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We address protein structure prediction in the 3D Hydrophobic-Polar lattice model through two novel

deep learning architectures. For proteins under 36 residues, our hybrid reservoir-based model combines

�xed random projections with trainable deep layers, achieving optimal conformations with 25% fewer

training episodes. For longer sequences, we employ a long short-term memory network with multi-

headed attention, matching best-known energy values. Both architectures leverage a stabilized Deep Q-

Learning framework with experience replay and target networks, demonstrating consistent achievement

of optimal conformations while signi�cantly improving training e�ciency compared to existing methods.
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1. Introduction and Related Work

Simulating protein folding is a fundamental challenge in biophysics and computational biology, yet it is

crucial for understanding protein structure, function, and dynamics, with signi�cant implications for drug

discovery and disease diagnosis. The Hydrophobic-Polar (HP) model serves as a simpli�ed yet powerful

framework for studying protein folding, classifying amino acids as either hydrophobic (H) or polar (P) on a

lattice structure. Despite its apparent simplicity, �nding optimal conformations in the HP model remains

NP-complete, making it particularly challenging for larger proteins. Early approaches to this problem

employed various computational methods, including genetic algorithms[1], Monte Carlo simulations with

evolutionary algorithms[2], and memetic algorithms with self-adaptive local search[3]. Additional

methodologies encompassed ant colony optimization[4], core-directed chain growth[5], and the pruned-

enriched Rosenbluth method (PERM)[6]. Recent advances in deep reinforcement learning (DRL) have

opened new avenues for addressing the protein folding challenge. Notable contributions include Q-learning

approaches[7], hybrid methods combining Q-learning with ant colony optimization[8], and FoldingZero[9],

which integrates Monte Carlo tree search with convolutional neural networks. Building upon these
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foundations, we propose two novel architectures: (1) a reservoir computing-based hybrid

architecture[10]  that captures temporal dependencies in the protein folding process and (2) an LSTM

network enhanced with multi-head attention layers that e�ectively models long-range interactions

between amino acids[11]. These architectural approaches have individually demonstrated success in various

domains, including time series prediction[12], speech recognition[13], and robot control[14].Our work

represents the �rst application of reservoir computing to the protein folding problem in the 3D HP model,

while also introducing an attention-enhanced LSTM architecture speci�cally designed for longer protein

sequences. The reservoir-based approach leverages the computational e�ciency of �xed, randomly

initialized recurrent neural networks to project input data into high-dimensional space, while the attention

mechanism in the LSTM architecture enables e�ective modeling of interactions between distant amino

acids. Both architectures consistently achieve optimal conformations matching the best known energy

values while demonstrating improved training e�ciency compared to traditional approaches. The

remainder of this paper is organized as follows: Section 2 formulates the protein folding problem in the 3D

HP model as a deep reinforcement learning problem and describes our proposed architectures and training

methodology, Section 3 presents experimental results comparing our approach with other state-of-the-art

methods and analyzing the role of both the reservoir and attention mechanisms, and Sections 4 and 5

discuss implications and conclude the paper.

2. Methodology

In this section, we describe the methods used to model the problem as Markov Decision Process (MDP) and

introduce the details of the architectures.

2.1. Modeling the problem in a cubic lattice

Let    be a 3D cubic lattice with lattice points  . Similar to  [15], the protein folding process is

modeled as a self-avoiding walk (SAW) on  , where each amino acid in the sequence occupies a single lattice

point, and no two amino acids can occupy the same point simultaneously. The SAW begins by placing the

�rst two amino acids at positions    and    in the cubic lattice. The following

constraints are imposed on the placement of subsequent amino acids:

Distance constraint: The distance between consecutive amino acids in the sequence must be exactly one

lattice unit. Let    and    be the positions of two consecutive amino

acids. Then, the distance constraint can be expressed as:

G (x,y, z) ∈ Z
3

G

= (0, 0, 0)r ⃗ 0 = (0, 1, 0)r ⃗ 1

= ( , , )r ⃗ i xi yi zi = ( , , )r ⃗ i+1 xi+1 yi+1 zi+1

∥ − ∥ = (( − + ( −r ⃗ i+1 r ⃗ i xi+1 xi)2 yi+1 yi)2

= 1+( − )zi+1 zi)2
1

2

(1)
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Bond angle constraint: The bond angles formed by three consecutive amino acids must be restricted to

90° or 180° to ensure rotational invariance. Let  ,  , and    be the positions of three consecutive

amino acids. The bond angle constraint can be expressed as:

where   denotes the dot product and   denotes the cross product.

Self-avoidance constraint: The chain must not intersect with itself, i.e., no two amino acids can occupy

the same lattice point. This can be expressed as:

where   is the total number of amino acids in the sequence.

Translational invariance: Translational invariance is ensured by the presence of primitive translation

vectors   that map the lattice onto itself. The translation vectors are de�ned as:

where  .

In this problem, the objective is to �nd the optimal conformation that maximizes the number of

hydrophobic-hydrophobic (H-H) contacts in the folded protein. An H-H contact occurs when two non-

consecutive hydrophobic amino acids are placed adjacent to each other in the lattice. The energy of a given

fold is de�ned as the negative of the total number of valid H-H contacts:

By minimizing the energy function, the most stable conformation with the maximum number of H-H

contacts can be found.

2.2. DRL Setup

By treating the protein folding process as a SAW, the RL agent places the amino acids sequentially. In our

setup, the protein is considered the agent, and the cubic lattice represents the environment. The length of

the path corresponds to the number of amino acids in the protein sequence. At the end of each episode, the

environment provides the agent with a reward based on the energy of the achieved fold.

2.2.1. Markov Decision Process Formulation

A MDP is de�ned by a tuple  , where    is the state space,    is the action space,    is the

transition probability function,    is the reward function, and    is the discount factor. At each

discrete time step  , the agent interacts with the environment by observing the current state    and

taking an action  . The environment then transitions to a new state    according to the

r ⃗ i r ⃗ i+1 r ⃗ i+2

( − ) ⋅ ( − ) = 0r ⃗ i+1 r ⃗ i r ⃗ i+2 r ⃗ i+1

( − ) × ( − ) =r ⃗ i+1 r ⃗ i r ⃗ i+2 r ⃗ i+1 0⃗ 

(for a 90° angle)

(for a 180° angle)

(2)

⋅ ×

≠ ∀i, j ∈ 0, 1, … ,N − 1, i ≠ jr ⃗ i r ⃗ j (3)

N

( , , )a ⃗ 1 a ⃗ 2 a ⃗ 3

= + +T ⃗  n1a ⃗ 1 n2a ⃗ 2 n3a ⃗ 3 (4)

, , ∈ Zn1 n2 n3

E = −(number of valid H-H contacts) (5)

(S,A,P,R,γ) S A P

R γ ∈ [0, 1]

t ∈ Sst

∈ Aat ∈ Sst+1
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transition probability function   and provides a reward   to the agent. The objective of

the agent is to learn a policy    that maximizes the expected cumulative reward over an episode,

de�ned as  , where   is the length of the episode.

2.2.2. Deep Q-Learning with Stabilization Techniques

Deep Q-learning (DQN) is a reinforcement learning algorithm that combines Q-learning with deep neural

networks to optimize the conformations achieved by the agent in the protein folding problem. Q-learning is

a value-based method that learns the optimal action-value function, or Q-function, which represents the

expected future reward for taking a particular action in a given state. The Q-function, denoted as  ,

satis�es the Bellman optimality equation:

where    is the reward received at time step    for carrying out action    at state  ,    is the

discount factor that determines the importance of future rewards, and    is the state at time step  .

The expectation   is taken over all possible next states and actions, re�ecting the average outcome based on

the agent’s policy and the environment’s dynamics. The optimal Q-function, denoted as  , satis�es

the Bellman optimality equation and provides the maximum expected future reward for taking action    in

state  . DQN addresses the limitations of traditional Q-learning, which becomes intractable for problems

with large state spaces, by approximating the Q-function using a deep neural network. The neural network,

parameterized by  , takes the state    as input and outputs the Q-values for each action  . The training

objective is to minimize the mean-squared error loss function:

where   is the next state,   is the next action, and   represents the parameters of a target network.

The target network is a separate neural network that is periodically updated with the parameters of the main

network, denoted as  . The use of a target network is a key stabilization technique introduced in the DQN

paper by  [16], which helps to mitigate the issue of divergence in the learning process. During training, the

agent interacts with the environment and stores the experienced transitions    in a

replay bu�er  . The replay bu�er is a �xed-size cache that stores the most recent transitions experienced

by the agent. At each training step, a minibatch of transitions   is sampled uniformly from the

replay bu�er to update the parameters of the main network  . The use of a replay bu�er helps to break the

correlation between consecutive samples and stabilizes the learning process by providing a diverse set of

experiences for training.

P( | , )st+1 st at ∈ Rrt+1

π : S → A

E[ ]∑T
t=0 γ

trt T

Q(s,a)

Q(s,a) = E[ + γ Q( , )]rt+1 max
at+1

st+1 at+1 (6)

rt+1 t + 1 at st γ ∈ [0, 1]

st+1 t + 1

E

(s,a)Q∗

a

s

θ s a

L(θ) = E[ ](r + γ Q( , ; ) − Q(s,a; θ))max
at+1

st+1 at+1 θ−
2

(7)

st+1 at+1 θ−

θ

= ( , , , )et st at rt+1 st+1

D
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The training process is displayed in Figure 1 and proceeds as follows:

1. Sample a minibatch of transitions   from the replay bu�er  .

2. For each transition  , compute the target:

3. Update the parameters   of the main network by minimizing the loss function:

4. Every   steps, update the parameters   of the target network by copying the parameters   of the main

network:

5. Select an action   based on the current state   using an  -greedy policy derived from the Q-values:

where   is the exploration rate that determines the probability of selecting a random action instead of

the greedy action with the highest Q-value.

6. Execute the selected action   in the environment and observe the next state   and reward  .

7. Store the transition   in the replay bu�er  .

, , … ,e1 e2 eN D

= ( , , , )et st at rt+1 st+1

= {yt
 if   is terminalrt+1 st+1

+ γ Q( , ; )rt+1 maxa′ st+1 a′ θ− otherwise
(8)

θ

L(θ) = ( − Q( , ; θ)1
N
∑N

t=1 yt st at )2 (9)

C θ− θ

← θθ− (10)

at st ϵ

= {at
argmaxQ( ,a; θ)st
random action

with probability 1 − ϵ

with probability ϵ
(11)

ϵ

at st+1 rt+1

( , , , )st at rt+1 st+1 D
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Figure 1. Deep reinforcement learning training loop. In a), we sample a batch of experience from

the bu�er. The batch then serves as input to the Q - network in b). Based on the output Q - value

tensor, the agent makes a decision in c) to take   that corresponds to the greatest value of the Q

- output tensor. In step d), the experience is stored in the replay memory..

2.2.3. State Representation

We represent the states using one-hot encoded vectors. Each state vector consists of two parts: the �rst part

represents the available actions (forward (F), backward (B), right (R), left (L), up (U), and down (D)), and the

second part encodes the type of amino acid (H or P) at the current position. Speci�cally, the state is an 8-

dimensional vector, where the �rst six elements correspond to the possible actions the agent can take: No

Decision (ND), F, L, R, U, D. The last two elements represent the type of amino acid (H or P). For each

training episode, we obtain a 3D shape tensor ( ,8,1), where    is the length of the protein sequence. The

�rst dimension corresponds to the time steps, that is, the positions in the protein sequence, while the

second dimension represents the state features (actions and amino acid type). The third dimension is a

singleton dimension to facilitate input to the neural network. This state representation allows the agent to

make informed decisions based on the available actions and the type of amino acid at each position. By

concatenating action and amino acid information, the neural network can learn the dependencies between

at+1

N N
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amino acid placements and the resulting energy conformations. It is important to note that the neural

network does not directly observe amino acid placements; instead, it deduces this information from actions

taken thus far. The “No Decision” (ND) indicates a state where no further moves are possible, leading to

episode termination. The backward action (B) is excluded because once an amino acid is placed at a position,

revisiting that position is not feasible; thus, it cannot be performed in this context.

2.3. Q - Network Architectures

In this subsection, we describe the two architectures proposed in this paper.

2.3.1. Hybrid - Reservoir

The architecture consists of a reservoir layer followed by several fully connected layers, as illustrated in

Figure 2.

Figure 2. The input layer consists of a (N, 8, 1) tensor representing the state at a particular timestep. The

reservoir is a randomly initialized weight matrix with a topology speci�ed beforehand. The linear layers

consists of a simple fully-connected feed forward neural network. The output is a (5, 1) tensor representing

the Q - value or future expected total reward per action.

The input to the reservoir neural network is a �attened vector representation of the state, denoted as 

, where    is the sequence length and    is the dimensionality of the one-hot encoded vector

described in 2.2.3. The reservoir layer applies a �xed random projection of the input into a high-dimensional

space. Mathematically, the reservoir layer can be described as follows:

x ∈ R
N×d N d

r(t) = f( x(t) + Wr(t − 1))Win (12)
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where    is the reservoir state at time step  ,    is the input state,    is the

trainable input weight matrix,    is the reservoir weight matrix, and    is the activation

function (e.g., hyperbolic tangent). The reservoir weight matrix   is randomly initialized and remains �xed

during training. It follows a speci�c connectivity pattern, such as the Erdős-Rényi topology, which

promotes a limited number of active connections among neurons. The sparsity and connectivity of the

reservoir are important factors in determining its computational capacity and ability to capture complex

dynamics. The size of the reservoir, denoted as  , is a hyperparameter that depends on the length and

complexity of the protein sequence. Empirically, we found that a reservoir size of 1000 works well for

sequences of length  , while for longer sequences ( ), a larger reservoir size of around 3000

is used to capture the increased complexity. The reservoir layer applies a hyperbolic tangent (tanh)

activation function to introduce nonlinearity. The output of the reservoir layer is then passed through a

series of fully connected layers with Recti�ed Linear Unit (ReLU) activation functions. The sizes of the fully

connected layers are 512, 256, 128, and 84, respectively. These layers learn to extract meaningful features

from the reservoir representation and progressively reduce the dimensionality of the feature space. The �nal

output layer is a fully connected layer with a size equal to the number of actions, which generates the Q-

values for each action.

2.3.2. LSTM with Multi-Head-Attention

For long proteins, we employ an LSTM architecture with multi-head attention[17]. The architecture consists

of an LSTM layer, a multi-head attention mechanism, and a fully connected output layer, as illustrated in

Figure 3.

r(t) ∈ R
Nr t x(t) ∈ R

d ∈Win R
×dNr

W ∈ R
×Nr Nr f(⋅)

W

Nr

N ≤ 36 N = 48, 50
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Figure 3. LSTM-A architecture for protein folding. Sequential states are processed through LSTM cells,

generating hidden states that are weighted by an 8-head attention mechanism. The attention output is

mapped to action Q-values through a fully connected layer, enabling the model to leverage both sequential

patterns and long-range dependencies.

The multi-head attention mechanism enhances the network’s ability to focus on di�erent aspects of the

input sequence simultaneously. Given an input sequence processed by the LSTM layers producing hidden

states  , where   is the sequence length and   is the hidden dimension, the attention mechanism

computes attention patterns across four di�erent representation subspaces. For each attention head  , the

mechanism computes:

where  ,  , and   are linear projections of the LSTM output  , and   is the dimension of the key vectors.

The outputs from all heads are concatenated and projected to the required dimensionusing a weight matrix 

:

Our implementation uses a hidden size of   with four attention heads. The LSTM layer processes the

input sequence with batch-�rst ordering, and the attention mechanism operates on the full sequence of

LSTM outputs. The �nal output is obtained by selecting the last time step of the attention output, followed

by a fully connected layer that maps to the action space dimension.

H ∈ R
N×d N d

i

(Q, K, V) = softmax( )VAttentioni

QKT

dk
−−

√
(13)

Q K V H dk

WO

MultiHead(H) = Concat( , … , )head1 head4 WO (14)

d = 512
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3. Experiments and Results

To evaluate our approach, we utilized sequences with best-known energy values published in Table 1

from[18]. Figure 4 illustrates the optimal folds for various sequences, providing a benchmark for our

experiments. We began our investigation with the baseline Fully Connected Feedforward Neural Network

(FFNN), which employs a four-layer architecture (512→256→84→output-size) with ReLU activations. This

model was e�ective for shorter sequences (N    36), demonstrating reasonable performance in achieving

optimal energy states. However, it struggled with longer sequences, often failing to converge to the best-

known values for more complex protein structures. This limitation highlighted the need for enhancements

that could better capture the intricate dynamics of protein folding. To address these shortcomings, we

introduced the Reservoir-based Fully Connected Feedforward Neural Network (FFNN-R). By incorporating a

reservoir layer initialized using Xavier uniform initialization and tanh activation, FFNN-R enhanced the

network’s temporal memory capabilities while maintaining training e�ciency. The reservoir’s sparsity and

speci�c connectivity patterns allowed for improved processing of input data. Empirical results showed that

FFNN-R outperformed the vanilla FFNN, converging to optimal energy states faster, requiring

approximately 25% fewer training episodes to reach these conformations. Particularly for shorter

sequences, FFNN-R consistently achieved BKVs for sequences A1-A5 and A8-A10, showcasing its superior

convergence speed. Building on the improvements seen with FFNN-R, we explored LSTM architectures to

further enhance performance on longer sequences. The LSTM-OLH architecture utilized traditional LSTM

cells while relying solely on the last hidden state for decision-making. While this approach provided some

improvements over FFNN, it still struggled to e�ectively capture long-range dependencies critical in protein

folding. To maximize performance further, we developed the LSTM-A architecture, which incorporated a

multi-head attention mechanism. This enhancement allowed the model to dynamically weigh di�erent

temporal aspects of the state sequence, e�ectively capturing long-range interactions between amino acids.

The results indicated that LSTM-A signi�cantly outperformed both LSTM-OLH and vanilla FFNN

implementations for longer sequences (N > 36). It consistently achieved optimal or near-optimal energy

states that matched BKVs for sequences 3d1-3d5 and approached BKVs for more challenging sequences like

3d6-3d9. Throughout our experiments, we employed a stabilized Deep Q-Learning framework with

experience replay and an epsilon-greedy strategy for action selection. The training utilized a single NVIDIA

H100 GPU with architectures implemented in PyTorch version 2.5.0 running on CUDA version 11.8. The Adam

optimizer was used with a learning rate of 0.001, and we selected the smooth L1 loss function for its

e�ectiveness in DQL tasks with discrete action spaces. As shown in Figure 5, for shorter sequences (N   36),

FFNN-R outperformed other architectures and converged to optimal energy states more rapidly. However,

for longer sequences, LSTM-A exhibited superior performance compared to both LSTM-OLH and vanilla

≤

≤
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FFNN implementations. The training process revealed that the attention mechanism in LSTM-A began to

play a crucial role after approximately 100,000 training episodes, coinciding with signi�cant improvements

in energy minimization. This suggests that the network �rst learns local folding patterns before leveraging

attention to capture long-range dependencies. In contrast, the FFNN-R architecture demonstrated rapid

initial convergence, often reaching near-optimal conformations within the �rst 50,000 episodes,

particularly for shorter sequences. Moreover, FFNN-R provided more e�cient parameter utilization as it

required only 264,445 trainable parameters compared to LSTM-A’s 6,324,741. In summary, our �ndings

illustrate a clear progression in model performance from vanilla FFNN to reservoir-based architectures and

�nally to LSTM networks with attention mechanisms. Each architectural enhancement addressed speci�c

challenges in protein folding prediction, culminating in models that not only achieved optimal

conformations but also demonstrated improved training e�ciency across varying sequence lengths.

Figure 4. Least Energy Conformations for di�erent sequences.
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Figure 5. Plots a) 3d1 and b) 3d5 show the minimum conformation energy as a function of episode.

Figure 6. Plots a) A2 and b) A4 show the minimum conformation energy as a function of episode.
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Seq. Length Sequence BKV

3d1 20 (HP)2PH(HP)2(PH)2HP(PH)2

3d2 24 H2P2(HP2)6H2

3d3 25 P2HP2(H2P4)3H2

3d4 36 P(P2H2)2P5H5(H2P2)2P2H(HP2)2

3d5 46 P2H3PH3P3HPH2PH2P2HPH4

    PHP2H5PHPH2P2H2P  

3d6 48 P2H(P2H2)2P5H10P6

    (H2P2)2HP2H5  

3d7 50 H2(PH)3PH4PH(P3H)2P4

    (HP3)2HPH4(PH)3PH2  

3d8 58 PH(PH3)2P(PH2PH)2H(HP)3

    (H2P2H)2PHP4(H(P2H)2)2  

3d9 60 P(PH3)3H5P3H10PHP3

    H12P4H6PH2PH  

Table 1. Sequences and their corresponding best known conformation energy values (BKV).
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Seq. Length Sequence BKV

A1 27 PHPHPH3P2HPHP11H2P

A2 27 PH2P10H2P2H2P2HP2HPH

A3 27 H4P5HP4H3P9H

A4 27 H3P2H4P3HPHP2H2P2HP3H2

A5 27 H4P4HPH2P3H2P10

A6 27 HP6HPH3P2H2P3HP4HPH

A7 27 HP2HPH2P3HP5HPH2PHPHPH2

A8 27 HP11HPHP8HPH2

A9 27 P7H3P3HPH2P3HP2HP3

A10 27 P5H2PHPHPHPHP2H2PH2PHP3

A11 27 HP4H4P2HPHPH3PHP2H2P2H

Table 2. Sequences and their corresponding best known conformation energy values (BKV) (continued).

−9

−10

−8

−15

−8

−12

−13

−4

−7

−11

−16
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Seq. Length BKV GA BILS LSTM-A

3d1 20 -11 -11 -10 -11

3d2 24 -13 -13 -9 -13

3d3 25 -9 -9 -7 -9

3d4 36 -18 -18 -12 -18

3d5 46 -35 -32 -22 -33

3d6 48 -31 -31 -19 -30

3d7 50 -34 -30 -18 -32

3d8 58 -44 -37 -23 -40

3d9 60 -55 -50 -36 -51

Seq. Length BKV GA TPPSO FFNN-R

27 -9 -8 -9 -9

27 -10 -10 -10 -10

27 -8 NA -8 -8

27 -15 -15 -15 -15

27 -8 -8 -8 -8

27 -12 NA -11 -11

27 -13 -13 -12 -12

27 -4 -4 -4 -4

27 -7 -7 -7 -7

27 -11 NA -11 -11

Table 3. Energy values of 3d protein sequences obtained by di�erent algorithms. The right-most column

corresponds to the least energy conformation found by our models. The results of all experiments tabulated in

Table 4 in the appendix section.

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10
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3.1. E�ciency

The LSTM-A and FFNN-R architectures demonstrate distinct computational pro�les in memory usage and

training e�ciency. LSTM-A requires 2.4GB memory for sequences   36 residues (3d1-3d4), with memory

distributed across LSTM layers (512 units, 1.8GB), multi-head attention mechanism (0.4GB), and auxiliary

layers (0.2GB). FFNN-R maintains a consistent 800MB footprint, comprising a sparse reservoir (1000 nodes,

10% connectivity, 400KB), input weights (1000 × 8, 32KB), and fully connected layers (256 and 84 nodes,

 1MB), with remaining memory allocated to batch processing and gradients. Training performance reveals

signi�cant di�erences between architectures. LSTM-A requires 500,000 episodes for optimal convergence

on longer sequences (48-50 residues), with training times averaging 8 hours for sequences    36 and

extending to 48 hours for sequences 3d5-3d9. In contrast, FFNN-R achieves convergence in approximately

200,000 episodes for shorter sequences (   36 residues), completing training in 1.5 hours. FFNN-R’s

reservoir demonstrates e�cient exploration, achieving 80-90% unique conformational states within the

�rst 50,000 episodes before focusing on promising conformations. LSTM-A compensates for its higher

computational demands through parallel processing via its multi-head attention mechanism, enabling

e�cient handling of longer sequences while reducing computational bottlenecks.

4. Discussion

Our analysis reveals several key insights into both architectures’ e�ectiveness. The LSTM-A’s 4-head

attention mechanism proves optimal for capturing long-range dependencies in protein folding, as

evidenced by the attention weight patterns shown in Figure 7. The visualization demonstrates how di�erent

attention heads specialize over training iterations – initially showing uniform weights (yellow matrices)

that evolve into distinct patterns capturing both local and global protein structure interactions. Network

depth beyond 5 layers shows a decrease in performance, while batch size of 32 provides optimal balance

between memory usage and training stability.

≤

≤

≤
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Figure 7. Evolution of multi-head attention weights during protein structure prediction training.

Each row shows the attention patterns of four attention heads at di�erent training iterations (0,

80,000, 160,000, and 200,000). The x and y axes represent query and key positions in the protein

sequence, with colors indicating attention strength (purple: 0.0 to yellow: 0.05).

Compared to traditional genetic algorithms and Monte Carlo methods, the LSTM-A demonstrates superior

performance on longer sequences while requiring signi�cantly less computational time to reach optimal

conformations. The evolution of attention weights in Figure 7 reveals how Head 1 develops periodic patterns

suggesting secondary structure detection, while Head 2 shows strong position-speci�c interactions through

deeper blue-green regions. Heads 3 and 4 capture broader contextual patterns with more di�use attention

distribution, enabling the model to simultaneously process both local and long-range amino acid

interactions.
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The FFNN-R’s success relies on its 1000-neuron reservoir for sequences up to length 36, with linear scaling

required for longer sequences. The reservoir’s ability to implicitly model temporal dependencies allows the

network to capture essential folding patterns without explicit recurrent connections, contributing to its

computational e�ciency. When compared to traditional FFNN and hybrid approaches like BILS, the FFNN-R

shows faster convergence and better energy minimization for shorter sequences. Both FFNN and FFNN-R

demonstrate robust performance across multiple independent training runs. While traditional approaches

like ant colony optimization and pruned-enriched Rosenbluth method often require multiple restarts to

achieve optimal results, our architectures show consistent performance with lower variance in �nal energy

values.

However, several important limitations emerge at scale. LSTM-A training becomes computationally

demanding beyond 60 amino acids, while FFNN-R performance degrades signi�cantly after length 36.

Memory requirements for LSTM-A scale quadratically with sequence length, potentially limiting application

to very long sequences. The performance on benchmark sequences suggests both architectures capture

fundamental principles of protein folding within the HP model. The LSTM-A’s success on longer sequences

indicates e�ective modeling of the hierarchical nature of protein folding, where local structures form �rst

and then assemble into global conformations, as demonstrated by the progressive specialization of

attention heads in Figure 7. The FFNN-R’s e�ciency on shorter sequences suggests rapid learning of local

interactions, often su�cient for determining smaller protein structures, providing a more e�cient

alternative to traditional Monte Carlo sampling approaches.

When compared to core-directed chain growth methods and hybrid evolutionary algorithms, both LSTM-A

and FFNN-R show comparable or superior performance in terms of �nal energy values while requiring less

parameter tuning and fewer computational resources. The attention mechanism in LSTM-A particularly

excels at capturing the kind of long-range interactions that traditional methods often struggle to model

e�ectively, with the attention weights visualization in Figure 7 showing clear evidence of the model learning

to focus on both local structural motifs and distant amino acid interactions during training.

4.1. Limitations and Future Directions

Our implementation achieves state-of-the-art results for the HP model, though important limitations

remain. The reservoir-based approach shows decreased performance for proteins exceeding 36 residues,

while the LSTM-A architecture, though more robust for longer sequences, demands substantial

computational resources and training time. Future work should address several key challenges: extending

the architectures to handle realistic protein force �elds, incorporating additional physical constraints,

optimizing the attention mechanism’s e�ciency for longer sequences, and exploring hybrid approaches
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that leverage the strengths of both architectures. The linear scaling relationship between sequence length

and reservoir size also merits investigation for improved e�ciency. The HP model provides an ideal

benchmark system, capturing fundamental protein folding aspects while remaining computationally

tractable. Its NP-complete nature in �nding optimal conformations makes it particularly valuable for

testing new algorithms. Notably, our methods successfully achieve optimal conformations that align with

known energy minima.

5. Conclusion

This study advances protein structure prediction through two novel architectures. The LSTM-A achieves

good performance on longer sequences (N   36), while the FFNN-R provides e�cient solutions for shorter

sequences. Both consistently match best-known energy values across benchmark sequences. The success of

these architectures demonstrates the viability of deep learning approaches in protein structure prediction,

while establishing new benchmarks for computational e�ciency. Their complementary strengths suggest

promising directions for handling proteins of varying lengths and complexities. Future work should explore

hybrid architectures combining LSTM-A and FFNN-R strengths, more e�cient attention mechanisms for

longer sequences, and parallel training strategies.

Appendix A. Experiments

All of the conducted experiments are tabulated in Table A.1.

>
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Table A.1. 3D Trial Runs, Dictionary: LSTM-OLH   LSTM - OnlyLastHidden, LSTM-A (Num of Heads)   LSTM -

with Attention, FNN-VANILLA   Without Reservoir, FNN-Reservoir   With Reservoir

→ →

→ →
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B. Additional Figures

Figure B.1. Reward histograms across the four studied architectures when training for the 3d1

sequence.
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Figure B.2. Reward histograms across the four studied architectures when training for the 3d5

sequence.
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Figure B.3. Loss function across the four studied architectures when training for the 3d1 sequence.
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Figure B.4. Loss function across the four studied architectures when training for the 3d5 sequence.
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