
k2SSL: A Faster and Better Framework for Self-Supervised
Speech Representation Learning

Yifan Yang1†, Jianheng Zhuo1†, Zengrui Jin3, Ziyang Ma1, Xiaoyu Yang2, Zengwei Yao2

Liyong Guo2, Wei Kang2, Fangjun Kuang2, Long Lin2, Daniel Povey2, Xie Chen1∗
1MoE Key Lab of Artificial Intelligence, X-LANCE Lab, Shanghai Jiao Tong University

2Xiaomi Corporation, Beijing, China 3The Chinese University of Hong Kong, Hong Kong SAR, China
{yifanyeung, zzasdf, chenxie95}@sjtu.edu.cn; zengrui.jin@link.cuhk.edu.hk

Abstract—Self-supervised learning (SSL) has achieved great success
in speech-related tasks, driven by advancements in speech encoder
architectures and the expansion of datasets. While Transformer and
Conformer architectures have dominated SSL backbones, encoders like
Zipformer, which excel in automatic speech recognition (ASR), remain
unexplored in SSL. Concurrently, inefficiencies in data processing within
existing SSL training frameworks, such as fairseq, pose challenges
in managing the growing volumes of training data. To address these
issues, we propose k2SSL, an open-source framework that offers faster,
more memory-efficient, and better-performing self-supervised speech
representation learning, with a focus on downstream ASR tasks. The
optimized HuBERT and proposed Zipformer-based SSL systems exhibit
substantial reductions in both training time and memory usage during
SSL training. Experiments on LibriSpeech and Libri-Light demonstrate
that Zipformer-based SSL systems significantly outperform comparable
HuBERT and WavLM systems, achieving a relative WER reduction on
dev-other/test-other of up to 34.8%/32.4% compared to HuBERT Base
after supervised fine-tuning, along with a 3.5x pre-training speedup in
total GPU hours.

Index Terms—self-supervised learning, speech recognition, memory-
efficient, Zipformer

I. INTRODUCTION

Speech-based self-supervised learning (SSL) [1]–[7] has emerged
as a powerful paradigm for its generalization ability, leveraging vast
amounts of unlabeled data to derive universal representations. These
models can be easily fine-tuned by incorporating prediction layers for
specific tasks, enhancing performance in applications like automatic
speech recognition (ASR) [8]. HuBERT [3], one widespread self-
supervised speech representation model, utilizes the classical and
versatile Transformer [9] architecture and masked language modeling
(MLM), achieving generalizability across various downstream tasks
with remarkable performance [10].

However, training speech-based SSL models demands enormous
computational resources due to the need for massive quantities of
unlabeled data, often more than ten times the amount of labeled data,
for effective pre-training before fine-tuning. For instance, training
HuBERT Base requires 32 GPUs, taking 24 hours for the first
iteration and 38 hours for the second iteration. When scaling up to
larger variants, the requirement jumps to 128 GPUs for HuBERT
Large and 256 GPUs for HuBERT X-Large. Similarly, WavLM [4]
training demands a lot of computational resources. WavLM Base
needs 32 GPUs, while the WavLM Large requires 64 GPUs. The
extensive memory usage and prolonged training time of these models
make them inaccessible to most researchers, contradicting the fast-
paced demands of the AI industry.

On the other hand, datasets used in both industry and academia
have grown prohibitively large [11]–[18], ranging from tens of
thousands to hundreds of thousands of hours. These massive datasets
have surpassed the capabilities of existing open-source speech-based

†Equal contribution. ∗Corresponding author.

SSL frameworks [19]–[21], which struggle with excessive memory
demands and inefficient data management when handling such large-
scale data. Consequently, there is considerable room for improving
the accessibility, efficiency, and effectiveness of speech-based SSL
systems.

With this perspective in mind, we propose k2SSL1, an open-source
framework designed to provide a faster, more memory-efficient, and
higher-performing solution for self-supervised speech representation
learning. k2SSL specifically addresses the inefficiencies encountered
by existing frameworks when managing large-scale datasets, offering
seamless scaling for both storage and training. We optimize the Hu-
BERT architecture by removing memory-intensive components that
contribute little to performance, and we integrate the Zipformer [22]
encoder as the backbone, combined with the ScaledAdam [22]
optimizer. Zipformer Base pre-training requires only 8 V100 32G
GPUs, while Zipformer Large requires 32 V100 32G GPUs, both
without gradient accumulation, significantly reducing computational
demands. This makes k2SSL more accessible and feasible for a
broader range of research teams and organizations. Extensive ex-
periments on LibriSpeech [23] and Libri-Light [24] demonstrate
that Zipformer-based systems outperform comparable HuBERT and
WavLM systems across the LibriSpeech dev/test sets. Zipformer Base
achieves a relative WER reduction on dev-other/test-other of up
to 34.8%/32.4% against HuBERT Base after supervised fine-tuning
while delivering a 3.53 pre-training speedup in total GPU hours,
underscoring its efficiency and effectiveness.

II. HUBERT AND ITS VARIANTS

A. HuBERT

HuBERT, short for Hidden-Unit BERT, is built on the wav2vec
2.0 [2] architecture and incorporates a convolutional feature extractor,
a Transformer encoder, and a linear projection layer. It processes
raw speech and predicts k-means clustering labels for masked audio
segments. HuBERT processes audio at a standard 16kHz rate, down-
sampling the sequences to 50Hz through the convolutional feature
extractor. A predetermined percentage of timestamps are selected
as starting points for mask spans, covering multiple consecutive
timestamps to form the masked sections of the sequence. For these
masked parts, the speech features are replaced with a learnable mask
embedding. The model then calculates the probability distribution
across cluster labels using the following equation:

pf (c|X̃, t) =
exp (sim (Aot, ec) /τ)∑C
i=1 exp (sim (Aot, ei) /τ)

(1)

Here, X̃ represents the masked input, [o1, ..., oT] the output from the
Transformer encoder, A the projection matrix, ec the cluster label

1Code and models are available at https://github.com/k2-fsa/icefall.

ar
X

iv
:2

41
1.

17
10

0v
1

 [
ee

ss
.A

S]
 2

6
N

ov
 2

02
4

Preprint — https://doi.org/10.32388/2C9TPU

https://github.com/k2-fsa/icefall

Fig. 1: The overall architecture of the SSL system with Zipformer as the backbone.

embedding, C the number of clusters, and τ the logit scaler, set to a
specific value. HuBERT Base is pre-trained in two iterations. The first
iteration uses 39-dimensional MFCC features from the LibriSpeech-
960h dataset, clustered with k-means using a codebook size of 100.
In the second iteration, features from the 6th layer of the first model
are clustered with a codebook size of 500. HuBERT Large is pre-
trained on clusters derived from the 9th layer of the second iteration,
again using a codebook size of 500.

Several follow-up works [4], [25]–[32] have been proposed to boost
either efficiency or effectiveness based on HuBERT.

B. Efficient Variants

MelHuBERT [26] simplifies HuBERT training by using Fbank
as input and replacing the pre-train loss with the cross-entropy.
Fast-HuBERT [27] also accelerates HuBERT training by utilizing
Fbank features with larger frameshifts as input. However, using larger
frameshift Fbank features requires extracting them in advance, which
introduces extra time and storage costs and leads to a notable decline
in performance.

C. Effective Variants

HuBERT-AP [28] and CTCBERT [30] change how the Trans-
former output is aligned with the SSL units, making the pre-
training process more like the common practice of speech recog-
nition. Nonetheless, these implementation modifications have limited
performance improvement over the original HuBERT. PBERT [31],
MonoBERT [32], and PolyBERT [32] introduce phoneme informa-
tion to the SSL units to improve performance. However, a pre-
trained phoneme recognizer with pair data is needed in PBERT, and
additional wav2vec-U 2.0 [33] is required in MonoBERT and Poly-
BERT. WavLM [4] effectively enhances the multi-task performance
by increasing the data scale and incorporating additional denoising
loss during the pre-training stage, but it requires a substantial com-
putational cost. Boosting efficiency and effectiveness simultaneously
in speech-based SSL models remains to be explored.

III. K2SSL

k2SSL aims to enhance both the efficiency and effectiveness of
HuBERT-based SSL systems. We begin by analyzing design ineffi-
ciencies in these systems, which lead to unnecessary computational
overhead, and present our corrective modifications. We then describe
our transition from the Transformer encoder to Zipformer and the
integration of the ScaledAdam optimizer. Finally, we outline several
engineering advantages of the proposed k2SSL framework. The

overall SSL system, with Zipformer as the backbone, is depicted
in Fig. 1.

A. Analysis and Optimization of HuBERT Architecture

HuBERT incorporates the convolutional feature extractor from the
wav2vec 2.0 architecture to process audio sampled at 16kHz, which
includes 7-layer convolutional layers. In HuBERT Base, an Fp32
GroupNorm is applied after the first convolution, while in HuBERT
Large, an Fp32 LayerNorm is applied after each convolution. Testing
on an idle V100 GPU with a batch of six 60-second audio samples
showed peak memory usage for the convolutional feature extractor:
10.96 GB for HuBERT Base and 13.14 GB for HuBERT Large,
reflecting a 19.9% increase in memory overhead. Our experiments
indicate that although applying Fp32 LayerNorm after each layer
enhances stability during half-precision training, it contributes little
to performance and incurs huge memory overhead. Instead, we retain
a single Fp32 GroupNorm in the first layer and resort to the half-
precision stable Zipformer + ScaledAdam framework.

Following [26], cross-entropy loss is used for pre-training, largely
reducing peak memory usage by eliminating updates to codeword
embeddings and cosine similarity calculations. This simplified loss
function predicts the k-means clustering labels of the masked input
X̃ as follows:

pf (c|X̃, t) =
exp ((Aot)c)∑C
i=1 exp ((Aot)i)

, (2)

where ot denotes the Transformer encoder output at time step t, and
A represents the projection matrix.

B. Adapting Zipformer and ScaledAdam for SSL

The Transformer encoder exhibits quadratic memory and compu-
tational complexity as the input sequence length increases. However,
self-supervised learning benefits more from longer sequences, creat-
ing a conflict between efficiency and performance. Furthermore, as
noted in [3], the total batch size is a critical factor influencing model
performance.

To tackle these, we transition to Zipformer, which handles long
sequences more memory efficiently and supports larger batch sizes,
enabling more efficient and effective SSL pre-training. As shown
in Fig. 1, Zipformer [22] encoder adopts a U-Net-like structure
to learn temporal representations efficiently at varying resolutions
across different stacks. Starting with an acoustic feature sequence
at a 50Hz frame rate, Zipformer processes it through six cascaded
stacks, with frame rates of 50Hz, 25Hz, 12.5Hz, 6.25Hz, 12.5Hz, and
25Hz. Except for the first stack, each downsamples the sequence,

TABLE I: Hyperparameters of various models in k2SSL for pre-
training and fine-tuning. Base models are pre-trained on 8 NVIDIA
V100 32GB GPUs, and Large models are on 32 NVIDIA V100
32GB GPUs. All models are fine-tuning on 8 NVIDIA V100 32GB
GPUs. “LR” represents the learning rate, “BS” represents the duration
of speech samples in a single batch, and “GA” represents gradient
accumulation.

Backbone
Stage

Loss # Params LR BS/GPU GA
Pre-train Fine-tune

Transformer
✓ HuBERT 94.7M 0.045 87.5s 4

✓ Pruned RNN-T 96.5M 0.001 200.0s 1

Transformer
✓ CE 94.8M 0.045 87.5s 4

✓ Pruned RNN-T 96.6M 0.00075 200.0s 1

Zipformer
✓ CE 94.6M 0.045 600.0s 1

✓ Pruned RNN-T 96.4M 0.002 600.0s 1
✓ CTC 94.6M 0.001 600.0s 1

Zipformer
✓ CE 305.9M 0.045 350.0s 1

✓ Pruned RNN-T 308.0M 0.002 400.0s 1

processes it, and then upsamples it back to 50Hz. The embedding
dimensions vary across the stacks, with the central stacks having
larger dimensions. The output from each stack is truncated or padded
with zeros to match the dimensions of the subsequent stack. The final
encoder output is set to the maximum dimension across all stacks,
concatenating segments from each stack’s output and taking the
most recent output for each dimension. Zipformer also incorporates
several upgrades: a redesigned block structure that reuses attention
weights for efficiency, BiasNorm [22] for better retention of sequence
length, and activation functions SwooshR [22] and SwooshL [22],
surpassing the performance of Swish. Additionally, ScaledAdam [22],
a parameter-scale-invariant version of Adam, decouples gradient scale
and direction, further improving convergence.

C. Fine-tuning with Pruned RNN-T Loss

Letter-level CTC [34] loss is commonly employed for downstream
ASR in speech-based SSL, but it is inefficient, slow to converge,
and hard to align. In addition to using letter-level CTC loss for
fair comparisons, we leverage pruned RNN-T loss [35], a memory-
efficient variant of transducer loss [36], to enhance ASR fine-tuning
effectiveness with minimal overhead.

D. Technical Advantages of k2SSL

k2SSL integrates Lhotse [37] to efficiently manage large-scale
datasets by optimizing I/O bandwidth and storage capacity, enabling
seamless scaling for both storage and training. It excels in processing
speech segments stored in shuffled order by duration, utilizing the
DynamicBucketingSampler from Lhotse to eliminate the need
to load entire manifests into memory. By streamingly reading a
subset of manifests to estimate bucket boundaries and maintaining a
fixed-size buffer, this approach ensures consistent data loading times,
regardless of dataset size. As a result, pre-training on vast datasets
like the 60,000-hour Libri-Light [24] is initiated in merely dozens of
seconds, in contrast to the lengthy loading times and huge memory
demands of traditional frameworks.

Moreover, pre-trained HuBERT checkpoints from fairseq2 are com-
patible with k2SSL, supporting further fine-tuning for downstream
tasks.

2https://github.com/facebookresearch/fairseq/tree/main/examples/hubert

IV. EXPERIMENTS

A. Experimental Setups

Four distinct experimental setups are detailed in Table I, with
all Base models containing (∼95M) parameters and Large model
containing (∼306M) parameters. Setups 1 and 2 (Rows 1 & 2) utilize
the Transformer encoder as the backbone. Setup 1 uses the original
HuBERT loss, and Setup 2 adopts cross-entropy (CE) loss during pre-
training. Setups 3 and 4 (Rows 3 & 4) employ Zipformer Base and
Zipformer Large with CE loss for pre-training. Setups 1, 3, and 4 set
batch sizes to fully exploit single GPU memory. With the memory-
efficient designs, Zipformer Base and Zipformer Large require only
8 and 32 GPUs, respectively, without gradient accumulation. This
allows for a larger effective batch size while requiring only 1/4 of
the GPUs compared to the original HuBERT [3], which necessitates
32 and 128 GPUs.
Dataset 960 hours of LibriSpeech [23] audio or 60,000 hours of
Libri-light [24] audio are used for pre-training. 100 hours or 960
hours of LibriSpeech are considered for fine-tuning.
Pre-training We directly utilize the target labels identical to those
used in HuBERT [3] and WavLM [4] for fair comparisons. Since
these targets are well-established, there is no need for metrics like
phone purity, cluster purity, or PNMI, aligning with our intention
to attribute performance differences to model and training variations
rather than target quality. All Base models are pre-trained for 300
epochs (400k steps for HuBERT Base, 225k steps for Zipformer
Base) on unlabeled 960 hours of LibriSpeech audio, using 500-class
k-means labels derived from clustering the 6th layer of the first
iteration HuBERT Base model. Zipformer Large is pre-trained for
250k steps on 60,000 hours of Libri-Light, using 500-class k-means
labels extracted from the 9th layer of the second iteration HuBERT
Base model3. The same masking strategies as in [3] are used.
ScaledAdam with β = (0.9, 0.98) is applied alongside Eden [22]
scheduler.
Fine-tuning with Pruned RNN-T Loss 500-class Byte Pair En-
coding (BPE) [38] word pieces are selected as the classification units.
For decoding, we adopt constrained beam search [39] with a beam
size of 8, which permits only one symbol emission per frame.
Fine-tuning with CTC Loss The CTC vocabulary comprises 26
English letters, a space, an apostrophe, and a CTC blank symbol.
The decoding process with an external language model follows [3],
utilizing the wav2letter++ [40] beam search decoder, formulated as
follows:

log pCTC(y | x) + w1 log pLM (y) + w2|y|, (3)

where x is the input audio, y is the predicted text, |y| is length of
the text, and w1 and w2 are the language model weight and word
score coefficients.

B. Experimental Results

Table II presents the ASR performance of the fairseq pre-trained
HuBERT Base (Row 1), k2SSL pre-trained HuBERT Base with two
distinct pre-training losses (Rows 2 & 3), and k2SSL pre-trained
Zipformer Base (Row 4). All models are fine-tuned within the k2SSL
framework on the LibriSpeech-100h, using the pruned RNN-T loss.
The following conclusions can be drawn from the analysis:

• Compared to the fairseq pre-trained HuBERT Base, the k2SSL
pre-trained HuBERT Base with the assistance of ScaledAdam
optimizer achieves a speedup ratio of approximately 1.5 (Row
2 vs. 1);

3https://dl.fbaipublicfiles.com/hubert/hubert base ls960.pt

https://github.com/facebookresearch/fairseq/tree/main/examples/hubert
https://dl.fbaipublicfiles.com/hubert/hubert_base_ls960.pt

TABLE II: Comparison of Word Error Rates (WERs) without an external language model during decoding on LibriSpeech dev/test sets
and pre-training speedup ratios measured in total GPU hours. All models are pre-trained on unlabeled LibriSpeech-960h and fine-tuned
on labeled LibriSpeech-100h using pruned RNN-T loss, 500-class BPE word pieces as modeling units, and ScaledAdam as optimizer.

Model Backbone
Pre-train Word Error Rate (%) GPU

Hours
Pre-train
SpeedupToolkit Optimizer Loss Function dev-clean dev-other test-clean test-other

HuBERT Base Transformer fairseq Adam HuBERT 4.88 12.06 4.98 11.65 1878 1x

HuBERT Base Transformer k2SSL ScaledAdam HuBERT 4.67−4.3% 12.05−0.0% 4.81−3.4% 11.53−1.0% 1270 1.48x
HuBERT Base Transformer k2SSL ScaledAdam CE 4.54−7.0% 11.61−3.7% 4.77−4.2% 11.09−4.8% 886 2.12x
Zipformer Base Zipformer k2SSL ScaledAdam CE 3.67−24.8% 7.86−34.8% 3.80−23.7% 7.87−32.4% 531 3.53x

TABLE III: Comparison of WERs w/wo a language model between
Zipformer Base and baseline models on LibriSpeech dev/test sets. All
models are pre-trained on unlabeled LibriSpeech-960h and fine-
tuned on labeled LibriSpeech-100h, using CTC loss and letters
as modeling units. The results of baseline models are collected from
their respective papers or fine-tuned based on official checkpoints.

Model LM
Word Error Rate (%)

dev-clean dev-other test-clean test-other

wav2vec 2.0 Base [2] None 6.1 13.5 6.1 13.3
HuBERT Base None 5.3 13.0 5.4 12.6

WavLM Base [4] None - - 5.7 12.0
Zipformer Base None 4.7 9.6 4.4 9.8

wav2vec 2.0 Base [2] 4-gram 2.7 7.9 3.4 8.0
HuBERT Base [3] 4-gram 2.7 7.8 3.4 8.1
WavLM Base [4] 4-gram - - 3.4 7.7
Zipformer Base 4-gram 2.6 6.4 3.0 6.8

• The simplified pre-training loss further provides a around 2.1x
pre-training speedup and a relative WER reduction of up to 3.8%
(Row 3 vs. 2, test-other);

• When using Zipformer as the backbone, the largest WER reduc-
tion is obtained across all dev and test sets of LibriSpeech (Row
4 vs. 3). Compared to the original HuBERT Base, Zipformer
Base achieves significant relative WER reductions by up to
24.8% on dev-clean, 34.8% on the dev-other, 23.7% on test-
clean, and 32.4% on test-other while yielding a 3.53 pre-training
speedup (Row 4 vs. 1). This indicates the superiority of the
k2SSL framework with the Zipformer encoder as the backbone.

Table III presents the ASR performance of Zipformer Base against
three leading SSL models. The results are either collected from the
original paper or fine-tuned on LibriSpeech-100h using CTC loss with
letter-level modeling units based on publicly available checkpoints.
The key observations from the results can be made:

• Without language model fusion, Zipformer Base significantly
outperforms wav2vec 2.0 Base, HuBERT Base, and WavLM
Base by relative WER reductions up to 28.9% (Row 4 vs. 1,
dev-other), 26.2% (Row 4 vs. 2, dev-other), and 22.8% (Row 4
vs. 3, test-clean), respectively;

• The performance advancement of Zipformer Base is maintained
when incorporating an external 4-gram language model for
decoding. Zipformer Base brings a relative WER reduction of
up to 19.0% (Row 8 vs. 5, dev-other), 18.0% (Row 8 vs. 6,
dev-other), and 11.8% (Row 8 vs. 7, test-clean), respectively.

Table IV reports the ASR performance of Large variants on the

TABLE IV: Comparison of WERs without an external language
model on LibriSpeech test sets. All models are trained with trans-
ducer or pruned RNN-T loss on labeled LibriSpeech-960h.

Model Unlabeled
Data

Word Error Rate (%)
test-clean test-other

Supervised
Transformer Transducer [41] - 2.4 5.6
Conformer-L Transducer [42] - 2.1 4.3
Conformer-L Pruned Transducer [22] - 2.5 5.6
Zipformer-L Pruned Transducer [22] - 2.1 4.6

Pre-trained
Conformer-L [43] LL-60k 2.0 4.5
HuBERT Large LL-60k 1.8 3.9
Zipformer Large LL-60k 1.8 4.0

full LibriSpeech. Results are either sourced from the original paper or
fine-tuned on LibriSpeech-960h within the k2SSL framework, using
pruned RNN-T loss with publicly available checkpoints. The main
takeaways from the results are:

• Both HuBERT Large and Zipformer Large, fine-tuned within the
k2SSL framework, outperform all supervised models;

• Zipformer Large (308.0M) achieves comparable performance
against HuBERT Large (318.7M) with much fewer pre-training
steps (250k vs. 400k). We are optimistic that more pre-training
steps will yield better results, as observed in the Base variant.

These observations show the remarkable capabilities and advance-
ments of the k2SSL approach in improving both efficiency and
effectiveness.

V. CONCLUSIONS

This paper introduces k2SSL, a scalable framework designed for
more efficient and effective self-supervised speech representation
learning, tailored for downstream ASR tasks. By optimizing the Hu-
BERT architecture and adopting Zipformer as the backbone, k2SSL
achieves remarkable reductions in both memory usage and training
time, making it accessible to a broader range of research teams
and organizations. Extensive experiments on LibriSpeech and Libri-
Light validate the superiority of k2SSL, with Zipformer-based SSL
systems significantly outperforming HuBERT and WavLM, achieving
a 3.5x pre-training speedup and notable WER reductions. The related
resources, including the k2SSL framework, training configurations,
and pre-trained models, are publicly available to facilitate further
research.

REFERENCES

[1] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec: Unsu-
pervised pre-training for speech recognition,” in Proc. INTERSPEECH,
Graz, 2019.

[2] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
framework for self-supervised learning of speech representations,” in
Proc. NeurIPS, 2020.

[3] W. N. Hsu, B. Bolte, Y. H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and
A. Mohamed, “HuBERT: Self-supervised speech representation learning
by masked prediction of hidden units,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 29, 2021.

[4] S. Chen, C. Wang, Z. Chen et al., “WavLM: Large-scale self-supervised
pre-training for full stack speech processing,” IEEE Journal of Selected
Topics in Signal Processing, vol. 16, 2022.

[5] A. Baevski, A. Babu, W. N. Hsu, and M. Auli, “data2vec: A general
framework for self-supervised learning in speech, vision and language,”
in Proc. ICML, Baltimore, 2022.

[6] ——, “Efficient self-supervised learning with contextualized target rep-
resentations for vision, speech and language,” in Proc. ICML, Honolulu,
2023.

[7] A. Mohamed, H. yi Lee, L. Borgholt et al., “Self-supervised speech
representation learning: A review,” IEEE Journal of Selected Topics in
Signal Processing, vol. 16, 2022.

[8] J. Li et al., “Recent advances in end-to-end automatic speech recog-
nition,” APSIPA Transactions on Signal and Information Processing,
vol. 11, 2022.

[9] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you need,”
in Proc. NeurIPS, Long Beach, 2017.

[10] S. W. Yang, H. Chi, Y. S. Chuang et al., “SUPERB: Speech processing
universal performance benchmark,” in Proc. INTERSPEECH, Brno,
2021.

[11] M. Łajszczak, G. Cámbara, Y. Li et al., “BASE TTS: Lessons from
building a billion-parameter text-to-speech model on 100k hours of data,”
arXiv preprint arXiv:2402.08093, 2024.

[12] M. Le, A. Vyas, B. Shi et al., “Voicebox: Text-guided multilingual
universal speech generation at scale,” in Proc. NeurIPS, Vancouver,
2024.

[13] V. Pratap, A. Tjandra, B. Shi et al., “Scaling speech technology to 1,000+
languages,” arXiv preprint arXiv:2305.13516, 2023.

[14] A. Radford, J. W. Kim, T. Xu et al., “Robust speech recognition via
large-scale weak supervision,” in Proc. ICML, Honolulu, 2023.

[15] Y. Zhang, W. Han, J. Qin et al., “Google USM: Scaling automatic speech
recognition beyond 100 languages,” arXiv preprint arXiv:2303.01037,
2023.

[16] W. Kang, X. Yang, Z. Yao, F. Kuang, Y. Yang, L. Guo, L. Lin, and
D. Povey, “Libriheavy: a 50,000 hours ASR corpus with punctuation
casing and context,” in Proc. ICASSP, Seoul, 2024.

[17] Y. Yang, Z. Song, J. Zhuo et al., “Gigaspeech 2: An evolving,
large-scale and multi-domain ASR corpus for low-resource languages
with automated crawling, transcription and refinement,” arXiv preprint
arXiv:2406.11546, 2024.

[18] Z. Jin, Y. Yang, M. Shi, W. Kang, X. Yang, Z. Yao, F. Kuang, L. Guo,
L. Meng, L. Lin, Y. Xu, S.-X. Zhang, and D. Povey, “LibriheavyMix:
a 20,000-hour dataset for single-channel reverberant multi-talker speech
separation, ASR and speaker diarization,” in Proc. INTERSPEECH, Kos
Island, 2024.

[19] M. Ott, S. Edunov, A. Baevski et al., “fairseq: A fast, extensible toolkit
for sequence modeling,” in Proc. NAACL-HLT, Minneapolis, 2019.

[20] S. Watanabe, T. Hori, S. Karita et al., “ESPnet: End-to-end speech
processing toolkit,” in Proc. INTERSPEECH, Hyderabad, 2018.

[21] A. T. Liu and Y. S. wen, “The S3PRL toolkit: Self-supervised speech
pre-training and representation learning,” https://github.com/s3prl/s3prl,
2020.

[22] Z. Yao, L. Guo, X. Yang, W. Kang, F. Kuang, Y. Yang, Z. Jin, L. Lin,
and D. Povey, “Zipformer: A faster and better encoder for automatic
speech recognition,” in Proc. ICLR, Vienna, 2024.

[23] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an
ASR corpus based on public domain audio books,” in Proc. ICASSP,
South Brisbane, 2015.

[24] J. Kahn, M. Rivière, W. Zheng et al., “Libri-Light: A benchmark for
ASR with limited or no supervision,” in Proc. ICASSP, Barcelona, 2020.

[25] W. Chen, X. Chang, Y. Peng, Z. Ni, S. Maiti, and S. Watanabe,
“Reducing barriers to self-supervised learning: HuBERT pre-training
with academic compute,” in Proc. INTERSPEECH, Dublin, 2023.

[26] T. Q. Lin, H. Y. Lee, and H. Tang, “MelHuBERT: A simplified hubert
on mel spectrograms,” in Proc. ASRU, Taipei, 2023.

[27] G. Yang, Z. Ma, Z. Zheng et al., “Fast-HuBERT: an efficient training
framework for self-supervised speech representation learning,” in Proc.
ASRU, Taipei, 2023.

[28] S. Ren, S. Liu, Y. Wu, L. Zhou, and F. Wei, “Speech pre-training with
acoustic piece,” in Proc. INTERSPEECH, Incheon, 2022.

[29] Y. Yang, F. Shen, C. Du, Z. Ma, K. Yu, D. Povey, and X. Chen, “Towards
universal speech discrete tokens: A case study for ASR and TTS,” in
Proc. ICASSP, Seoul, 2024.

[30] R. Fan, Y. Wang, Y. Gaur, and J. Li, “Ctcbert: Advancing hidden-unit
bert with ctc objectives,” in Proc. ICASSP, Rhodes Island, 2023.

[31] C. Wang, Y. Wang, Y. Wu, S. Chen, J. Li, S. Liu, and F. Wei,
“Supervision-guided codebooks for masked prediction in speech pre-
training,” in Proc. INTERSPEECH, Incheon, 2022.

[32] Z. Ma, Z. Zheng, G. Yang, Y. Wang, C. Zhang, and X. Chen, “Pushing
the limits of unsupervised unit discovery for SSL speech representation,”
in Proc. INTERSPEECH, Dublin, 2023.

[33] A. H. Liu, W. N. Hsu, M. Auli, and A. Baevski, “Towards end-to-end
unsupervised speech recognition,” in Proc. SLT, Doha, 2022.

[34] A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber, “Connec-
tionist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proc. ICML, Pittsburgh, 2006.

[35] F. Kuang, L. Guo, W. Kang, L. Lin, M. Luo, Z. Yao, and D. Povey,
“Pruned RNN-T for fast, memory-efficient ASR training,” in Proc.
INTERSPEECH, Incheon, 2022.

[36] A. Graves, A. rahman Mohamed, and G. E. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proc. ICASSP, Vancouver, 2013.

[37] P. Żelasko, D. Povey, J. Trmal, and S. Khudanpur, “Lhotse: a speech
data representation library for the modern deep learning ecosystem,” in
NeurIPS Data-Centric AI Workshop, 2021.

[38] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” in Proc. ACL, Berlin, 2016.

[39] W. Kang, L. Guo, F. Kuang, L. Lin, M. Luo, Z. Yao, X. Yang, P. Zelasko,
and D. Povey, “Fast and parallel decoding for transducer,” in Proc.
ICASSP, Rhodes Island, 2023.

[40] V. Pratap, A. Y. Hannun, Q. Xu et al., “Wav2letter++: A fast open-source
speech recognition system,” in Proc. ICASSP, Brighton, 2019.

[41] Q. Zhang, H. Lu, H. Sak, A. Tripathi, E. McDermott, S. Koo, and
S. Kumar, “Transformer transducer: A streamable speech recognition
model with transformer encoders and RNN-T loss,” in Proc. ICASSP,
Barcelona, 2020.

[42] A. Gulati, J. Qin, C. C. Chiu et al., “Conformer: Convolution-augmented
transformer for speech recognition,” in Proc. INTERSPEECH, Shanghai,
2020.

[43] Y. Zhang, J. Qin, D. S. Park et al., “Pushing the limits of semi-
supervised learning for automatic speech recognition,” in Proc. NeurIPS
Self-Supervised Learning for Speech and Audio Processing Workshop,
2020.

	Introduction
	HuBERT and its Variants
	HuBERT
	Efficient Variants
	Effective Variants

	k2SSL
	Analysis and Optimization of HuBERT Architecture
	Adapting Zipformer and ScaledAdam for SSL
	Fine-tuning with Pruned RNN-T Loss
	Technical Advantages of k2SSL

	Experiments
	Experimental Setups
	Experimental Results

	Conclusions
	References

