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Abstract

The Azimulthal Hyper-Projection onto spacetime Model (AHOSM) of Cosmology is just an extension of the familiar Atlas
map of a globe in geography class. The Atlas is an azimuthal projection of 3 spacial dimensions projected onto a 2 dimensional
plane. The important feature of an Atlas is that the geometry expands asymptotic toward the horizon, and is therefore posi-
tionally dependent, such that if North America is centrally positioned, then Siberia and Alaska are viewed as extremely remote.
Thus if the Bering Strait were centrally positioned, then longitudinal meridians of North America would likewise be viewed as
being extremely remote. AHOSM extends this concept to a hyper-projection of hyper-spacetime (4 spacial dimensions) onto
spacetime. However as viewed in spacetime, geodesics appear to be expanding outward in 3 dimensional space away from the
observer. Thus by extension, AHOSM is also positionally dependent, such that the most remote galaxies only appear to be mu-
tually separated (from each other) with extreme distance, as viewed from our central position, and vice versa our local group of
Galaxies would appear to be mutually separated with extreme distances from a remote perspective.

A proposed experiment is offered to prove that the distance from Earth to Mars is measured greater from the perspective of the
outer solar system and vice versa.

Red-shifting is alternatively proposed as azimuthal angular projections of wavelengths A. Magnitude is alternatively proposed
as a function of Lambert’s cosine law of illumination, over expanding geodesics. This simple parsimonious model requires only
a few assumptions, excluding dark energy to satisfy the Cosmological Constant A, and is shown to match the Universal expan-
sion rate, as established from supernova cosmology survey points. Galaxy rotation curves are simply and accurately explained
as measured expanding geodesics and density, along the observer’s line of site

The justification of such a radically novel model is from recent observations from the first dataset, provided by NASA’s James
Webb Space Telescope (JWST) of six massive galaxies, at a time in the early universe, seem to defy conventional cosmological
models, as they appear to be as mature and developed as our own local group. Such unexpected discoveries justify a radically
novel model of Cosmology. To quote Joel Leja, assistant professor of astronomy and astrophysics at Penn State "It turns out
we found something so unexpected it actually creates problems for science. It calls the whole picture of early galaxy forma-
tion into question”.
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1 Introduction

This novel conceptual model upends the cosmological timeline, red-shifting, and accelerating universal expansion. This article
begins by describing how global meridians, which are azimuthally projected onto a flat surface, are asymptotic along the surface,
toward the horizon (away from the observer), in the familiar "Atlas" (gnomonic projected) mapping. By extension, the hyper-
meridians of a R* (four spatial) dimensional hypershere, azimuthally projected onto a R? (three spatial) dimensional sphere, are
shown to be asymptotic along the spherical surface and also away from the observer. A coordinate system is presented (in a cross
section) to equate red-shifting of wavelengths A with azimuthal angular projections, Using this equation, red-shift (z) is revised
from: z = M to be a function of distance x, and hyperspere arc length (radian) z = A “ 2 . In conjunction with observed
red-shifting survey data and Lambert’s cosine law of luminous intensity, the universal hyperspere radius is estimated. From
these established parameters, it is shown how both velocity and energy density appear to increase along azimuthally projected
(skewed) length (x). As well, how galaxies appear to be dilated (or elongated), along the line of sight, with a resulting flattened
rotation curve. From these established parameters, a function is developed to plot a curve, which is superimposed upon graphs
(Distance modulus () vs red-shift (z)) of data points from the HST Key Project. discrepancies between theoretical and observed
galaxy rotation curves, as well as apparent increased energy density are shown to be predicted from this model.




2 Intuition of the Azimulthal Hyper-Projection Model of Cosmology

The familiar Atlas map, which is an R? azimuthal global projection, typically places Siberia and Alaska at opposite extremes.
However, they are locally connected at the Bering Strait, as viewed in R® space. See figure 1.

The Bering Strait Paradox

RUSSIA

Figure 1: Atlas map, which is an R? azimuthal global projection

The Azimulthal Hyper-Projection Model of Cosmology proposes the following hypothesis:

Hypothesis 1 (H1) As an Azimulthal Hyper-Projection onto spacetime is asymptotic to an outward horizon, the geometric per-
spective is based to the position of the observer, such that all projected geodesics will appear to be expanded outwardly, from the
arbitrary biased perspective of the observer. This effect is similar to the familiar atlas map, which when viewed from North Amer-
ica, typically places Siberia and Alaska at opposite extremes. Therefore, the apparent distances between remote galaxies could
actually be local neighbors, and vice versa, from their perspective.

Azimuthal Projections onto an R? Plane Appear to Expand Outward from the Observer, along the plane

Figure 2 shows an observer on a R? plane, positioned along a tangent of a R® sphere, measures projected meridians at distance
Xn, per the equation [1]:

X, =R tan(@) 1
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Figure 2: R3 sphere azimuthally projected onto a R? plane. Distance from angle 6 and radius of sphere.



Figure 3 shows how azimuthally projected meridians are asymptotic along the R? plane, and toward the horizon (away from

the observer).
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Figure 3: meridians are asymptotic along the R? plane, and toward the horizon (away from the observer).

Figure 4 shows how azimuthal projections expansion is relative to the observer’s position. On the left side, the observer is
positioned along a tangent at projection a, and expansion increases toward point g. However on the right side, the observer is

positioned along a tangent at projection g, and expansion increases toward point a.

Positional Dependence of Projection Expansion

Azimuthal projections appear as expansion (Position dependent)
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Figure 4: Azimuthal projections appear as expansion (Position dependent)

3 R* Hypersphere Azimuthal Projections onto an R* Sphere Appear to Expand out-
ward from the Observer in three spacial dimensions

Figure 5 shows how azimuthally projected hyper-meridians are asymptotic along the R3 sphere, and outward from the observer.



hypersphere azimuthal projection onto a R3 sphere
ypersp proj p

Figure 5: R* hypersphere azimuthally projected onto a R3 sphere. hyper-meridians are projected asymptotic along the sphere, and away from
the observer.

Figures 6 and 7 show how azimuthal projections red-shifting is relative to the observer’s position. On the left side, the ob-
server is positioned along a tangent at projection a, and red-shifting increases toward point g. However on the right side, the
observer is positioned along a tangent at projection g, and red-shifting increases toward point a. A radical implication of this
model is that azimuthal angular projections are positional dependent, thus degrees of redshifting over distance is positional
dependent. It’s conceivable that our local group would appear to be much more expanded, from the perspective of remote ob-
server, and vice versa; vastly remote galaxies would appear to spaced much closer together, from the perspective of a remote
observer.

Azimuthal projections appear as redshifting (Position dependent)
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Figure 6: Azimuthal projections appear as red-shifting (Position dependent)



Azimuthal Projected Hyperspace Distances of Known Galaxies
Positional Dependence

Projected from the Milky Way Perspective
Milkvwav‘
Andromeda

Cigar

Galaxies

Tadpole
Hoag's Object
0 50 100

150 200

Megaparsec (Mpc)

3
’ z

Projected distances are minimal at the Milky Way,
and increase towards Hoag's Object

Projected from the Hoag's Object Perspective

—

Milkyway
Andromeda
Cigar

Tadpole

Galaxies

Hoag's

o

-200 -100 -50

Mpe

Projected distances are minimal at Hoag's Object,
and increase towards the Milky Way

Figure 7: Positional Dependence of known Galaxies

4 Red-shifting is Alternatively Proposed as Azimuthal Angular Projections of Wave-
lengths 1

As Azimuthal projections are asymptotic along the observer’s line of sight, obliqueness increases with distance x. Thus wave
lengths become stretched along the observer’s line of sight x. The observer in spacetime can not directly observe the projections
in hyperspace, and is limited to his line of sight on the x direction. Figure 8 shows how the observer measures the wave lengths
A to be skewed (red-shifted). Section B — B, the "at rest" wavelength A,.s;, is normal to the hypersheric surface. Oblique view
A— Ais the "observed" wavelength 1,;;, with a skewed (elongated) wavelength.
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Figure 8: Red-shifting, Along Observer’s Line of Sight.

5 Revised Formula for Red-shiff (z)

Figure 9 is a 2 dimensional cross section of an R* (spatial dimensions) hypersphere Azimuthal projected onto a R® (spatial
dimensions) sphere, and extended along X axis into macrospace. A classic space observer resides along the X axis at reference
frame: x = 0, from which all measurements (x, # 0) are skewed projections, asymptotic to the horizon.



SeR?def = (x, YII\/x2+y2 =7l 2)
F:S— 1(x)[0,xy] 3)

Redefining Red-shift (z), and Calculating the Hypershere Radius (R)
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Figure 9: Revised redshift (z), and radius of hypershere

Hyper-meridians and celestial bodies are Azimuthally projected as lateral straight lines, per equation 5:

Xp=Rtan6
Solving for R:
= )
tan0
a=RO = 5)
a= R( arctan f) (6)
R

Framed within this model, electromagnetic wavelengths of 1, along the hypersphere circumference of radius R, are considered
to be atrest. However, x, is projected (skewed) along the X axis and observed with resulting redshift (z), similar to the redshifting
equation [2]:

z= /lobs - Arest 7

Arest

In this alternative model, Aps = A 22,

8)

Calculating the Universal Hypersphere Radius

The radius R of the hypershere can be deduced from a spacetime perspective (Where humans reside), by considering, that
observed distance (xr) must be equal to radius R when the tan of 0 is equal to 1, or when 6 = %. Thus from the z value, where



‘a=R7, and xg = R, radius R is derived,

ZI‘:R(%) Substituting%for@ inequations 9)
A(2)-2
ZZ4T Inserting into equation 8 (10)
z= JE")—I cancelling A (1n
RI|ZL
4
R .
z= ( )—1 Since x;, =R, (12)
Rz
4
z:(i)—l Simplifiesto (13)
]'," )
z2=0.273 (14)

Finding R from z = 0.273, using the approximate distance formula,

zc
d= — 15
Ho (15)
At current Hy value of: 73.8km/sec/Mpc
_ 0.273 %299792km/ sec (16)
B 73.8km/sec/ Mpc
Thus, the radius of the R® hypersphere,
R~1108.987 Mpc 17)

6 Accelerated Universal Expansion is Alternatively Proposed, as R° Azimuthal Projec-
tions of Meridians, Asymptotical to a Horizon, and Lambert’s Cosine law of Lumi-
nous Intensity

Velocity Appears to Increase Along Projected Length x,,

In figure 9. Light-waves and energy density are constant along arc length a. However,

Theorem 1 As R® hyper-spacetime is azimuthal projected onto R* spacetime, From the r.f. of an observer on the projected surface,
topology is skewed (elongated), and appears expanded outward from the observer. As a result, celestial bodies appear to be traveling
along expanded projected geodesics with increasing velocities (v). This apparent increase of velocity is equivalent to a decreased
time interval (-At). Light-waves appear to travel along X,, with an increased velocity v’ of:

= X—l (18)

l_;’
U a

Calculating z per Distance x

Now that R (The radius of the hypersphere) has been established, values of z can be determined from any value of x,,. Note that
X, is a one dimensional cross-section of the space which humans measure galactic distance, although it is actually a skewed
projection of hyper-arc length ‘@ onto classic space. Thus, from values of distance modulus p and established radius R, theta is
easily determined. Subsequently from theta, @’is determined. Finally from equation 8, z is derived at any distance xj,.

Energy Density Increases along Length X,

Corollary 1.1 As velocity along skewed x appears to increase per equation 18, energy density p proportionally increases, due to
increased velocities in particle kinetic and internal energies (compression, energy of nuclear binding, etc.). The observer at x =0
measures volume at x,, [mpc] with increased energy density p,, per equation:

Apn _ (xn—R)
Ap R




Lambert’s Cosine Law of Illumination

Consider that figure 9 describes an oblique projection of a source S with an illuminate value I. According to Lambert’s Cosine
Law of illumination [3], intrinsic values of such projected light will decrease in value with 6 per equation:

cosf
I=

19
2 (19)

In this model, the luminous intensity of type Ia supernovae would decrease, accordingly. Thus, conventionally accepted
standard candle measurements along x, would need to be recalculated per Lambert’s Cosine Law.

7 Galaxy Rotation Curve with Increased Density

The discrepancies between theoretical and observed galaxy rotation curves involve both density and velocity. Conventionally,
the dependence of circular velocity V.;,. on radial distance R assumes M, m and velocity to be fixed over large scales in Kepler’s
law, [4]
72 - 47%r3 3
GM
Moreover, gravitational lensing demonstrates the existence of a much greater Mass (density) than the sum of the stars within the
galaxy. However, this alternate model specifically addresses these two issues and provides an alternative explanation,

Kepler’s Law rearranged as density p integrated over time d ¢

>T?xr

Corollary 1.2 Velocity v and density p,, are measured with increased magnitude per distance x,,. This directly extends to energy
density within galaxies and the effects on rotational velocity, such that: As x, increases, centripetal force is perfectly balanced by

increases in U and, subsequently, p,,
v: GG f it
ro2 )P

Note: total mass M inside the circle of the radius r can be obtained by doing integration of mass density in a volume. M = [ p,dt.
p = pr and pps (Dark components are excluded from this model, with the intent of presenting an alternative).

Figure 11 shows how skewed projected meridians, along the observer’s line of sight, appear elongated and are measured with
greater density. The result is a flattened rotation curve, per % Thus, an elongated galaxy appears to have greater rotational
velocity, and energy density.
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Figure 10: Spiral galaxy projection is skewed



As R Increases, Centripetal Force (f_) is Perfectly Balanced
V=d/At and subsequently, p_ proportionally increase
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Figure 11: Elongated galaxy appears to have greater rotational velocity, and energy density.
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8 Graphing a Function that conforms with the Hubble Diagram

From this model of higher dimensional gnomonic projection, function F(z) provides a graph to compare with Supernova Cos-
mology Survey Points. Using z as the dependent variable, and u as independent variable, such that F(z) is a function of p.
From x, in equation 7, Using equation 6, and converting R to mega parsecs.

X
AX, = (Arest (20)

1108.987(arctan —110{;987)

Inserting into equation 7,

(Arest - )_Arest
1108.987(arctan m)
z= ] 21)
A’V@SI
Arest cancels, leaving,
z= ( x 1 (22)
1108.987( arctan 5 )
Converting redshift z to velocity km/sec,
X
F= [( - 1] % 300,000km/sec (23)
1108.987(arctan Wxgm)
Substituting Lambert’s equation (19) for x,
x(1108.987 * cos((arctan (——2sas
pe (retan gy o s

2
( x2+1108.9872 ))) +1108.987*

Where K is a slope correction constant, which is necessary to offset conventional measurements of standard candle distances.
Table 1 lists extrapolated points, at 50(M pc) intervals, of Function F: d — v | F = {v, f(d)}[0.000,5x108]. Also, corresponding

values of y and z
Figure 12 shows the Function F: d — v | F = {v, f(d)}[0.000,5x108]
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Table 1: Extrapolated points of function F. In successive columns:, [pc] (distance parsec), [km/s] (kilometers per second), [u] (Distance

modulus), [z] (redshift),

pc km/s u z

5.000E+07 | 4.129E+03 | 33.495 | 0.014

1.000E+08 | 8.228E+03 | 35.000 | 0.027

1.500E+08 | 1.227E+04 | 35.880 | 0.041

2.000E+08 | 1.622E+04 | 36.505 | 0.054

2.500E+08 | 2.006E+04 | 36.990 | 0.067

3.000E+08 | 2.377E+04 | 37.386 | 0.079

3.500E+08 | 2.734E+04 | 37.720 | 0.091

4.000E+08 | 3.074E+04 | 38.010 | 0.103

4.500E+08 | 3.397E+04 | 38.266 | 0.113

5.000E+08 | 3.703E+04 | 38.495 | 0.124
3)(104.—""|""|""|"‘,’-‘]2'_':
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Figure 12: Left: Function F : d — v, with extrapolated points. Right: Function F superimposed onto the HST Key Project

Figure 13 shows the Function F: z— p | F = {, f(2)}[0.000,0.125]. Note the familiar curve (in logarithmic scale), which is
conventionally interpreted as ”accelerated expansion”.
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Figure 13: Left: Function F : z — p, with extrapolated points. Right: Function F with logarithmic scale, along z axis. Note the familiar curve,
which is conventionally interpreted as ”accelerated expansion”.
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9 Supportive Evidence of the R° Azimuthal Projection Model

Galaxy Recession velocities (z red-shift and blue-shift) will be measured greater on the far side of galaxies. Such a closed system
expanding in azimuthal projected hyperspace would defy the standard model of accelerated universal expansion and dark
energy, where only space between galaxies are assumed to be expanding. Theorem 1, is supported by the following correlation
study[5] "On Possible Systematic Redshifts Across the Disks of Galaxies" . This study shows a deviation from Kepler’s orbital
laws, specifically on the subject of increased velocity on the far sides of multiple galaxies. Although not conclusive, it does justify
consideration to this article.

Note that multiple galaxy surveys with increased velocities across their minor axis. Thus, velocity within the same body
appears to increase per distance. "Velocity observations in 25 galaxies have been examined for possible systematic redshifts
across their disks: a possible origin for the redshifts could be the radiation fields. Velocities increase towards the far sides in
most cases. This is so for the ionized gas, for neutral hydrogen, and in some cases for the stars. The effect is seen as velocity
gradients along the minor axes, as well as in velocity fields of neutral hydrogen in other parts of the galaxies. Deviation of the
kinematic major axis from the optical axis is found for 10 galaxies and in 9 of these the largest velocities occur in the far side. In
the central regions of four galaxies are found large velocity gradients in the same direction. While expanding motions provide
an explanation for some of these features, it remains difficult to thereby explain all the peculiarities found. Faintness of the data
available in this preliminary study should be noticed. Observations specially programmed for this subject would be necessary."

table 2 lists 25 galaxies, correlation coefficients and relevant columns (including sources of data):

Table 2: List of galaxies for which velocities along the minor axies are available. In successive columns: type; distance; angle between rotation
axis of galaxy and line of sight; regression and correlation coefficients between velocity and distance; source of data

NGC | Type | dMpc) | i | hikms'kpc™") || corr source of data

244 Sb 0.69 77° 0.20 0.272 Gottsman and Davis (1970)
253 Sc 4.0 78 0.13 0.012 Burbridge et al. (1963a)

300 Sd 24 43 1.03 0.844 | Shobbrook and Robinson (1967)
598 Scd 0.72 57 1.51 0.866 Goordon (1971)

613 SBbc 15 47 57.09 0.820 Burbridge et al. (1964c)

972 SBc 17 66 -11.31 -0.670 Burbridge et al. (1964c)
1084 Sc 14 65 -4.75 -0.338 Burbridge et al. (1965)
1097 | SBd 12 50 5.00 -0.105 | Burbridge and Burbridge (1960)
1365 SBd 15 66 -79.21 -0.976 Burbridge et al. (1962a)
1792 Sbc 10 64 10.12 -0.578 Rubin et al. (1964)

2403 Scd 3.3 55 0.04 0.118 Burns and Morton (1971)
3310 Sbc 11 31 61.27 0.815 Walker and Chincarini (1967)
3521 Sbc 7.6 66 7.18 0.056 Burbridge et al. (1964b)
4736 Sab 3.3 40 44.28 0.849 Walker and Chincarini (1967)
4826 Sab 7.3 60 39.16 0.854 Rubin et al. (1965)

5194 Sbc 4.0 35 -15.18 -0.758 Burbridge et al. (1964a)
5248 Sbc 11 55 -26.94 -0.690 Burbridge et al. (1962b)
5457 Scd 3.5 27 -1.40 -0.403 Rogstad and Stoshak (1971)
6574 | Sba 33 45 4.73 0.428 | Demoulin and Tung Chan (1969)
27469 Sa 51 49 8.69 0.552 Burbridge et al. (1963c)

10 Observational Phenomena of the R° Azimuthal Projection Model

The Azimuthal Projection Model implies two observational phenomena for research and experimentation:

¢ The planets in our solar system will deviate from their Kepler / Newtonian orbits by an increased radius and velocity, as
their distance from Earth increases. Figure 14 is exaggerated for clarity.

* Two opposing zenith vantage points in the solar system (Earth vs the most outer region), in azimuthal projected hyper-
space, will measure planetary distances as opposing skewed geometry, such that (respectively) projected distances are
locally and remotely maximized. Figure 15 is exaggerated for clarity.
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Deviation from Theoretical Planetary Orbits Increases over Distance from Earth
(Exaggerated for Clarity)
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Figure 14: Deviation from Theoretical Planetary Orbits Increases over Distance from Earth
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Figure 15: Two opposing projections of planetary distances

11 Why then do the Most Distant Galaxies Appear Fully Developed?

The James Webb Space Telescope (JWST) observations of the most distant galaxies, some formed just 330 million years after the
Big Bang when the universe was a mere 2 percent of its current age, appear as no less developed than our local group. Conse-
quently, such observations compel theorists to rethink current standard models. Just as The Azimuthal Projection Model of
Universal Expansion implies that our Milky Way galaxy’s rotational curve would appear greatly accelerated and flattened from
vast distances, it predicts the JWST observations as well. The fundamental concept of this model, is that redshifting is viewer
dependent, and a function of projection at any given point. Thus, the radical implication is that the universe must be conceived
of as a higher dimensional dynamic with spacetime as a limited projection which is viewer dependent, rather than as an arrow

from absolute beginning of the big bang.
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12 Conclusion

This parsimonious model, is based solely on a few assumptions. it does not require dark energy to satisfy the Cosmological
Constant A. It implies a smaller universe than conventional estimates, and the universal hypersphere radius is easily derived. A
great many mysteries are resolved, including galaxy rotation curves, accelerated expansion, as well as increased energy density.
In summary, it is conceptually more reasonable.

Data Availability Statement: No Data associated in the manuscript
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