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Abstract

Recent observations from the first dataset, provided by NASA’s James Webb Space Telescope (JWST) of six massive galaxies,
at a time in the early universe, seem to defy conventional cosmological models, as they appear to be as mature and developed as
our own local group. Such unexpected discoveries justify a radically novel model of Cosmology. To quote Joel Leja, assistant
professor of astronomy and astrophysics at Penn State ”It turns out we found something so unexpected it actually creates
problems for science. It calls the whole picture of early galaxy formation into question”. This article provides an alternative
mathematical model of cosmological redshifting (z), which actually predicted such mature galaxies in a 2022 preprint, prior
to these recent observations. As well, this model also predicts discrepancies between theoretical and observed galaxy rotation
curves with apparent increased energy density.
The Azimuthal Projection Model of the Universe is conceptualized as an R5 spacetime, with a four spatial dimensional hyper-
sphere azimuthally projected onto a three-dimensional spatial sphere. This simple parsimonious model requires only a few
assumptions, excluding dark energy to satisfy the Cosmological Constant Λ, and is shown to match the Universal expansion
rate, as established from supernova cosmology survey points. This novel model conceives the universe as a higher dimensional
dynamic with spacetime as a projection, rather than as an arrow from the absolute beginning of the Big Bang. Redshifting is
alternatively proposed as azimuthal angular projections of wavelengths λ. Accelerated Universal Expansion is alternatively pro-
posed as azimuthal projections of meridians, asymptotical to a horizon, and Lambert’s cosine law of luminous intensity.
A radical implication of this model is that azimuthal angular projections are positional dependent, and thus it’s conceivable that
apparent distances between galaxies vary with the location of the observer (see figure 3). Supportive mathematical evidence
is described from the Hubble Tension; Discrepancies between visible spectra redshifting of cepheid variables (the most recent
calculation is Ho = 74.03±1.42km/sec/M pc), and from temperature fluctuations in the Cosmic Microwave Background (CMB)
(which are calculated to be Ho = 68.7± 1.3km/sec/M pc), which resolves the discrepancy by recalibrating redshift data from
supernova Cosmology survey points.

Keywords dark matter · Hubble tension · galaxy rotation curve · accelerated universal expansion

1 Introduction

This novel conceptual model upends the cosmological timeline, redshifting, and accelerating universal expansion. This article
begins by describing how global meridians, which are azimuthally projected onto a flat surface, are asymptotic along the surface,
toward the horizon (away from the observer), in the familiar "Atlas" (gnomonic projected) mapping. By extension, the hyper-
meridians of a R4 (four spatial) dimensional hypersphere, azimuthally projected onto a R3 (three spatial) dimensional sphere,
are shown to be asymptotic along the spherical surface and also away from the observer. A coordinate system is presented (in a
cross-section) to equate the redshifting of wavelengths λ with azimuthal angular projections, Using this equation, redshift (z) is

revised from: z = λobs−λr est
λr est

to be a function of distance xn and hypersphere arc length (radian) z = λ
xnØa −λ
λ . In conjunction with

observed redshifting survey data and Lambert’s cosine law of luminous intensity, the universal hypersphere radius is estimated.
From these established parameters, it is shown how both velocity and energy density appear to increase along azimuthally pro-
jected (skewed) length (x). Additionally, galaxies appear to be dilated (or elongated) along the line of sight, resulting in a flattened
rotation curve. From these established parameters, a function is developed to plot a curve, which is superimposed upon graphs
(Distance modulus (µ) vs redshift (z)) of data points from the HST Key Project. discrepancies between theoretical and observed
galaxy rotation curves, as well as apparent increased energy density are shown to be predicted from this model.
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2 Azimuthal Projections onto an R2 Plane Appear to Expand Outward from the Ob-
server, along the plane

Figure 1 shows an observer on a R2 plane, positioned along a tangent of a R3 sphere, measures projected meridians at distance
xn , per the equation [1]:

xn = R t an(θ) (1)

Figure 1: R3 sphere azimuthally projected onto a R2 plane. Distance from angle θ and radius of sphere.

Figure 2 shows how azimuthally projected meridians are asymptotic along the R2 plane, and toward the horizon (away from
the observer).

Figure 2: meridians are asymptotic along the R2 plane, and toward the horizon (away from the observer).

Figure 3 shows how azimuthal projections expansion is relative to the observer’s position. On the left side, the observer is
positioned along a tangent at projection a, and expansion increases toward point g . However on the right side, the observer is
positioned along a tangent at projection g , and expansion increases toward point a.
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Positional Dependence of Projection Expansion

Figure 3: Azimuthal projections appear as expansion (Position dependent)

3 R4 Hypersphere Azimuthal Projections onto an R3 Sphere Appear to Expand out-
ward from the Observer in three spacial dimensions

Figure 4 shows how azimuthally projected hyper-meridians are asymptotic along the R3 sphere, and outward from the observer.

Figure 4: R4 hypersphere azimuthally projected onto a R3 sphere. hyper-meridians are projected asymptotic along the sphere, and away from
the observer.

4



Figures 5 and 6 show how azimuthal projections redshifting is relative to the observer’s position. On the left side, the observer
is positioned along a tangent at projection a, and redshifting increases toward point g . However, on the right side, the observer
is positioned along a tangent at projection g , and redshifting increases toward point a. A radical implication of this model is
that azimuthal angular projections are positional dependent. Thus, the degrees of redshifting over distance are positionally
dependent. It’s conceivable that our local group would appear to be much more expanded, from the perspective of a remote
observer, and vice versa; vastly remote galaxies would appear to be spaced much closer together, from the perspective of a
remote observer.

Figure 5: Azimuthal projections appear as redshifting (Position dependent)

Figure 6: Positional Dependence of known Galaxies

4 Redshifting is Alternatively Proposed as Azimuthal Angular Projections of Wave-
lengths λ

As Azimuthal projections are asymptotic along the observer’s line of sight, obliqueness increases with distance x. Thus wave
lengths become stretched along the observer’s line of sight x. The observer in spacetime can not directly observe the projections
in hyperspace, and is limited to his line of sight in the x direction. Figure 7 shows how the observer measures the wavelengths λ
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to be skewed (redshifting). Section B −B , the "at rest" wavelength λr est , is normal to the hyperspherical surface. Oblique view
A− A is the "observed" wavelength λobs , with a skewed (elongated) wavelength.

Figure 7: Redshifting, Along Observer’s Line of Sight.

5 Revised Formula for Redshift (z)

Figure 8 is a 2 dimensional cross-section of an R4 (spatial dimensions) hypersphere Azimuthal projected onto a R3 (spatial
dimensions) sphere, and extended along X axis into macrospace. A classic space observer resides along the X axis at reference
frame: x = 0, from which all measurements (xn ̸= 0) are skewed projections, asymptotic to the horizon.

S ∈R2de f = (x, y)||
√

x2 + y2 = r || (2)

F : S → /(x)
[
0, xn

]
(3)

Hyper-meridians and celestial bodies are Azimuthally projected as lateral straight lines, per equation 5:

xn = R t an θ

Solving for R:

R = xn

t an θ
(4)

Øa = R θ =⇒ (5)

Øa = R
(

arctan
x

R

)
(6)

Framed within this model, electromagnetic wavelengths of λ, along the hypersphere circumference of radius R, are considered
to be at rest. However, xn is projected (skewed) along the X axis and observed with resulting redshift (z), similar to the redshifting
equation [2]:

z = λobs −λr est

λr est
(7)

In this alternative model, λobs = λ xnØa ,

z =
λ xnØa −λ

λ
(8)
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Figure 8: Revised redshift (z), and radius of hypershere

Calculating the Universal Hypersphere Radius

The radius R of the hypersphere can be deduced from a spacetime perspective (Where humans reside), by considering, that
observed distance (xR ) must be equal to radius R when the tan of θ is equal to 1, or when θ = π

4 . Thus from the z value, whereØa = R π
4 , and xR = R, radius R is derived,

Øa =R
(π

4

)
Substi tuti ng

π

4
f or θ i n equati on 5 (9)

z =
λ
(

xn
R π

4

)
−λ

λ
Inser t i ng i nto equati on 8 (10)

z = xn

R
(
π
4

) −1 cancel l i ng λ (11)

z = R

R
(
π
4

) −1 Si nce xn = R, (12)

z =
( 4

π

)
−1 Si mpli f i es to, (13)

z =0.273 (14)

Finding R from z = 0.273, using the approximate distance formula,

d ≈ zc

H0
(15)

At current H0 value of: 73.8km/sec/M pc

R ≈ 0.273∗299792km/sec

73.8km/sec/M pc
=⇒ (16)

Thus, the radius of the R5 hypersphere,
R ≈ 1108.987 M pc (17)
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6 Accelerated Universal Expansion is Alternatively Proposed, asR5 Azimuthal Projec-
tions of Meridians, Asymptotical to a Horizon, and Lambert’s Cosine law of Lumi-
nous Intensity

Velocity Appears to Increase Along Projected Length xn

In figure 8. Light waves and energy density are constant along arc lengthØa. However,

Theorem 1 As R5 hyper-spacetime is azimuthally projected onto R4 spacetime, From the r.f. of an observer on the projected
surface, topology is skewed (elongated), and appears expanded outward from the observer. As a result, celestial bodies appear to
be traveling along expanded projected geodesics with increasing velocities (v). This apparent increase in velocity is equivalent to a
decreased time interval (−∆t ). Light-waves appear to travel along Xn with an increased velocity v⃗ ′ of:

v⃗ ′

v⃗
= XnØa (18)

Calculating z per Distance x

Now that R (The radius of the hypersphere) has been established, values of z can be determined from any value of xn . Note that
xn represents a one-dimensional cross-section of the space in which humans measure galactic distance, although it is actually a
skewed projection of hyper-arc length Øa onto classic space. Thus, from values of distance modulus µ and established radius R,
theta is easily determined. Subsequently from theta,Øa is determined. Finally from equation 8, z is derived at any distance xn .

Energy Density Increases along Length Xn

Corollary 1.1 As velocity along skewed x appears to increase per equation 18, energy density ρ proportionally increases, due to
increased velocities in particle kinetic and internal energies (compression, energy of nuclear binding, etc.). The observer at x = 0
measures volume at xn [mpc] with increased energy density ρn per equation:

∆ρn

∆ρ
= (xn −R)

R

Lambert’s Cosine Law of Illumination

Consider that figure 8 describes an oblique projection of a source S with an illuminate value I . According to Lambert’s Cosine
Law of illumination [3], intrinsic values of such projected light will decrease in value with θ per equation:

I = cosθ

r 2 (19)

In this model, the luminous intensity of type Ia supernovae would decrease, accordingly. Thus, conventionally accepted
standard candle measurements along x, would need to be recalculated per Lambert’s Cosine Law.

7 Galaxy Rotation Curve with Increased Density

The discrepancies between theoretical and observed galaxy rotation curves involve both density and velocity. Conventionally,
the dependence of circular velocity Vci r c on radial distance R assumes M , m and velocity to be fixed over large scales in Kepler’s
law, [4]

T 2 = 4π2r 3

GM
⇒ T 2 ∝ r 3

Moreover, gravitational lensing demonstrates the existence of a much greater Mass (density) than the sum of the stars within the
galaxy. However, this alternate model specifically addresses these two issues and provides an alternative explanation,

Kepler’s Law rearranged as density ρ integrated over time d t

Corollary 1.2 Velocity v⃗ and density ρn are measured with increased magnitude per distance xn . This directly extends to energy
density within galaxies and the effects on rotational velocity, such that: As xn increases, centripetal force is perfectly balanced by
increases in v⃗ and, subsequently, ρn ,

v2

r
= G

r 2 M = G

r 2

∫
ρnd t
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Note: total mass M inside the circle of the radius r can be obtained by doing integration of mass density in a volume. M = ∫
ρnd t .

ρ = ρR and ρM (Dark components are excluded from this model, with the intent of presenting an alternative).
Figure 10 shows how skewed projected meridians, along the observer’s line of sight, appear elongated and are measured with
greater density. The result is a flattened rotation curve, per xØa . Thus, an elongated galaxy appears to have greater rotational
velocity and energy density.

Figure 9: Spiral galaxy projection is skewed

Figure 10: Elongated galaxy appears to have greater rotational velocity and energy density.
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lim
r→−rn

∂ρ

∂(ar )
= lim

r→+rn

∂ρn

∂(ar )

8 Graphing a Function that conforms with the Hubble Diagram

From this model of higher dimensional gnomonic projection, function F (z) provides a graph to compare with Supernova Cos-
mology Survey Points. Using z as the dependent variable, and µ as an independent variable, such that F (z) is a function of µ.
From xn in equation 7, Using equation 6, and converting R to megaparsecs.

λXn =
(
λr est

x

1108.987
(

arctan x
1108.987

) )
(20)

Inserting into equation 7,

z =
[
(
λr est

x

1108.987

(
arctan x

1108.987

) )
−λr est

λr est

]
(21)

λr est cancels, leaving,

z =
[(

x

1108.987
(

arctan x
1108.987

) )]
−1 (22)

Converting redshift z to velocity km/sec,

F =
[(

x

1108.987
(

arctan x
1108.987

) )
−1

]
∗300,000km/sec (23)

Substituting Lambert’s equation (19) for x,

F = [( x
(
1108.987∗ cos

((
arctan

( x
1108.987

))))
( cos

((
arctan

(
x

1108.987

)
x2+1108.9872

)))2 +1108.9872

)−1
]∗ cK (24)

Where K is a slope correction constant, which is necessary to offset conventional measurements of standard candle distances.

Table 1 lists extrapolated points, at 50(M pc) intervals, of Function F : d 7→ v | F = {
v, f (d)

}[
0.000,5x108

]
. Also, corresponding

values of µ and z
Figure 11 shows the Function F : d 7→ v | F = {

v, f (d)
}[

0.000,5x108
]

Table 1: Extrapolated points of function F . In successive columns:, [pc] (distance parsec), [km/s] (kilometers per second), [µ] (Distance
modulus), [z] (redshift),

pc km/s µ z
5.000E+07 4.129E+03 33.495 0.014
1.000E+08 8.228E+03 35.000 0.027
1.500E+08 1.227E+04 35.880 0.041
2.000E+08 1.622E+04 36.505 0.054
2.500E+08 2.006E+04 36.990 0.067
3.000E+08 2.377E+04 37.386 0.079
3.500E+08 2.734E+04 37.720 0.091
4.000E+08 3.074E+04 38.010 0.103
4.500E+08 3.397E+04 38.266 0.113
5.000E+08 3.703E+04 38.495 0.124

Figure 12 shows the Function F : z 7→µ | F = {
µ, f (z)

}[
0.000,0.125

]
. Note the familiar curve (in logarithmic scale), which is

conventionally interpreted as ”accelerated expansion”.
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Figure 11: Left: Function F : d 7→ v , with extrapolated points. Right: Function F superimposed onto the HST Key Project

Figure 12: Left: Function F : z 7→ µ, with extrapolated points. Right: Function F with a logarithmic scale, along the z axis. Note the familiar
curve, which is conventionally interpreted as ”accelerated expansion”.
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9 Supportive Evidence of the R5 Azimuthal Projection Model

Galaxy Recession velocities (z redshift and blueshift) will be measured greater on the far side of galaxies. Such a closed system
expanding in azimuthal projected hyperspace would defy the standard model of accelerated universal expansion and dark
energy, where only space between galaxies is assumed to be expanding. Theorem 1, is supported by the following correlation
study[5] "On Possible Systematic Redshifts Across the Disks of Galaxies" . This study shows a deviation from Kepler’s orbital
laws, specifically on the subject of increased velocity on the far sides of multiple galaxies. Although not conclusive, it does justify
consideration of this article.

Note that multiple galaxy surveys with increased velocities across their minor axis. Thus, velocity within the same body
appears to increase per distance. "Velocity observations in 25 galaxies have been examined for possible systematic redshifts
across their disks: a possible origin for the redshifts could be the radiation fields. Velocities increase towards the far sides in
most cases. This is so for the ionized gas, for neutral hydrogen, and in some cases for the stars. The effect is seen as velocity
gradients along the minor axes, as well as in velocity fields of neutral hydrogen in other parts of the galaxies. Deviation of the
kinematic major axis from the optical axis is found for 10 galaxies and in 9 of these the largest velocities occur in the far side. In
the central regions of four galaxies are found large velocity gradients in the same direction. While expanding motions provide an
explanation for some of these features, it remains difficult to thereby explain all the peculiarities found. The faintness of the data
available in this preliminary study should be noticed. Observations specially programmed for this subject would be necessary."

table 2 lists 25 galaxies, correlation coefficients, and relevant columns (including sources of data):

Table 2: List of galaxies for which velocities along the minor axes are available. In successive columns: type; distance; angle between rotation
axis of galaxy and line of sight; regression and correlation coefficients between velocity and distance; source of data

NGC Type d(Mpc) i h(kms−1kpc−1) corr source of data
244 Sb 0.69 77◦ 0.20 0.272 Gottsman and Davis (1970)
253 Sc 4.0 78 0.13 0.012 Burbridge et al. (1963a)
300 Sd 2.4 43 1.03 0.844 Shobbrook and Robinson (1967)
598 Scd 0.72 57 1.51 0.866 Goordon (1971)
613 SBbc 15 47 57.09 0.820 Burbridge et al. (1964c)
972 SBc 17 66 -11.31 -0.670 Burbridge et al. (1964c)

1084 Sc 14 65 -4.75 -0.338 Burbridge et al. (1965)
1097 SBd 12 50 5.00 -0.105 Burbridge and Burbridge (1960)
1365 SBd 15 66 -79.21 -0.976 Burbridge et al. (1962a)
1792 Sbc 10 64 10.12 -0.578 Rubin et al. (1964)
2403 Scd 3.3 55 0.04 0.118 Burns and Morton (1971)
3310 Sbc 11 31 61.27 0.815 Walker and Chincarini (1967)
3521 Sbc 7.6 66 7.18 0.056 Burbridge et al. (1964b)
4736 Sab 3.3 40 44.28 0.849 Walker and Chincarini (1967)
4826 Sab 7.3 60 39.16 0.854 Rubin et al. (1965)
5194 Sbc 4.0 35 -15.18 -0.758 Burbridge et al. (1964a)
5248 Sbc 11 55 -26.94 -0.690 Burbridge et al. (1962b)
5457 Scd 3.5 27 -1.40 -0.403 Rogstad and Stoshak (1971)
6574 Sba 33 45 4.73 0.428 Demoulin and Tung Chan (1969)

27469 Sa 51 49 8.69 0.552 Burbridge et al. (1963c)

10 Observational Phenomena of the R5 Azimuthal Projection Model

The Azimuthal Projection Model implies two observational phenomena for research and experimentation:

• The planets in our solar system will deviate from their Kepler / Newtonian orbits by an increased radius and velocity, as
their distance from Earth increases. Figure 13 is exaggerated for clarity.

• Two opposing zenith vantage points in the solar system (Earth vs the most outer region), in azimuthal projected hyper-
space, will measure planetary distances as opposing skewed geometry, such that (respectively) projected distances are
locally and remotely maximized. Figure 14 is exaggerated for clarity.
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Figure 13: Deviation from Theoretical Planetary Orbits Increases over Distance from Earth

Figure 14: Two opposing projections of planetary distances

11 Why then do the Most Distant Galaxies Appear Fully Developed?

The James Webb Space Telescope (JWST) observations of the most distant galaxies, some formed just 330 million years after the
Big Bang when the universe was a mere 2 percent of its current age, appear as no less developed than our local group. Conse-
quently, such observations compel theorists to rethink current standard models. Just as The Azimuthal Projection Model of
Universal Expansion implies that our Milky Way galaxy’s rotational curve would appear greatly accelerated and flattened from
vast distances, it predicts the JWST observations as well. The fundamental concept of this model is that redshifting is viewer
dependent, and a function of projection at any given point. Thus, the radical implication is that the universe must be conceived
of as a higher dimensional dynamic with spacetime as a limited projection that is viewer dependent, rather than as an arrow
from the absolute beginning of the Big Bang.
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12 The Bering Strait Paradox

The familiar Atlas map, which is an R2 azimuthal global projection, typically places Siberia and Alaska at opposite extremes.
However, they are locally connected at the Bering Strait, as viewed in R3 space. See figure 15.

Figure 15: Atlas map, which is an R2 azimuthal global projection

An analogy, by extension to the Bering Strait paradox is that the extreme R3 parameters of Macro-space vs micro-space are
actually connected in an R4 torus space. See figure 16.

Figure 16: Macro-space vs micro-space are actually connected in an R4 torus space.
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Quantum Mechanics Implications of the R5 Connectivity of Macrospace and Microspace

The logical contrapositive of expanding projected geodesics in macrospace is the converging of geometry in microspace. In the-
ory, this geometric convergence could be described as superposition, and precisely correspond with probability density func-
tions and corresponding quantum mechanical operators in Quantum Mechanics.

13 Conclusion

This parsimonious model is based solely on a few assumptions. it does not require dark energy to satisfy the Cosmological Con-
stant Λ. It implies a smaller universe than conventional estimates, and the universal hypersphere radius is easily derived. A
great many mysteries are resolved, including galaxy rotation curves, accelerated expansion, as well as increased energy density.
In summary, it is conceptually more reasonable.

Data Availability Statement: No Data associated in the manuscript
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