(p,m) ≥ 0fi i

(p,m) ≥ 0f
~

=RF R
f
~

□

= p, = 1 − p, = m − cp,f1 f2 f3

F = { (Pr{T ≥ c},E[T ]) ≥ 0, i = 1, 2, 3}fi RF Ψc (Pr{T ≥ c},E[T ]) ≥ 0fi

i = 1, 2, 3 F ⊂Ψ∗
c ΨF

V R

⟨⋅, ⋅⟩ : V × V → R u, v, w ∈ V a, b ∈ R

⟨u, v⟩ = ⟨v, u⟩

⟨au + bv, w⟩ = a⟨u, w⟩ + b⟨v, w⟩
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�. (Positive-de�niteness)   if  .

The Cauchy-Schwarz inequality asserts that for any  ,

with equality if and only if   and   are linearly dependent. Here, for any pair of vectors   and  , the three

quantities of interest are  ,  , and  , and we are interested in the relation among them. The

Cauchy-Schwarz inequality gives a characterization of this relation. In this section, we discuss this

inequality in the spirit of the discussion in the previous sections.

In view of the three quantities involved in the Cauchy-Schwarz inequality, namely  ,  , and 

, we are motivated to consider the ordered triple    for any  . For 

, if    for some  , then we say that  is

achievable. We then de�ne the achievable region

Also note that an ordered triple in   may be achievable by more than one pair of vectors, i.e.,

where  .

Let   be a �xed inner product space. Consider a �nite set of inequalities on the quantities  ,  ,

and  :

where  . For example, if  , then the  th inequality in (15) becomes (14), the

Cauchy-Schwarz inequality. Let

be the region in   induced by  .

If an inequality in (15) holds for all  , we say that the inequality is valid. The Cauchy-Schwarz

inequality is such an example. If the inequality in (15) is valid for all  , we say that the inequality set   is

valid. The next theorem on the fundamental importance of the achievable region    follows directly

from the discussion in Section 3, so the proof is omitted here.

Theorem 5. For any inner product space  , the inequality set (15) is valid if and only if  .

⟨u, u⟩ > 0 u ≠ 0

u, v ∈ V

⟨u, v ≤ ⟨u, u⟩⟨v, v⟩,⟩2 (14)

u v u v

⟨u, u⟩ ⟨v, v⟩ ⟨u, v⟩

⟨u, u⟩ ⟨v, v⟩

⟨u, v⟩ (⟨u, u⟩, ⟨v, v⟩, ⟨u, v⟩) u, v ∈ V

(x,y, z) ∈ R3 (x,y, z) = (⟨u, u⟩, ⟨v, v⟩, ⟨u, v⟩) u, v ∈ V (x,y, z)

= {(x,y, z) ∈ : (x,y, z) is achievable}.Φ∗ R3

R3

(x,y, z) = (⟨u, u⟩, ⟨v, v⟩, ⟨u, v⟩) = (⟨ , ⟩, ⟨ , ⟩, ⟨ , ⟩)u
′

u
′

v
′

v
′

u
′

v
′

(u, v) ≠ ( , )u
′

v
′

V ⟨u, u⟩ ⟨v, v⟩

⟨u, v⟩

F = { (⟨u, u⟩, ⟨v, v⟩, ⟨u, v⟩) ≥ 0 : 1 ≤ i ≤ m}fi (15)

: → Rfi R3 (x,y, z) = xy −fi z2 i

= {(x,y, z) ∈ : (x,y, z) ≥ 0, 1 ≤ i ≤ m}RF R3 fi

R3 F

u, v ∈ V

i F

Φ∗

V ⊂Φ∗ RF
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Consider

From (16) to (18), we obtain

respectively, which hold for all  . Note that (19) and (20) are implied by the positive-de�niteness

of an inner product space. From (19) to (21), we see that

is valid for  . Now de�ne region

which in fact is the region   with  . Thus by Theorem 5, we have  .

Ultimately, we are interested in obtaining a complete characterization of the achievable region   instead

of just an outer bound on it. The question is whether    is indeed equal to  . If so, we say that the

Cauchy-Schwarz inequality  is tight. Otherwise, additional inequalities on the quantities  ,  ,

and   are needed to completely characterize  . Such an inequality, if exists, would play the same

fundamental role as the Cauchy-Schwarz inequality. The next theorem asserts that there exists no

constraint on  ,  , and    other than the Cauchy-Schwarz inequality  and positive-

de�niteness if  , but is not so if  . We also say that the Cauchy-Schwarz

inequality is sharp if and only if   (by regarding positive-de�nitness as given).3

Theorem 6. For an inner product space  ,    if and only if  . For  ,  ,

and for  ,

The following proposition is instrumental in proving Theorem 6.

Proposition 2. Let    be an inner product space. If  , then for any non-zero vector  , there

exists a unit vector   such that  .

(x,y, z)f1

(x,y, z)f2

(x,y, z)f3

= x

= y

= xy − .z
2

(16)

(17)

(18)

(⟨u, u⟩, ⟨v, v⟩, ⟨u, v⟩) = ⟨u, u⟩ ≥ 0f1 (19)

(⟨u, u⟩, ⟨v, v⟩, ⟨u, v⟩) = ⟨v, v⟩ ≥ 0f2 (20)

(⟨u, u⟩, ⟨v, v⟩, ⟨u, v⟩) = ⟨u, u⟩⟨v, v⟩ − ⟨u, v ≥ 0f3 ⟩2 (21)

u, v ∈ V

(⟨u, u⟩, ⟨v, v⟩, ⟨u, v⟩) ≥ 0fi

i = 1, 2, 3

Φ = {(x,y, z) ∈ : x,y ≥ 0 and  ≤ xy}R3 z2

RF F = { ≥ 0, i = 1, 2, 3}fi ⊂ ΦΦ∗

Φ∗

Φ Φ∗

⟨u, u⟩ ⟨v, v⟩

⟨u, v⟩ Φ∗

⟨u, u⟩ ⟨v, v⟩ ⟨u, v⟩

dim(V ) ≥ 2 dim(V ) = 0, 1

dim(V ) ≥ 2

V = ΦΦ∗ dim(V ) ≥ 2 dim(V ) = 0 = {0}Φ∗

dim(V ) = 1

= {(x,y, z) ∈ : x,y ≥ 0 and  = xy} .Φ∗ R3 z2 (22)

V dim(V ) ≥ 2 u ∈ V

w ∈ V ⟨u, w⟩ = 0
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Proof. Consider an inner product space   with   and let   be a non-zero vector in  . Since 

, there exists another vector   such that   and   are linearly independent. Let

Note that   since  . Then

where the last step is justi�ed because  . Also, we have

where the inequality above follows from the Cauchy-Schwarz inequality (14) which is tight if and only if 

  and    are linearly dependent. Since the latter does not hold by our assumption, we conclude that 

, i.e.,   is not the zero vector. Finally, the proposition is proved by letting

so that

and

Proof of Theorem 6. For the case  , since  , we have  .

V dim(V ) ≥ 2 u V

dim(V ) ≥ 2 t ∈ V u t

v = t − u.
⟨u, t⟩

⟨u, u⟩

⟨u, u⟩ > 0 u ≠ 0

⟨u, v⟩ = ⟨u, t − u⟩
⟨u, t⟩

⟨u, u⟩

= ⟨u, t⟩ −
⟨u, t⟩⟨u, u⟩

⟨u, u⟩
= 0,

⟨u, u⟩ ≠ 0

⟨v, v⟩ = ⟨t − u, t − u⟩
⟨u, t⟩

⟨u, u⟩

⟨u, t⟩

⟨u, u⟩

= ⟨t, t⟩ − 2 +
⟨u, t⟩2

⟨u, u⟩

⟨u, t ⟨u, u⟩⟩2

⟨u, u⟩2

= ⟨t, t⟩ −
⟨u, t⟩2

⟨u, u⟩
≥ 0,

u t

⟨v, v⟩ > 0 v

w = ,
v

⟨v, v⟩− −−−−√

⟨u, w⟩ = = 0
⟨u, v⟩

⟨v, v⟩− −−−−√

= = 1.⟨w, w⟩
− −−−−−

√
⟨v, v⟩

⟨v, v⟩

− −−−−

√

□

dim(V ) = 0 V = {0} = {0} ⊊ ΦΦ∗
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For the case  , since for any two vectors  , one of them is always a scalar multiple of

the other, the inequality (14) is always satis�ed with equality. This implies that

which is a proper subset of  . To prove that

it suf�ces to show that every   satisfying   and  , there exist   such that

We �rst consider the case that either    or  . If  , then    becomes  , which

implies  . Then (24) is satis�ed by letting   and   such that  . Likewise if  .

Now consider the case that  . Then  , which implies that  . Let   such that

We need to consider two cases for  , namely   and  . First consider the case  . Together with 

, we have  . Let  , so that  . Let  . Then

and

Then we see from (25) to (27) that (24) is satis�ed. For the case  , we have  . Then we let 

  and repeat the above steps to show that (24) is again satis�ed. Therefore, we have proved

(23) and hence (22).

Now consider the case  . It suf�ces to show that for any  , there exist 

 such that (24) is satis�ed. Then  , showing that  .

Consider any  . Let   such that  . We seek   such that

and

We �rst consider the case that either   or  , which can be proved in exactly the same way as we

have proved the case for  . Now consider the case that  , and choose any   such

dim(V ) = 1 u, v ∈ V

⊂ {(x,y, z) ∈ : x,y ≥ 0 and  = xy},Φ∗
R

3
z

2 (23)

Φ

{(x,y, z) ∈ : x,y ≥ 0 and  = xy} ⊂ ,R3 z2 Φ∗

(x,y, z) x,y ≥ 0 = xyz2
u, v ∈ V

(x,y, z) = (⟨u, u⟩, ⟨v, v⟩, ⟨u, v⟩). (24)

x = 0 y = 0 x = 0 ≤ xyz2 ≤ 0z2

z = 0 u = 0 v ∈ V ⟨v, v⟩ = y y = 0

x,y > 0 = xy > 0z2 z ≠ 0 u ∈ V

⟨u, u⟩ = x. (25)

z z > 0 z < 0 z > 0

= xyz2 z = xy−−
√ b = y/x

−−−
√ x = yb2

v = bu

⟨v, v⟩ = ⟨bu, bu⟩ = ⟨u, u⟩ = x = y,b2 b2 (26)

⟨u, v⟩ = ⟨u, bu⟩ = b⟨u, u⟩ = bx = = z.xy−−√ (27)

z < 0 z = − xy−−
√

b = − y/x−−−√

dim(V ) ≥ 2 (x,y, z) ∈ Φ

u, v ∈ V (x,y, z) ∈ Φ∗ Φ ⊂ Φ∗

(x,y, z) ∈ Φ u ∈ V ⟨u, u⟩ = x v ∈ V

⟨v, v⟩ = y (28)

⟨u, v⟩ = z. (29)

x = 0 y = 0

dim(V ) = 1 x,y > 0 u ∈ V
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that  . From Proposition 2, there exists a unit vector   such that  . Let

Note that the quantity inside the square root is nonnegative because  . Since  , we have

and

Thus (28) and (29) are satis�ed. The theorem is proved. 

Remarks

�. From the proof of Theorem 6, we see that when  ,   is exactly equal to the boundary of 

.

�. From Theorem 6, we see that   for   or   is a subset of   for  .

Therefore, there exists no inequality on the quantities  ,  , and    that holds for all

inner product space    (regardless of the value of  ) which is not implied by the Cauchy-

Schwarz inequality.

To end this section, we argue that the Cauchy-Schwarz inequality can be regarded as sharp even when 

 or 1 if we take explicit consideration of the dimension of the vector space. Speci�cally,

If  , then for any  , we have  , so that  .

With this additional constraint, we can re�ned   to

which is equal to  .

If  , for any  , one of them is always a scalar multiple of the other, and the

inequality (14) is always satis�ed with equality. Then by imposing this additional constraint, we can

re�ne   to

which again is equal to  .

⟨u, u⟩ = x w ∈ V ⟨u, w⟩ = 0

v = u + w.
z

x
y −

z2

x

− −−−−−
√

≤ xyz2 ⟨u, w⟩ = 0

⟨v, v⟩ = ⟨u, u⟩ +(y − ) = x +(y − ) = +(y − ) = y,
z2

x2

z2

x

z2

x2

z2

x

z2

x

z2

x

⟨u, v⟩ = ⟨u, u⟩ = ⟨u, u⟩ = z.
z

x

z

x

□

dim(V ) = 1 Φ∗

Φ

Φ∗ dim(V ) = 0 dim(V ) = 1 Φ∗ dim(V ) ≥ 2

⟨u, u⟩ ⟨v, v⟩ ⟨u, v⟩

V dim(V )

dim(V ) = 0

dim(V ) = 0 u, v ∈ V u = v = 0 (⟨u, u⟩, ⟨v, v⟩, ⟨u, v⟩) = (0, 0, 0)

Φ

= Φ ∩ {0} = {0},Φ0

Φ∗

dim(V ) = 1 u, v ∈ V

Φ

= Φ ∩ {(x,y, z) ∈ : = xy},Φ1 R3 z2

Φ∗
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5. Entropy Inequalities

In the last section, we use the Cauchy-Schwarz inequality to illustrate how a geometrical formulation can

potentially lead to interesting results. In this section, we apply the same formality to inequalities on the

Shannon entropy, which has led to very fruitful and unexpected results in the past over two decades. This

section is a brief exposition of this subject. The reader is referred to [[4], Chs. 13-15] and [5][6] for more in-

depth discussions.4

In this section, all random variables are discrete. The Shannon entropy (or simply entropy when there is

no ambiguity) for a random variable   with probability mass function   is de�ned as

where    denotes the support of  . For a pair of jointly distributed random variables    and    with

probability mass function  , the entropy is de�ned as

where   denotes the support of  . The entropy for a �nite number of random variables is de�ned

likewise. The entropy for two or more random variables is often called a joint entropy, although the

distinction between entropy and joint entropy is unnecessary.

In information theory (see  [7][8][4]), entropy is the fundamental measure of information. In addition to

entropy, the following quantities are de�ned:

X p(x)

H(X) = − p(x) logp(x),∑
x∈SX

SX X X Y

p(x,y)

H(X,Y ) = − p(x,y) logp(x,y),∑
(x,y)∈SXY

SXY p(x,y)
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Mutual Information

Conditional Entropy

Conditional Mutual Information

These quantities, collectively called Shannon’s information measures, are used extensively in coding

theorems in information theory problems.

In this section, inequalities on Shannon’s information measures are discussed. These inequalities are the

main tool for proving converse coding theorems, which establish that for a particular communication

problem, no coding scheme exists if certain conditions are not satis�ed. In other words, these

inequalities establishes the “impossibilities” in information theory, and they are sometimes referred to as

the “laws of information theory” [9].

As we see from the above, all Shannon’s information measures can be expressed as a linear combinations

of entropies. Therefore, inequalities on Shannon’s information measures can be written as inequalities on

entropies. For this reason, they are referred to as entropy inequalities.

I(X;

Y )

= H

(X)

+ H

(Y )

− H

(X,

Y )

H(X

|Y )

= H

(X,

Y )

− H

(Y )

I(X;

Y |Z)

= H

(X,

Z)

+ H

(Y ,

Z)

− H

(X,

Y ,

Z)

− H

(Z).
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In this section, we will not focus on the application of entropy inequalities in proving converse coding

theorems. Rather, we will focus on these inequalities themselves. Like what we have done in the previous

sections, we �rst introduce a geometrical framework for entropy inequalities.

Let  ,  , and  . Let    be a collection of    discrete

random variables. Associated with any collection of   random variables are   joint entropies.

For  , write  , with the convention that    is a constant. For example,  , or

simply  , denotes  . For a collection    of    random variables, de�ne the set function 

 by

with   because   is a constant.   is called the entropy function of  .

Let   denote  , the  -dimensional Euclidean space, with the coordinates labeled by  . We call 

 the entropy space for   random variables. As an example, for  , the coordinates of   are labelled

by

where   denotes  , etc. Then for each collection   of   random variables,   can be represented

by a column vector  , called the entropy vector of  , whose component corresponding to    is

equal to   for all  . On the other hand, a column vector   is called entropic5 if it is equal

to the entropy vector   of some collection   of   random variables.

5.1. Unconstrained and Constrained Entropy Inequalities

Like what we have done for the Markov inequality and the Cauchy-Schwarz inequality, we are motivated

to de�ne the region

The region   is referred to as the region of entropy vectors.

An entropy inequality  , where  , is valid if it holds for all collection   of   random

variables. For example, the inequality

or

[n] = {1, … ,n} N = 2[n] = N∖{∅}N
¯ ¯̄̄ Θ = { , i ∈ [n]}Xi n

n k := − 12n

α ∈ N = ( , i ∈ α)Xα Xi X∅ X{1,2,3}

X123 ( , , )X1 X2 X3 Θ n

: N → RHΘ

(α) = H( ), α ∈ N,HΘ Xα

(∅) = 0HΘ X∅ HΘ Θ

Hn Rk k ,α ∈hα N
¯ ¯̄̄

Hn n n = 3 H3

, , , , , , ,h1 h2 h3 h12 h13 h23 h123

h123 h{1,2,3} Θ n HΘ

∈h
Θ

Hn Θ α

(α)HΘ α ∈ N
¯ ¯̄̄

h ∈ Hn

h
Θ Θ n

= {h ∈ : h is entropic}.Γ∗
n Rk

Γ∗
n

f( ) ≥ 0h
Θ f : → RRk Θ n

H( ) + H( ) ≥ H( , ),X1 X2 X1 X2
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is valid because it holds for any random variables   and  ; this will be further discussed in Section 5.2.

In the sequel, let   be �xed. The following proposition is analogous to Proposition 4. Its proof is omitted.

Proposition 3. A set of entropy inequalities   is valid if and only if

In information theory, we very often deal with entropy inequalities with certain constraints on the joint

distribution for the random variables involved. These are called constrained entropy inequalities, and the

constraints on the joint distribution can usually be expressed as linear constraints on the entropies. In

the sequel, we always assume that the constraints on the entropies are of this form. The following are

some examples:

�.  is a function of   if and only if  .

�.  and   are independent conditioning on   if and only if  .

�. The Markov chain   holds if and only if 

�. Three random variables  ,  , and   are mutually independent if and only if 

It is not dif�cult to show that (30) is equivalent to

Suppose there are   constraints on the entropies given by

where   is a   matrix. Without loss of generality, we can assume that these   constraints are linearly

independent, so that   is full row rank. Let

In other words, the   constraints con�ne   to a linear subspace   in the entropy space. The following is

the constrained version of Proposition 3.

Proposition 4. A set of entropy inequalities    is valid under the constraint    if and

only if

I( ; ) ≥ 0,X1 X2

X1 X2

n

{ ( ) ≥ 0, 1 ≤ i ≤ m}fi h
Θ

⊆ {h ∈ : (h) ≥ 0, 1 ≤ i ≤ m}.Γ∗
n Hn fi

X1 X2 H( | ) = 0X1 X2

X1 X2 X3 I( ; | ) = 0X1 X2 X3

↔ ↔ ↔X1 X2 X3 X4 {
I ( ; ∣ )X1 X3 X2

I ( , ; ∣ )X1 X2 X4 X3

= 0

= 0

X1 X2 X3

H( , , ) = H( ) + H( ) + H( ).X1 X2 X3 X1 X2 X3 (30)

⎧

⎩
⎨
⎪

⎪

I( ; )X1 X2

I( ; | )X2 X3 X1

I( ; | )X1 X3 X2

= 0
= 0

= 0.

q

Qh = 0,

Q q × k q

Q

Φ = {h ∈ : Qh = 0}.Hn (31)

q h Φ

{ ( ) ≥ 0, 1 ≤ i ≤ m}fi h
Θ Φ
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We will refer to the inequalities in Proposition  3 as (unconstrained) entropy inequalities, and the

inequalities in Proposition  4 as constrained entropy inequalities. Note that we can let    when

there is no constraint on the entropies. In this sense, an unconstrained entropy inequality is a special

case of a constrained entropy inequality.

5.2. Shannon-Type Inequalities

It is well known in information theory that all Shannon’s information measures are nonnegative. This set

of inequalities is collectively called the basic inequalities in information theory. Speci�cally, these are

inequalities of the form

�. ,

�. ,

�. ,

�. ,

where  ,  , and    are disjoint subsets of  . On the other hand, the entropy function satis�es the

polymatroidal axioms [10]: For any  ,

�. ;

�.  if  ;

�. .

It can be shown that the basic inequalities and polymatroid axioms are equivalent (see  [4][Appendix

14.A]).

The basic inequalities, expressed in terms of the entropies, are linear inequalities in  . Denote this set

of inequalities by  , where   is an   matrix, and de�ne

Since the basic inequalities always hold, we see from Proposition 3 that  .

Shannon-type inequalities are entropy inequalities that are implied by the basic inequalities. Speci�cally,

an entropy inequality   is a Shannon-type inequality if and only if

( ∩ Φ) ⊂ {h ∈ : (h) ≥ 0, 1 ≤ i ≤ m}.Γ∗
n Hn fi

Φ = Hn

H( ) ≥ 0Xα

I( ; ) ≥ 0Xα Xβ

H( | ) ≥ 0Xα Xγ

I( ; | ) ≥ 0Xα Xβ Xγ

α β γ N

δ,σ ⊂ N

(∅) = 0HΘ

(δ) ≤ (σ)HΘ HΘ δ ⊂ σ

(δ) + (σ) ≥ (δ ∪ σ) + (δ ∩ σ)HΘ HΘ HΘ HΘ

Hn

Gh ≥ 0 G m × k

= {h ∈ : Gh ≥ 0}.Γn Hn

⊂Γ∗
n Γn

f(h) ≥ 0

⊂ {h ∈ : f(h) ≥ 0}.Γn Hn
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More generally, under the linear constraint   (cf. (31)),   is a Shannon-type inequality if and only

if

Since  , it follows that

which implies that a Shannon-type inequality is valid.

As mentioned earlier in this section, entropy inequalities are the main tool for proving converse coding

theorems in information theory. In fact, Shannon-type inequalities had been all the entropy inequalities

that were known until the discovery of non-Shannon-type inequalities in the late 1990s.

Since    is a polyhedral cone, veri�cation of a linear Shannon-type inequality can be formulated as a

linear programming problem [2]. ITIP [11] was the �rst software developed for this purpose, which runs

on MATLAB. Subsequently, variants of ITIP with different additional features have been developed.

AITIP [12] can produce a human-readable proof and suggest counterexamples when the inequality to be

veri�ed is not Shannon-type. PSITIP  [13]  can render proofs for converse coding theorems in network

information theory [14]. See [15] for a list of related software. Recently, a symbolic approach to the problem

that can drastically speed up the computation has been developed  [16][17]. For a general discussion on

machine-proving of entropy inequalities, we refer the reader to the tutorial paper [18].

5.3. Beyond Shannon-Type Inequalities

To our knowledge, [9] was the �rst work in the literature that explicitly asked whether there exists any

constraint on the entropy function other than the polymatroidal axioms. The same question was raised

in [19] in a somewhat different form. With the geometrical formulation for entropy inequalities described

at the beginning of this section, it became reasonable to conjecture the existence of constraints on the

entropy function beyond Shannon-type inequalities, because it is not readily provable that  .

Before diving deeper into this subject, we �rst note that

�. ;

�.  but  , where   denotes the closure of  ;

Φ f(h) ≥ 0

( ∩ Φ) ⊂ {h ∈ : f(h) ≥ 0}.Γn Hn

⊂Γ∗
n Γn

( ∩ Φ) ⊂ {h ∈ : f(h) ≥ 0},Γ∗
n Hn

Γn

=Γ∗
n Γn

=Γ∗
2 Γ2

≠Γ∗
3 Γ3 =Γ∗

3
¯ ¯¯̄¯ Γ3 Γ∗

3
¯ ¯¯̄¯ Γ∗

3
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While it is straightforward to show that  , the problem is already nontrivial for  . Speci�cally,

along an extreme direction of  , only certain discrete points are entropic, making    not closed.

However, upon taking the closure of  , we obtain  .

For  , the set   is very complex and characterization of   remains an open problem. Nevertheless,

the following general properties of   are known:

�.  is a convex cone;

�. , where   denotes the interior of a set [20].

Here,    means that the difference between    and    can only be on the boundary. As

discussed,   and   differ on an extreme direction of   (=  ), which is on the boundary of  .

For 4 random variables, the following constrained entropy inequality was proved [21]: If

then

This inequality, referred to in the literature as ZY97, cannot be proved by ITIP and hence is a non-

Shannon-type inequality.

It was discussed earlier that along an extreme direction of  , only certain discrete points are entropic,

while the rest are non-entropic. In the above, the constraints in (32) together with    de�ne a 13-

dimensional face6 of  , and ZY97 asserts that a region on this face is not entropic. However, it is still

unclear whether   is equal to  . Shortly after, the following unconstrained non-Shannon-type entropy

inequality was discovered [22]: For any random variables  ,  ,  , and  ,

This inequality, referred to in the literature as ZY98 or the Zhang-Yeung inequality, shows that    is a

proper subset of  . See Fig. 4 for an illustration.

Subsequently, many non-Shannon-type inequalities for four or more random variables were

discovered  [23][24][20][25][26]. In particular, the existence of an in�nite class of unconstrained non-

Shannon-type inequalities for four random variables was proved, implying that   (and more generally 

) is not a pyramid [20]. See [27] for a unifying discussion.
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The above are the efforts on characterizing  , in particular  , which remains an open problem.

Throughout the years, there have have been efforts on characterizing  , which is even more dif�cult.

Notable works along this line include  [28][29][30][31][32]. The connection with    with conditional

independence of random variables will be discussed in Section 5.4.2.

Figure 4. An illustration of the non-Shannon-type inequality ZY98.

5.4. Connections with Other Fields

The study of entropy inequalities, more speci�cally characterization of the region  , was shown to be

intimately related to a distributed coding problem inspired by satellite communication  [33]. This line of

research was subsequently developed into the theory of network coding  [34][35]. In the meantime,

intimate relations between this subject and different branches of mathematics and physics were

established. In particular, the non-Shannon-type inequalities for entropy induce corresponding

inequalities for �nite groups, Kolmogorov complexity, and positive semi-de�nite matrices. In this

Γ∗
n

¯ ¯¯̄¯̄ Γ∗
4

¯ ¯¯̄¯

Γ∗
4

Γ∗
n

Γ∗
n
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section, we give a high-level introduction of these developments. For a comprehensive treatment of the

topic, we refer the readers to [5][6].

5.4.1. Network Coding

In network communication, to send information from a source node    to a destination node  , the

predominant existing method is routing, namely that data packets are routed from node    to node 

 through the intermediate nodes in its original form. Network coding theory [34] refutes the folklore that

routing alone can achieve the network capacity. Rather, coding at the network nodes, referred to as

“network coding”, is in general required. As routing a data packet from an input to an output of a network

node can be regarded as applying the identity map to the data packet, routing is a special case of network

coding.

Figure 5. The butter�y network that illustrates the advantage of network coding.

The advantage of network coding can be illustrated by a simple example called the butter�y network,

represented by the directed graph in Figure  5. Here, a directed edge    represents a communication

channel from node   to node  . A bit   is generated at source node  ,  , and the bits   and   are to

be multicast7  to two destination nodes    and  . Figure  5(a) shows a routing solution, in which both 

 and   need to be transmitted on channel  .

s t

s

t

(i, j)

i j bi si i = 1, 2 b1 b2

t1 t2

b1 b2 (1, 2)
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If only one bit can be transmitted on each channel, then there exists no routing solution for this multicast

problem. However, if an intermediate node can apply computation to the incoming bits instead of just

routing them through, then a solution can be obtained as in Figure 5(b). Here at node 1, the received bits 

 and   are combined into a new bit  , where ‘ ’ denotes binary addition or exclusive-or (XOR).

This operation is referred to as network coding. The bit   is then transmitted to node 2, where two

copies of the bit are sent to the destination nodes   and  , respectively. At node  , a copy of the bit   is

received directly from node  , while the bit   can be decoded by adding the two received bits:

Similarly, the bits   and   can be decoded at node  .

Among the vast literature of network coding,  [33],  [36], and  [35]  are directly related to the discussions in

this section. In a nutshell, these works give a complete characterization of the capacity region8  of the

general network coding problem on an acyclic network in terms of  , the region of entropy vectors.

Here, we omit the subscript   in   because the exact number of random variables involved depends on

the setup of the speci�c network coding problem. Evidently, this characterization is implicit because the

complete characterization of   is still open. Nevertheless, an outer (inner) bound on   directly induces

an outer (inner) bound on the capacity region of the network coding problem. For a comprehensive

discussion on this topic, we refer the reader to [[4], Ch. 21][35].

5.4.2. Probability Theory

We use   to denote the conditional independency (CI)

where  ,  , and    are assumed to be disjoint subsets of  . When  ,    becomes an

unconditional independency which we regard as a special case of a conditional independency.

In probability theory, we are often given a set of CI’s and we need to determine whether another given CI

is logically implied. We refer to this problem as the implication problem, which is one of the most basic

problems in probability theory. For example, we want to know whether

b1 b2 ⊕b1 b2 ⊕

⊕b1 b2

t1 t2 t1 b1

s1 b2

⊕ ( ⊕ ) = ( ⊕ ) ⊕ = 0 ⊕ = .b1 b1 b2 b1 b1 b2 b2 b2

b1 b2 t2

Γ∗

n Γ∗

Γ∗ Γ∗

⊥ ∣Xα Xβ Xγ

 and   are conditionally independent given  ,Xα Xβ Xγ

α β γ [n] γ = ∅ ⊥ ∣Xα Xβ Xγ

} ⇒ ⊥ .
⊥ ∣X1 X3 X2

⊥X1 X2

X1 X3
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This is not dif�cult to prove. However, the general implication problem is extremely dif�cult, and it has

been solved only up to four random variables [37].

We now explain the relation between the implication problem and the region  . A CI involving random

variables   has the form

where  ,  , and    are disjoint subsets of  . Denote this generic CI by  . From the discussion in

Section  5.1,    is equivalent to  , i.e., setting the basic inequality 

 to equality. Furthermore, since   is equivalent to

the CI   corresponds to the following hyperplane in  :

Since the region    is de�ned by the basic inequalities (with    being one), 

 is a face of  .

Let    be a collection of CI’s, and we want to determine whether    implies a given CI  . This

would be the case if and only if the following is true:

Equivalently,

Therefore, the implication problem can be solved if   can be characterized. Since  , in the above, 

 can be rewritten as

As discussed,    is a face of  . In other words, the implication problem can be solved by

characterizing  , in particular characterizing   on the faces of  . Therefore, to tackle the implication

problem, it is not suf�cient just to characterize  .

Hence, the region    is not only of fundamental importance in information theory, but is also of

fundamental importance in probability theory. For a more general discussion of this topic, we refer the

reader to the series of papers [38][39][37].

Γ∗
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K I( ; ∣ ) = 0Xα Xβ Xγ

I( ; ∣ ) ≥ 0Xα Xβ Xγ I( ; ∣ ) = 0Xα Xβ Xγ

H( ) + H( ) − H( ) − H( ) = 0,Xα∪γ Xβ∪γ Xα∪β∪γ Xγ (36)

K Hn

E(K) := {h ∈ : + − − = 0}.Hn hα∪γ hβ∪γ hα∪β∪γ hγ (37)

Γn I( ; ∣ ) ≥ 0Xα Xβ Xγ

E(K) ∩ Γn Γn

Π = { }Kl Π K

For all h ∈ ,  if h ∈ E( ),  then h ∈ E(K).Γ∗
n ∩l Kl

Π implies K if and only if [ E( )] ∩ ⊆ E(K).∩l Kl Γ∗
n

Γ∗
n ⊆Γ∗

n Γn

[ E( )] ∩∩l Kl Γ∗
n

[ E( )] ∩ ∩ = [(E( ) ∩ ) ∩ ].∩l Kl Γ∗
n Γn ∩l Kl Γn Γ∗

n

E( ) ∩Kl Γn Γn

Γ∗
n Γ∗

n Γn

Γ∗
n

¯ ¯¯̄¯̄

Γ∗
n

qeios.com doi.org/10.32388/26MB5B 28

https://www.qeios.com/
https://doi.org/10.32388/26MB5B


5.4.3. Group Theory

Let   and   be any two random variables. Then

which is equivalent to the basic inequality

Let   be any �nite group and   and   be subgroups of  . It is well known in group theory9 that

where   denotes the order of   and   denotes the intersection of   and   (   is also a

subgroup of  ). By rearranging the terms, the above inequality can be written as

By comparing (38) and (41), one can easily identify the one-to-one correspondence between the forms of

these two inequalities, namely that   corresponds to  ,  , and   corresponds to  .

While (38) is true for any pair of random variables    and  , (41) is true for any �nite group    and

subgroups   and  . As a further example, from the entropy inequality

which is equivalent to  , we can obtain the group inequality

that holds for all �nte group   and subgroups  ,  , and  .

This one-to-one correspondence can be extended to any random variables   and any �nite

group   and its subgroups  . For example, consider the non-Shannon-type inequality ZY98

which can be written in terms of joint entropies as follows:

This entropy inequality, which holds for all random variables    and  , corresponds to the

group inequality

X1 X2

H( ) + H( ) ≥ H( , ),X1 X2 X1 X2 (38)

I( ; ) ≥ 0.X1 X2 (39)
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which holds for all �nite group   and subgroups  ,  ,  , and  . We call such an inequality a “non-

Shannon-type” group inequality. Curiously, there has not been a proof of this inequality based on group

theory alone (without going through the entropy function), which can shed light on the group-theoretic

meaning of this inequality. Likewise, from any other non-Shannon-type entropy inequality, one can

obtain the corresponding group inequality.

In the above, we have discussed how to obtain a group inenquality from an entropy inequality. On the

other hand, if a group inequality of the form (41) or (43) holds, then the corresponding entropy inequality

of the form (38) or (42) also holds.

This one-to-one correspondence between entropy inequalities and group inequalities is intimately

related to a combinatorial structure known as the quasi-uniform array [40]. This combinatorial structure,

inspired by the fundamental notion of strong typicality in information theory, is exhibited by any �nite

group and its subgroups. We refer the reader to [41][[4], Ch. 16] for the details.

5.4.4. Matrix Theory

Let    be a continuous random variable with probability density function (pdf)  . The differential

entropy of   is de�ned as

Likewise, the joint differential entropy of a random vector   with joint pdf   is de�ned as

The integral in the above de�nitions are assumed to be taken over the support of the underlying pdf.

A linear differential entropy inequality

is said to be balanced if for all  , we have  . (The same can be de�ned for an entropy

inequality.) It was proved in [42]  that the above differential entropy inequality is valid if and only if it is

balanced and its discrete analog is valid. For example,

≤
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3
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X

h(X) = −∫ f(x) logf(x)dx.

X f(x)

h(X) = −∫ f(x) logf(x)dx. (44)

h( ) ≥ 0∑
α∈N̄̄̄

cα Xα
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α∈ :i∈αN̄̄̄

cα

qeios.com doi.org/10.32388/26MB5B 30

https://www.qeios.com/
https://doi.org/10.32388/26MB5B


is not valid because it is not balanced. On the other hand,

is valid because it is balanced and its discrete analog

is valid. Thus if   can be determined, then in principle all valid differential entropy inequalities can be

determined.

Any    symmetric positive semi-de�nite matrix    de�nes a Gaussian vector 

 with covariance matrix  . Substituting the corresponding Gaussian distribution into

(44), we obtain

where    denotes the determinant of a matrix. For  , let    be the submatrix of    at the

intersection of the rows and the columns of   indexed by  , whose determinant   is called a principal

minor of  . Note that    is the covariance matrix of the subvector  . Since    is also

Gaussian, it follows that

Now consider the independence bound for differential entropy,

which is tight if and only if    are mutually independent. Substituting (45) into the above, we

have

or

Note that those terms involving   are cancelled out, because the independence bound is a valid

differential entropy inequality and so it is balanced. After simpli�cation, we obtain

h(X|Y ) = h(X,Y ) − h(Y ) ≥ 0

I(X;Y ) = h(X) + h(Y ) − h(X,Y ) ≥ 0

H(X) + H(Y ) − H(X,Y ) ≥ 0

Γ∗
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namely Hadamard’s inequality, which is tight if and only if    are mutually independent, or 

 for all  .

This and similar techniques can been applied to obtain various inequalities on the principal minors of

symmetric positive semi-de�nite matrices [[8], Section 16.8]. These include a generalization of

Hardamad’s inequality due to Szász [43] and the Minkowski inequality [44].

For every valid differential entropy inequality, a corresponding inequality involving the principal minors

of a symmetric positive semi-de�nite matrix can be obtained in this fashion. It turns out that all non-

Shannon-type inequalities for discrete random variables discovered so far are balanced, and so they are

also valid for differential entropy. For example, from ZY98 we can obtain

which can be called a “non-Shannon-type” inequality for   positive semi-de�nite matrix  . It was

proved in  [45]  that for    positive semi-de�nite matrices, all inequalities involving the principal

minors can be obtained through the Gaussian distribution as explained.

5.4.5. Kolmogorov Complexity

Kolmogorov complexity, also known as Kolmogorov-Chatin complexity, is a sub�eld of computer science.

The Kolmogorov complexity of a sequence  , denoted by  , is the length of the shortest description

of the string with respective to a universal description language. Without getting into the details, such a

universal description language can be based on a computer programming language. Likewise, the

Kolmogorov complexity of a pair of sequences    and    is denoted by  . We refer the reader

to [46] for a comprehensive treatment of the subject.

Hammer et al. [47] established that all linear inequalities that are valid for Kolmogorov complexity are also

valid for entropy, and vice versa. For example, the inequality

for any   corresponds to the inequality

|K| ≤ ,∏
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Ki
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= 0kij i ≠ j
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for any two sequences    and  . This establishes a one-to-one correspondence between entropy and

Kolmogorov complexity. Due to this one-to-one correspondence, “non-Shannon-type” inequalities for

Kolmogorov complexity can be obtained accordingly.

5.4.6. Quantum Mechanics

The von Neumann entropy [48] is a generalization of the classical entropy (Shannon entropy) to the �eld

of quantum mechanics.10 For any quantum state described by a Hermitian positive semi-de�nite matrix 

, the von Neumann entropy of   is de�ned as

Consider distinct quantum systems   and  . The joint system is described by a Hermitian positive semi-

de�nite matrix  . The individual systems are described by   and   which are obtained from   by

taking partial trace. Consider a �xed  . We simply use    to denote the entropy of System  , i.e., 

. In the following, the same convention applies to other joint or individual systems. It is well known

that

The second inequality above is called the subadditivity for the von Neumann entropy. The �rst inequality,

called the triangular inequality (also known as the Araki-Lieb inequality [49]), is regarded as the quantum

analog of the inequality

for the Shannon entropy. It is important to note that although the Shannon entropy of a joint system is

always not less than the Shannon entropy of an individual system as shown in (46), this may not be true

in quantum systems. It is possible that   but   and  , for example, when   is

a pure entangled state [50]. From this fact, we can see that the quantum world can be quite different from

the classical world.

The strong subadditivity of the von Neumann entropy [51][52] plays the same role as the basic inequalities

for the classical entropy. For distinct quantum systems  ,  , and  , strong subadditivity can be

represented by the following two equivalent forms:

x1 x2

ρ ρ

S(ρ) = −Tr(ρ logρ).

A B

ρAB ρA ρB ρAB

ρAB S(A) A

S( )ρA

|S(A) − S(B)| ≤ S(AB) ≤ S(A) + S(B).

H(X) ≤ H(X,Y ) (46)

S(AB) = 0 S(A) > 0 S(B) > 0 AB

A B C

S(A) + S(B)

S(ABC) + S(B)

≤ S(AC) + S(BC)

≤ S(AB) + S(BC).
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These inequalities can be used to show many other interesting inequalities involving conditional entropy

and mutual information. Similar to classical information theory, quantum conditional entropy and

quantum mutual information are de�ned as    and 

, respectively. For distinct quantum systems  ,  ,    and  , we

have [50]

i) Conditioning reduces conditional entropy:

ii) Discarding quantum systems never increases mutual information:

iii) Subadditivity of conditional entropy [53]:

Following the discovery of non-Shannon-type inequalities for the classical entropy, it became natural to

ask whether there exist constraints on the von Neumann entropy beyond strong subadditivity. It was

proved a few years later that for a three-party system, there exist no such constraint [54]. Subsequently, a

constrained inequality for the von Neumann entropy for a four-party system which is independent of

strong subadditivity was discovered  [55], and a family of countably in�nitely many constrained

inequalities that are independent of each other and strong subadditivity was proved [56].

6. Concluding Remarks

In this paper, we have developed a framework for universally quanti�ed inequalities. With its root in

information theory, this framework provides a geometrical interpretation that captures the very

meaning of such inequalities. With this formality, we have revisited three celebrated inequalities in

mathematics, namely the AM-GM inequality, Markov’s inequality, and the Cauchy-Schwarz inequality,

and clari�ed the related issues. To demonstrate the power of this formality, we have discussed its

application to the study of entropy inequalities that have yielded very fruitful results in a number of

subjected related to the Shannon entropy. Application of this formality to different branches of

mathematics can identify situations in which new fundamental inequalities on quantities of interest may

exist, and potentially lead to the discovery of such inequalities.

S(A|B) = S(A,B) − S(B)

S(A : B) = S(A) + S(B) − S(A,B) A B C D

S(A|B,C) ≤ S(A|B).

S(A : B) ≤ S(A : B,C).

S(A,B|C,D)
S(A,B|C)

S(A|B,C)

≤ S(A|C) + S(B|D)
≤ S(A|C) + S(B|C)

≤ S(A|B) + S(A|C).
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Footnotes

1 The discussion in this section is built upon the concept of “achievability”, which will continue to play a

central role in the rest of the paper. We note that achievability is a fundamental concept in information

theory for formulating coding theorems. For example, C.  E.  Shannon’s celebrated source coding

theorem [1] states that the coding rate for lossless data compression must be at least equal to the entropy

rate of the information source. This means that any coding rate above the entropy rate of the information

source is asymptotically achievable by some encoding-decoding schemes.

2 For any  , if we let 

then   if and only if  . Thus an inequality of the form (3) can constrain   to

any subset of  .

3 In the literature there have been works on sharpening (or re�ning) the Cauchy-Schwarz inequality, for

example  [57][58]. The bounds on    obtained in these works are tighter than the Cauchy-Schwarz

inequality. However, these bounds depend on quantities other than    and  , and so they are

beyond the scope of the current work. Nevertheless, for such a bound, a geometrical framework similar

to the one discussed in this section can be introduced, but it would be more complicated because more

than three quantities are involved.Generally speaking, if more information about    and    is available,

then tighter bounds on   can be obtained. In particular, if full information about   and   is available,

i.e., both   and   are known, then   can be determined exactly.

4 A general discussion on the Shannon entropy and related inequalities can be found in a blog by Terence

Tao [59].

5 Equivalently,   is entropic if it is achievable by some collection of   random variables.

6 For a convex polytope  , a face is any set of the form  , where 

 for all  .

7 In network communication, multicast refers to transmitting a message to a speci�ed subset of

destination nodes in the network.

8 The capacity region contains all the achievable information rate tuples of the network coding problem.

A ⊂ R2

f(a, g) = {
1

−1

if~(a. g) ∈ A

if~(a. g) ∉ A,

(a, g) ∈ A f(a, g) ≥ 0 (AM,GM)

R2

⟨u, v⟩

⟨u, u⟩ ⟨v, v⟩

u v

⟨u, v⟩ u v

u v ⟨u, v⟩

h ∈ Hn n

P ⊆ Hn F = P ∩ {h ∈ : h = c}Hn b
⊤

h ≤ cb
⊤

h ∈ P
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9 See for example [[4], Theorem 16.27] for a proof.

10 We refer the reader to [50] for a comprehensive treatment of quantum information theory.
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