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Abstract

Titanium and its alloys are the most commonly used materials for dental implants and hydroxyapatite is the most

common bioactive material coated on titanium dental implants. Hydroxyapatite is from the ceramic class of biomaterials

which has chemical and structural similarity with the biological apatite which forms the major inorganic portion of bone

and tooth. It is not only bioactive, but also osteoconductive and non-toxic. The most interesting property of

hydroxyapatite is its ability to interact with living bone tissue, forming strong bonds with the bone. Since the introduction

of dental implants by Branemark in 1981, hydroxyapatite has gained attention as a preferred bioactive coating material

for titanium dental implants and is still a hot topic of discussion. So, in this article an attempt has been made to give an

overview of present techniques of hydroxyapatite coatings on titanium dental implants, including their advantages,

disadvantages and limitations.
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Introduction

Titanium and its alloys are the most commonly used materials for dental implants because of their excellent

biocompatibility, superior mechanical strength, and high corrosion resistance. However, they are bio-inert and do not bond

or integrate with tissues (bone). A direct structural and functional connection between bone and the surface of an implant

is critical for success of implant therapy. Therefore, to facilitate implant fixation and bone growth, bioactive agents are

being applied on the surface of dental implants. [1][2][3].

Bioceramic coatings are classified into two main categories- bioinert (such as alumina and zirconia) and bioactive (such
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as calcium phosphate/hydroxyapatite and bioglass) coatings [2][3][4]. The bioinert ceramic coatings have the advantage of

good biocompatibility and higher mechanical properties compared to the other. However, the high brittleness, high elastic

modulus and the poor interaction ability with the surrounding tissues limit the use of bioinert ceramics in this field. On the

other hand, calcium phosphate and bioglass, are more extensively used to treat the Ti implant due to their abilities to

enhance the adhesion between the implant and the bone by interacting with the tissues [2][5][6].

Since the introduction of dental implants by Branemark in 1981, efforts have been made to improve osseointegration and

osteogenesis by coating the implant surface with hydroxyapatite [1][2]. Hydroxyapatite comes under the ceramic class of

biomaterials which has chemical and structural similarity with biological apatite present in bone and tooth. It is the major

inorganic constituent in bone and tooth. Titanium implants are commonly coated with it, infact hydroxyapatite has become

an ultimate candidate for coating titanium dental implants. It is not only bioactive, but also osteoconductive and non-

toxic [2][3][4][5]. The bonds they make with the bone are of a physico-chemical nature[4]. The bone cells interact with the

hydroxyapatite forming ionic, hydrogen and Vander walls bonds. Hydroxyapatite can crystallize as a fine salt depending on

the Ca/P ratio, the formation temperature, the presence of water or impurities and, depending on the preparation medium,

in a humid environment at relatively low temperatures[4][5].

Hydroxyapatite was the material of choice in the past for coating titanium dental implants and is still a hot topic of interest.

But, in between there was a period when its use was questioned and it was about to disappear from the market because

of its vulnerability to periimplantitis, dissolution, and failed interfacial adhesion between implant and hydroxyapatite [6][7].

However, advancements in coating methods have brought back the interest in hydroxyapatite coating. It is now known

that the properties of hydroxyapatite, including bioactivity, biocompatibility, solubility, mechanical and adsorption

properties can be adapted to a wide range of applications by controlling particle composition, size and morphology. The

most interesting property of hydroxyapatite is its ability to interact with living bone tissue, forming strong bonds with the

bone. The clinical concern with its use regarding the bonding strength between coating and the alloy/ Ti substrate can be

increased by thermal spraying technology such as hot dip method, chemical vapour deposition method, slurry method etc.

Thermal spray coating is the most efficient and commonly applied method now-a-days on metallic implants due to its

uniform coating layer on the metal surfaces.

Each Implant manufacturer has its own proprietary coating process. There are many methods reported in the literature for

forming hydroxyapatite coatings on Titanium implant surfaces which can be broadly classified under two categories –

Pyroprocessing methods (e.g. Plasma spraying, sol- gel method, electron beam sputtering, ion beam sputtering etc.), and

Hydroprocessing methods (e.g. Cathodic electrolysis method, thermal substrate method etc.) [8].

Some of the commonly used hydroxyapatite coating techniques are briefly discussed in this article. Among those

techniques, only plasma spraying is commercially approved by the Food and Drug Administration (FDA), USA for

biomedical coatings on implants due to its excellent coating properties over other coating methods[9]. However, this

technique is limited now-a-days because of some limitations mentioned below under the heading ‘Plasma spraying.’ So,

alternative coating approaches have been extensively developed and tested like the sol–gel dip coating and

electrochemical deposition techniques have relative ease of production, ability to apply a uniform coating over complex
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geometric shapes, easy set up at room temperature, the potential to deliver exceptional mechanical properties, corrosion

resistance, and adhesion strength due to their nanocrystalline structure.

Active ingredients Entrapment methods of nano- and micro-encapsulation to achieve the desired controlled release of the

ingredients are being actively researched. Conventionally it was done by binding them to the substrate or coatings or

mixing them into the coating material and applying the mixture to the implant surface. However, recently interest has

shifted to a new method of entrapment of the active ingredient within another substance by microencapsulation or

nanoencapsulation. Recently, coating with a bioactive growth factor (hydroxyapatite-BMP-2 coating) has been determined

to enhance the relationship between an implant and the bone to which it is attached. BMP-2 enhances the osteogenic

activity of osteocytes, accelerates osteoblast differentiation, and further promotes bone formation. It can also induce

dentin and post-implant healing. Bacteriostatic and bactericidal agents like zinc are also being incorporated in the

hydroxyapatite coating[10][11]. Another hot topic which has received increased biomedical research attention in recent

years is the influence of pore size and porosity of HA coatings on 3D-printed Ti scaffolds which have inherent porous

structures[12][13]. Besides the implementation of coatings, titania nanotube formation using anodization has gained interest

nowadays[14].

Sol- Gel Dip- coating Technique

The process starts with dispersion of the precursor particles (fine nano-sized particles) in an aqueous or alcohol solution

forming a colloidal suspension (the sol). Then the addition of catalysts to the sol promotes polymerization reactions

involving hydrolysis and polycondensation forming a gel [15][16].

The dip-coating method (DCM) consist of a wellcontrolled immersion process. The speed and time of immersion are

determinant factors of film thickness [17]. Generally, it allows for the attainment of very thin films, and thus maintains the

original surface roughness of implants. Thick or irregular coating layers are not desirable because it might modify the

surface roughness and could negatively interfere with cell adherence, differentiation, and consequently affecting

osseointegration.

DCM consists of five sequential steps: (1) immersion of the pretreated titanium implant in the coating mixture at a

specified rate; (2) keeping the implant immersed in the mixture for a specific amount of time; (3) lifting the implant out of

the mixture or lowering the mixture container, which results in the formation of a wet liquid film of the coating on the

surface of the implant; (4) draining off the excess liquid for the coating application from the implant surface; and (5) drying

the coating layer by evaporation of the solvent under ambient conditions, thus forming a thin film on the substrate which

can eventually be hardened by conventional or laser sintering [17][18][19][20][21].

Various methods are used to synthesize nanocrystalline hydroxyapatite, such as hydrothermal, mechanochemical,

precipitation, hydrolysis, and sol–gel methods. The sol–gel method can improve the chemical homogeneity of

hydroxyapatite in comparison with other techniques, as it involves a mixing at the molecular level of calcium and

phosphorus precursors[15][14].
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But, in the dip coating-sintering technique the high-temperature sintering cycle has been judged to be unsatisfactory

because of its adverse effect on the mechanical properties of the titanium implant like the excessive grain growth and loss

of the wrought structure of both the commercially pure Ti and Ti-6Al-4V substrates[17]. Another area of concern is the

bond strength between the HA coating and the substrate which is not high enough to insure that interfacial failure will not

occur during the lifetime of the implant[16].

Electro-chemical Deposition (ECD)

“Electrochemical deposition is a process by which a thin and tightly adherent desired coating of metal, oxide, or salt can be

deposited onto the surface of a conductor substrate by simple electrolysis of a solution containing the desired metal ion or

its chemical complex”[22].

It is the conventional well-known process based on the principle of electrolysis, that uses electrical current to reduce the

cations of a desired material from an electrolyte and coat those materials as a thin film onto a conductive substrate

surface[23]. In other words it is a well-known method to produce in situ thin, metallic, inorganic or organic coating by the

action of an electric current on a conductive material immersed in a solution containing a salt of the metal to be deposited.

Other terms like electrodeposition and electroplating are also used for this method[24].

Advantages of ECD are that it is performed at room temperature, is a rapid, straightforward and versatile method capable

of delivering an HA coating on titanium implants with satisfactory homogeneity, thickness, and bonding strength as it has

good control of the coating material’s thickness, uniformity, crystallinity, and stoichiometry [24][25][26]. This technique can

overcome the phase transition problems of PS-fabricated HA coatings and also the morphology of the HA coating can be

modified by adjusting the electrochemical deposition parameters like the pH, temperature, and the deposition voltage and

immersion time during the coating process. Other advantages of this technique are that anodic oxidation of Ti can improve

the tear strength between HA coatings and Ti substrates and HA coatings can be doped with Mg to change the properties

and facilitate the control of the dissolution rate of the HA coatings [27][28].

Electro- phoretic Deposition

In this method, electrodes are immersed in a colloidal suspension, and a potential is applied between the two electrodes

which results in movement of the charged suspended particles from the solution to the oppositely charged electrode

(substrate), followed by the deposition of these particles on the electrode and the formation of a uniform coating up to 2.00

mm thick [29][30][31].

Benefits are improved anti-corrosion property, improved adhesion, bioactivity, suitable cell viability, increased adhesion

strength, thickness and roughness of coatings, improved corrosion resistance, and apatite formation by raising the BG

concentration[29][30].

This technique has limited use as it applies a high voltage of 90V to deposit coating, followed by high sintering
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temperatures and the crystal structures and coating compositions are changed after the deposition[30][31].

Biomimetic coating

Biomimetic means it mimicks nature or biology as near physiological conditions are employed for deposition of the

apatites. This is a relatively new method in which heterogeneous nucleation and crystal growth of the coating occurs,

which has bonelike properties. For this, pretreatment of implant surface is done by using either alkaline (NaOH) or acidic

(HF or HCl) solutions or heat treatment. Then, the substrate is immersed in simulated body fluid (SBF) at body

temperature (37 C) and physiological pH (7.4). It is important that the SBF contains an ion concentration similar to human

blood plasma. The obtained results after several weeks in SBF are CaP-based coatings deposited on the Implant

surface [32][33][34][35].

The advantages of this method are that it allows for the production of homogeneous HA coatings on porous implants, and

functional and biological agents, such as growth factors, could be incorporated in HA coatings because of the near

physiological conditions employed[33]. However, the thickness, the formation rate, and the quality of the coating are

difficult to control using this method, and the bonding strength of the coating is also unacceptable[34].

Plasma spraying (PS)

Plasma spraying is a type of thermal spraying. It has been established as the most commonly used commercial coating

technique for the fabrication of CaP/ HAP coatings on Ti–6Al–4V implant surface due to its time convenience, high

repeatability, efficiency, and simplicity[36]. In this method, generation of a direct current arc in the plasma torch, which

consists of a cone-shaped cathode and a cylindrical anode is done. Then, HA material in the form of powder is fed into the

spray gun, heated to a semi-molten or molten state (the plasma flame temperature being in the range of 6,000 -16000

degree centigrade) and then propelled to the implant surface with a high impact velocity (up to 400 m/s) which results in

the coating material particles get flattened on the implant surface in the form of splats/lamellae with a large surface area

and a thickness in the micrometre range [37][38][39][40].

Based on the differences in the pressure conditions, there are variants of plasma spraying technique like atmospheric

plasma spraying (APS) employed under atmospheric conditions, low-pressure plasma spraying (LPPS), also known as

vacuum plasma spraying (VPS), operates at 3-7 kPa, and very low-pressure plasma spraying (VLPPS) operates at 50-

200 Pa [36][37][38][39][40][41].

Although PS is the preferred method in most cases, its excessively high temperature and the subsequent rapid cooling

procedure generate a large amount of amorphous HA, and variations in the structure of HA occurs[1][2][38]. In addition, the

interior coating of the 3D porous implants is not accessible due to the line-of-sight nature of the spraying process[36][38].

Thus, this coating method has significant drawbacks/limitations like coating porosity, residual stress at the coating
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interface, and drastic changes in the composition and crystallinity of the calcium phosphate (CaP) powder[36]. Thus, there

is poor uniformity in coating thickness and its adherence to substrate, phase impurity, low crystallinity, the degradation of

bending strength and fatigue life caused by the dissolution of hydroxyapatite phase in long-term contact with body fluids,

poor mechanical properties like tensile strength, wear resistance, hardness, toughness and fatigue, and not being able to

produce a uniform hydroxyapatite coating with complex geometry[1][2][3][4][5][37]. As this technique often does not ensure

adequate adhesion of the coating to the substrate, a large coating thickness is required to ensure uniform coatings, and

delamination of the coatings may often occur. Due to the very high process temperatures, it is less suitable for

temperature-sensitive materials (e.g. organic coatings, heat-labile biological molecules) and also limits (but does not rule

out) the possibility of drug release applications [38][39][40][41][42].

High-Velocity Suspension Flame Spraying Technique (HVSFS)

It is a new method of acquiring the nanostructured dense surface coatings on the titanium implant surface by spraying the

nanoparticles with hypersonic speed for which the powder is dispersed in aqueous or organic solvent and fed axially into

the combustion chamber of a modified High-Velocity Oxyfuel spray-torch[41][42][43][44][45]. This has been developed

because the conventional High Velocity Oxygen Fuel (HVOF) spraying processes are not suitable to achieve nano-

particles coatings. The powder is processed in the form of a suspension (in aqueous or organic solvent) to solve the

problems related to handling of powders composed of nanosized particles, and by doing this its feeding is also facilitated

with quite simple thermal spray techniques[42][43].

Examples are the suspension plasma spraying (SPS) or the solution precursor plasma spraying (SPPS) methods. The

liquid solvent used in this technique permits to inject particles in the thermal flow which is then heated, accelerated and

sprayed onto the substrate. Thus, as compared to conventional plasma spraying, SPS and SPPS are more complex

methods because fragmentation and vaporization of the liquid solvent control the coating buildup

mechanisms [43][44][45][46][47].

Physical vapour deposition (PVD)

It refers to the vacuum deposition methods where materials are evaporated or sputtered, transferred in the form of atoms,

molecules, or ions and deposited onto the substrate surface in the form of thin films. Vapour generation can occur by two

physical processes [48][49][50]:

i. Thermal evaporation (heating of the material until its vapour pressure exceeds the ambient pressure) and

ii. Sputtering (bombardment of the solid surface by energetic ions and ejection of neutral atoms for example ion beam

deposition and magnetron sputtering). The latter is more useful for hydroxyapatite deposition.

Thermal evaporation involves the phase change from solid to vapor under vacuum conditions (to minimize contamination),

in which evaporated atoms of a solid precursor (here hydroxyapatite) placed in an open crucible can travel directly and
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condense onto the surface of a substrate (implant).

Sputtering involves a process of ejecting neutral atoms from a target surface using energetic particles (argon ions) which

can be easily accelerated towards the cathode by means of an applied electric potential, hence bombarding the target.

These ejected atoms are then transferred and condensed on the surface of the substrate to form a coating. There are

several variants of sputtering method the simplest model being the diode plasma, which consists of an anode and a

cathode, inside a vacuum system [49][50][51][52]. The sputtering target is mounted on the cathode. Appropriate potential

difference is applied between the cathode and anode which ionizes argon gas and creates a plasma discharge. The argon

ions then get attracted and accelerated toward the sputtering target and displace some of the target atoms. This results in

electron emission that subsequently collide with gas atoms to form more ions that sustain the discharge [48][51].

PVD technology includes a wide range of techniques, like cathodic arc deposition, electron beam deposition, evaporative

deposition, pulsed laser deposition, ion plating, ion beam deposition, magnetron sputtering, etc [53][54][55][56][57]. For the

deposition of bioactive hydroxyapatite based coatings on titanium implants, sputtering techniques are the ones found to be

more convenient than others.

However, Ion beam sputtering has disadvantages, such as a high cost, low deposition rates and a relatively small capacity

per chamber batch. Another type of sputtering employs radio fre‐ quency diodes that operate at high frequency.

Magnetron sputtering is one option to overcome the problems such as delamination and low bond strength that may arise

with plasma spray methods[46]. Magnetron sputtering allows operation at lower voltages and pressures, because it uses

magnets to form a magnetic field parallel to the target which allows trapping of the secondary electrons near the target[54].

This induces more collisions with neutral gases and increases plasma ionisation. Overall, the method provides a high

deposition rate, high purity, outstanding adhesion of the coating to the substrate.

It has been noted that sputtered films possess higher adhesion to the substrate compared to the evaporation method.

Sputtering is a promising method due to its ability to produce dense and thin coatings, as well as provide good bond

strength[48][49].

Thus, the beneficial features of PVD are high coating density, high bio-adhesion strength, formation of multi-component

layers, and low substrate temperature.

Pulsed laser deposition (PLD)

It is a physical vapor deposition (PVD) technique where a high-power pulsed laser beam is focused inside a vacuum

chamber to strike a target of the material that is to be deposited[55].

In this a laser having a high-power density and narrow frequency bandwidth is used as a source for vaporizing the desired

material and there is almost no restriction on the target material to be used. This technique can be considered when other

techniques have failed to make the deposition and has been used to synthesize the nanotubes, nanopowders[56][57][58].
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This technique has shown to produce various bioceramic coatings including stoichiometric HA onto metallic substrates

under controlled experimental conditions. These HA coated metal implants are expected to be superior in function [59][60]

Chemical vapour deposition (CVD)

CVD is similar to PVD in the basic process of utilizing vapour and generating a thin film on a substrate. It differs from PVD

in that it does not generate vapour from a solid or liquid source in a vacuum chamber. Instead, vapours or gasses are

introduced into the chamber from an external source which then gets deposited on the substrate surface in multiple

directions in the form of non-volatile solids through a chemical reaction[2][3][61]. Thus, unlike PVD, it involves a chemical

reaction of vapour-phase precursors and the chemical reactions of precursors occur both in the gas phase and on the

substrate which results in better adhesion to the surface. Another significant difference from that of PVD is that it is not

limited to line-of-site application and thus, can be theoretically applied to any area the coating gas can get into, coating

gas will coat all areas of a part including threads, blind holes, and interior surface. Activation energy is often required to

initiate the reaction and the gaseous by-products produced during the reaction are periodically pumped out[61][62].

Additional References
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