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Abstract

This manuscript presents a detailed mathematical analysis of survival
thresholds in branching Markov chains, with applications to the study of
species navigation. We examine conditions under which a species, modeled
as a branching Markov chain, can survive constrained on returning to its
birth place to give birth. The study demonstrates that survival is possible
only when the return probability of an individual to its birth place exceeds
1/2. Our model, extending recent work by Lebensztayn and Pereira, offers
new insights into the interplay between survival probability and navigation
skills. These findings provide a theoretical framework for understanding
evolutionary dynamics in species with varying degrees of navigation skills,
explored through mathematical modeling.

1 The model

Let S be a countable set. For x and y in S, let p(x, y) be the transition probabil-
ity from x to y for an irreducible discrete time Markov chain X on S. Let O be
a fixed site in S. We define a branching Markov chain Y as follows. At time 0,
Y starts with a single individual at O. At every discrete time, if the individual
is at x it jumps to y with probability p(x, y) (the transition probabilities of X).
Before each step the individual has a probability 1 − α of dying where α is a
fixed parameter in (0, 1]. Whenever the individual returns to O it gives birth to
another individual which performs the same dynamics. All individuals behave
independently of each other. The process Y is said to survive if it has at least
one individual somewhere in S at all times. Let β be the probability that the
Markov chain X starting at O eventually returns to O. The next result shows
that β determines whether Y may survive.
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Theorem 1. If β ≤ 1/2 the branching Markov chain Y dies out for all α in
(0, 1). If β > 1/2 there exists αc ∈ (0, 1) such that Y has a positive probability
of surviving for α > αc but dies out for α ≤ αc.

Our branching Markov chain Y is a generalization of a model recently intro-
duced by Lebensztayn and Pereira (2023). There, S = Z, p(x, x + 1) = p and
p(x, x−1) = 1−p where p is a parameter in [0, 1]. In this setting the probability
of return is known to be β = 1−|1−2p|, see for instance Grimmett and Stirzaker
(2001). Note that β > 1/2 if and only if 1/4 < p < 3/4. By direct computation
Lebensztayn and Pereira (2023) proved that survival is possible if and only if
p is in that range. This note was motivated by the desire to understand their
nice result.

As a consequence of our result we see that if the Markov chain X is recurrent
(i.e. β = 1) then survival is always possible for some α. On the other hand if
the Markov chain is too transient (i.e. β ≤ 1/2) then survival is possible for
no α. For instance, survival is possible for the simple symmetric random walk
on S = Zd for d = 2 since this is a recurrent chain but not possible for d ≥ 3,
McCrea and Whipple (1940) estimated β to be about 0.34 in d = 3.

2 Evolutionary paths

Going back to our biological application we can think of (p(x, y)) as the proba-
bilities that an individual uses to pick a direction and of α as a measure of the
leniency of the environment. Whether the species will survive depends on how
likely an individual is to find its birth place in a perfectly lenient environment
(i.e. α = 1). This in turn depends on S and (p(x, y)).

This model suggests an evolutionary path for species with poor navigation
skills to evolve into species with great navigation skills. One can imagine an
ancestral species with limited range S and a completely absence of direction
(p(x, y)). Expanding the range provides more food supply and gives a selec-
tive advantage. However, expanding the range can only happen if navigation
skills improve. Hence, there is an interplay between expanding the range and
improving navigation skills. As the sense of direction gets more accurate the
range can expand. The end result is great navigation skills and an infinite range.
Our model predicts that such an evolutionary path is possible provided all the
intermediate species have navigation skills that are suitable for their range.

3 Proof of Theorem 1

Following Lebensztayn and Pereira (2023) we define a Bienaymé-Galton-Watson
process (BGW in short) Z that keeps track of the genealogy of the processY. Let
Z0 = 1 and let Z1 be the number of returns of the initial individual to O. Since
at each return a new individual is born Z1 also counts the number of children
of the initial individual. We can think of Z1 as the number of individuals in
the first generation. We define Z2 as the number of children born from the first

2



generation (i.e. the grandchildren of the initial individual) and so on. Since all
the individuals are independent of each other and follow the same dynamics Z
is indeed a BGW process. Moreover, the process Z survives if and only if the
process Y survives. We will use that a BGW survives if and only if the mean
offspring of a given individual is strictly larger than 1, see for instance Schinazi
(2010).

Note that the total offspring of one individual is the number of times this
individual returns to O without being killed. Hence, the mean offspring per
individual for the process Z is for 0 < α < 1,

µ(α) =
∑
n≥1

αnpn(O,O), (1)

where pn(O,O) denotes the probability that the Markov chain X starting at
time 0 at O returns to O at time n.

We will need the following well known recurrence criterion, see for instance
Theorem 1.1 in Chapter 5 in Schinazi (2010). An irreducible Markov chain X
is recurrent if and only if ∑

n≥1

pn(O,O) = +∞, (2)

for some state O. We also will need the following result for power series, see
Proposition A 1.9 in Port (1994).

Lemma 2. Assume that (bn) is a sequence of positive real numbers such that
the series

∑
n≥1 bns

n converges for all s in [0, 1). Then,

lim
s→1−

∑
n≥1

bns
n =

∑
n≥1

bn,

where both sides of the equality may be infinite.

There are two cases to consider. Assume first that the Markov chain X is
recurrent (i.e. β = 1). Then, by Lemma 2 and (2),

lim
α→1−

µ(α) =
∑
n≥1

pn(O,O) = +∞.

Since µ is continuous on (0, 1) and limα→0 µ(α) = 0, there exists αc in (0, 1) such
that µ(αc) = 1. Since µ is strictly increasing, µ(α) > 1 if and only if α > αc.
Hence, the process Z ( and therefore Y) survives with positive probability if
and only if α > αc. This proves Theorem 1 in the case β = 1.

Consider now the case when the Markov chain X is transient. That is, the
probability β to return to O is strictly less than 1. By the Markov property, the
offspring distribution for the branching process Z is for α = 1,

P (Z1 = j|Z0 = 1) = (1− β)βj ,
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for j = 0, 1, 2 . . . . Observe that since 0 < β < 1 this is a proper probability
distribution (it is not when β = 1). Using this offspring distribution we get that
the mean offspring µ(α) for α = 1 is,

µ(1) =
β

1− β
.

Note that µ(1) > 1 if and only if β > 1/2. Moreover, µ(α) can also be expressed
using equation (1) for all α ≤ 1 (including α = 1).

If β > 1/2 then µ(1) > 1. By Lemma 2 the function µ is continuous on (0, 1].
It is also strictly increasing. Hence, there exists αc < 1 such that µ(αc) = 1 and
µ(α) > 1 if and only if α > αc. That is, the process Y survives with positive
probability if and only if α > αc.

On the other hand if β ≤ 1/2 then µ(1) ≤ 1. Since µ is an increasing
function, µ(α) ≤ 1 for all α ≤ 1. The process Y survives for no value of α. This
concludes the proof of Theorem 1.
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