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Abstract

Recent observations from the first dataset, provided by NASA’s James Webb Space Telescope (JWST) of six massive galaxies,
at a time in the early universe, seem to defy conventional cosmological models, as they appear to be as mature and developed
as our own local group. This article provides a mathematical model, which actually predicted such mature galaxies in a 2022
preprint, prior to these recent observations. As well, this model also predicts discrepancies between theoretical and observed
galaxy rotation curves with apparent increased energy density.
The Azimuthal Projection Model of Universe is conceptualized as a R4 (four spatial) dimensional hypershere, azimuthally pro-
jected onto a R3 (three spatial) dimensional sphere, and is shown to match the Universal expansion rate, as established from
supernova cosmology survey points. This parsimonious model requires only a few assumptions, excluding dark energy to sat-
isfy the Cosmological ConstantΛ.
This novel model conceives the universe as a higher dimensional dynamic with spacetime as a projection, rather than as an
arrow from absolute beginning of the big bang. Red-shifting is alternatively proposed as azimuthal angular projections of wave-
lengths λ. Accelerated Universal Expansion is alternatively proposed, as azimuthal projections of meridians, asymptotical to
a horizon, and Lambert’s cosine law of luminous intensity. A radical implication of this model is that azimuthal angular pro-
jections are positional dependent, and thus it’s conceivable that apparent distances between galaxies vary with the location of
the observer (see figure 3). A potential proof is described from the Hubble Tension; Discrepancies between visible spectra red-
shifting of cepheid variables (the most recent calculation is Ho = 74.03±1.42km/sec/M pc), and from temperature fluctuations
in the Cosmic Microwave Background (CMB) (which are calculated to be Ho = 68.7±1.3km/sec/M pc), which resolves the dis-
crepancy by recalibrating redshift data from supernova Cosmology survey points.
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1 Introduction

This novel conceptual model upends the cosmological timeline, red-shifting, and accelerating universal expansion. It was orig-
inally published as a preprint in 2022 [1], prior to the NASA’s JWST fist dataset, and predicted the results. This article begins by
describing how global meridians, which are azimuthally projected onto a flat surface, are asymptotic along the surface, toward
the horizon (away from the observer), in the familiar "Atlas" (gnomonic projected) mapping. By extension, the hypermeridians
of a R4 (four spatial) dimensional hypershere, azimuthally projected onto a R3 (three spatial) dimensional sphere, are shown to
be asymptotic along the spherical surface and also away from the observer. A coordinate system is presented (in a cross sec-
tion) to equate red-shifting of wavelengths λ with azimuthal angular projections, Using this equation, red-shift (z) is revised

from: z = λobs−λr est
λr est

to be a function of distance xn and hyperspere arc length (radian) z = λ
xnØa −λ
λ . In conjunction with observed

red-shifting survey data and Lambert’s cosine law of luminous intensity, the universal hyperspere radius is estimated. From
these established parameters, it is shown how both velocity and energy density appear to increase along azimuthally projected
(skewed) length (x). As well, how galaxies appear to be dilated (or elongated), along the line of sight, with a resulting flattened
rotation curve. From these established parameters, a function is developed to plot a curve, which is superimposed upon graphs
(Distance modulus (µ) vs red-shift (z)) of data points from the HST Key Project.
discrepancies between theoretical and observed galaxy rotation curves, as well as apparent increased energy density are shown
to be predicted from this model.
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2 Azimuthal Projections onto an R2 Plane Appear to Expand Outward from the Ob-
server, along the plane

Figure 1 shows an observer on a R2 plane, positioned along a tangent of a R3 sphere, measures projected meridians at distance
xn , per the equation [2]:

xn = R t an(θ) (1)

Figure 1: R3 sphere azimuthally projected onto a R2 plane. Distance from angle θ and radius of sphere.

Figure 2 shows how azimuthally projected meridians are asymptotic along the R2 plane, and toward the horizon (away from
the observer).

Figure 2: meridians are asymptotic along the R2 plane, and toward the horizon (away from the observer).

Figure 3 shows how azimuthal projections expansion is relative to the observer’s position. On the left side, the observer is
positioned along a tangent at projection a, and expansion increases toward point g . However on the right side, the observer is
positioned along a tangent at projection g , and expansion increases toward point a.
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Positional Dependence of Projection Expansion

Figure 3: Azimuthal projections appear as expansion (Position dependent)

3 Azimuthal Projections onto an R3 Sphere Appear to Expand outward from the Ob-
server in three spacial dimensions

Figure 4 shows how azimuthally projected hyper-meridians are asymptotic along the R3 sphere, and outward from the observer.

Figure 4: R4 hypersphere azimuthally projected onto a R3 sphere. hyper-meridians are projected asymptotic along the sphere, and away from
the observer.
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Figure 5 shows how azimuthal projections red-shifting is relative to the observer’s position. On the left side, the observer is
positioned along a tangent at projection a, and red-shifting increases toward point g . However on the right side, the observer is
positioned along a tangent at projection g , and red-shifting increases toward point a. A radical implication of this model is that
azimuthal angular projections are positional dependent, thus degrees of redshifting over distance is positional dependent. It’s
conceivable that our local group would appear to be much more expanded, from the perspective of remote observer, and vice
versa; vastly remote galaxies would appear to spaced much closer together, from the perspective of a remote observer.

Figure 5: Azimuthal projections appear as red-shifting (Position dependent)

4 Red-shifting is Alternatively Proposed as Azimuthal Angular Projections of Wave-
lengths λ

As Azimuthal projections are asymptotic along the observer’s line of sight, obliqueness increases with distance x. Thus wave
lengths become stretched along the observer’s line of sight x. The observer in spacetime can not directly observe the projections
in hyperspace, and is limited to his line of sight on the x direction. Figure 6 shows how the observer measures the wave lengths
λ to be skewed (red-shifted). Section B −B , the "at rest" wavelength λr est , is normal to the hypersheric surface. Oblique view
A− A is the "observed" wavelength λobs , with a skewed (elongated) wavelength.

Figure 6: Red-shifting, Along Observer’s Line of Sight.
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5 Revised Formula for Red-shiff (z)

Figure 7 is a 2 dimensional cross section of an R4 (spatial dimensions) hypersphere Azimuthal projected onto a R3 (spatial
dimensions) sphere, and extended along X axis into macrospace. A classic space observer resides along the X axis at reference
frame: x = 0, from which all measurements (xn ̸= 0) are skewed projections, asymptotic to the horizon.

S ∈R2de f = (x, y)||
√

x2 + y2 = r || (2)

F : S → /(x)
[
0, xn

]
(3)

Figure 7: Revised redshift (z), and radius of hypershere

Hyper-meridians and celestial bodies are Azimuthally projected as lateral straight lines, per equation 5:

xn = R t an θ

Solving for R:

R = xn

t an θ
(4)

Øa = R θ =⇒ (5)

Øa = R
(

arctan
x

R

)
(6)

Framed within this model, electromagnetic wavelengths of λ, along the hypersphere circumference of radius R, are considered
to be at rest. However, xn is projected (skewed) along the X axis and observed with resulting redshift (z), similar to the redshifting
equation [3]:

z = λobs −λr est

λr est
(7)

In this alternative model, λobs = λ xnØa ,

z =
λ xnØa −λ

λ
(8)

6



Calculating the Universal Hypersphere Radius

The radius R of the hypershere can be deduced from a spacetime perspective (Where humans reside), by considering, that
observed distance (xR ) must be equal to radius R when the tan of θ is equal to 1, or when θ = π

4 . Thus from the z value, whereØa = R π
4 , and xR = R, radius R is derived,

Øa =R
(π

4

)
Substi tuti ng

π

4
f or θ i n equati on 5 (9)

z =
λ
(

xn
R π

4

)
−λ

λ
Inser t i ng i nto equati on 8 (10)

z = xn

R
(
π
4

) −1 cancel l i ng λ (11)

z = R

R
(
π
4

) −1 Si nce xn = R, (12)

z =
( 4

π

)
−1 Si mpli f i es to, (13)

z =0.273 (14)

Finding R from z = 0.273, using the approximate distance formula,

d ≈ zc

H0
(15)

At current H0 value of: 73.8km/sec/M pc

R ≈ 0.273∗299792km/sec

73.8km/sec/M pc
=⇒ (16)

Thus, the radius of the R5 hypersphere,
R ≈ 1108.987 M pc (17)

6 Accelerated Universal Expansion is Alternatively Proposed, as Azimuthal Projec-
tions of Meridians, Asymptotical to a Horizon, and Lambert’s Cosine law of Lumi-
nous Intensity

Velocity Appears to Increase Along Projected Length xn

In figure 7. Light-waves and energy density are constant along arc lengthØa. However from the r.f. of an observer on the projected
surface, topology is skewed (elongated). Light-waves travel along Xn with an apparent increased in velocity v⃗ ′ of:

v⃗ ′

v⃗
= XnØa (18)

Calculating z per Distance x

Now that R (The radius of the hypersphere) has been established, values of z can be determined from any value of xn . Note that
xn is a one dimensional cross-section of the space which humans measure galactic distance, although it is actually a skewed
projection of hyper-arc length Øa onto classic space. Thus, from values of distance modulus µ and established radius R, theta is
easily determined. Subsequently from theta,Øa is determined. Finally from equation 8, z is derived at any distance xn .

Energy Density Increases along Length Xn

Corollary 0.1 As velocity along skewed x appears to increase per equation 18, energy density ρ proportionally increases, due to
increased velocities in particle kinetic and internal energies (compression, energy of nuclear binding, etc.). The observer at x = 0
measures volume at xn [mpc] with increased energy density ρn per equation:

∆ρn

∆ρ
= (xn −R)

R
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Lambert’s Cosine Law of Illumination

Consider that figure 7 describes an oblique projection of a source S with an illuminate value I . According to Lambert’s Cosine
Law of illumination [4], intrinsic values of such projected light will decrease in value with θ per equation:

I = cosθ

r 2 (19)

In this model, the luminous intensity of type Ia supernovae would decrease, accordingly. Thus, conventionally accepted
standard candle measurements along x, would need to be recalculated per Lambert’s Cosine Law.

7 Galaxy Rotation Curve with Increased Density

The discrepancies between theoretical and observed galaxy rotation curves involve both density and velocity. Conventionally,
the dependence of circular velocity Vci r c on radial distance R assumes M , m and velocity to be fixed over large scales in Kepler’s
law, [5]

T 2 = 4π2r 3

GM
⇒ T 2 ∝ r 3

Moreover, gravitational lensing demonstrates the existence of a much greater Mass (density) than the sum of the stars within the
galaxy. However, this alternate model specifically addresses these two issues and provides an alternative explanation,

Kepler’s Law rearranged as density ρ integrated over time d t

Corollary 0.2 Velocity v⃗ and density ρn are measured with increased magnitude per distance xn . This directly extends to energy
density within galaxies and the effects on rotational velocity, such that: As xn increases, centripetal force is perfectly balanced by
increases in v⃗ and, subsequently, ρn ,

v2

r
= G

r 2 M = G

r 2

∫
ρnd t

Note: total mass M inside the circle of the radius r can be obtained by doing integration of mass density in a volume. M = ∫
ρnd t .

ρ = ρR and ρM (Dark components are excluded from this model, with the intent of presenting an alternative).
Figure 9 shows how skewed projected meridians, along the observer’s line of sight, appear elongated and are measured with
greater density. The result is a flattened rotation curve, per xØa . Thus, an elongated galaxy appears to have greater rotational
velocity, and energy density.

Figure 8: Spiral galaxy projection is skewed
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Figure 9: Elongated galaxy appears to have greater rotational velocity, and energy density.

8 Graphing a Function that conforms with the Hubble Diagram

From this model of higher dimensional gnomonic projection, function F (z) provides a graph to compare with Supernova Cos-
mology Survey Points. Using z as the dependent variable, and µ as independent variable, such that F (z) is a function of µ.
From xn in equation 7, Using equation 6, and converting R to mega parsecs.

λXn =
(
λr est

x

1108.987
(

arctan x
1108.987

) )
(20)

Inserting into equation 7,

z =
[
(
λr est

x

1108.987

(
arctan x

1108.987

) )
−λr est

λr est

]
(21)

λr est cancels, leaving,

z =
[(

x

1108.987
(

arctan x
1108.987

) )]
−1 (22)

Converting redshift z to velocity km/sec,

F =
[(

x

1108.987
(

arctan x
1108.987

) )
−1

]
∗300,000km/sec (23)

Substituting Lambert’s equation (19) for x,

F = [( x
(
1108.987∗ cos

((
arctan

( x
1108.987

))))
( cos

((
arctan

(
x

1108.987

)
x2+1108.9872

)))2 +1108.9872

)−1
]∗ cK (24)

Where K is a slope correction constant, which is necessary to offset conventional measurements of standard candle distances.

Table 1 lists extrapolated points, at 50(M pc) intervals, of Function F : d 7→ v | F = {
v, f (d)

}[
0.000,5x108

]
. Also, corresponding

values of µ and z
Figure 10 shows the Function F : d 7→ v | F = {

v, f (d)
}[

0.000,5x108
]

Figure 11 shows the Function F : z 7→µ | F = {
µ, f (z)

}[
0.000,0.125

]
. Note the familiar curve (in logarithmic scale), which is

conventionally interpreted as ”accelerated expansion”.
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Table 1: Extrapolated points of function F . In successive columns:, [pc] (distance parsec), [km/s] (kilometers per second), [µ] (Distance
modulus), [z] (redshift),

pc km/s µ z
5.000E+07 4.129E+03 33.495 0.014
1.000E+08 8.228E+03 35.000 0.027
1.500E+08 1.227E+04 35.880 0.041
2.000E+08 1.622E+04 36.505 0.054
2.500E+08 2.006E+04 36.990 0.067
3.000E+08 2.377E+04 37.386 0.079
3.500E+08 2.734E+04 37.720 0.091
4.000E+08 3.074E+04 38.010 0.103
4.500E+08 3.397E+04 38.266 0.113
5.000E+08 3.703E+04 38.495 0.124

Figure 10: Left: Function F : d 7→ v , with extrapolated points. Right: Function F superimposed onto the HST Key Project

Figure 11: Left: Function F : z 7→ µ, with extrapolated points. Right: Function F with logarithmic scale, along z axis. Note the familiar curve,
which is conventionally interpreted as ”accelerated expansion”.
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The Bering Strait Paradox

The familiar Atlas map, which is an R2 azimuthal global projection, typically places Siberia and Alaska at opposite extremes.
However, they are locally connected at the Bering Strait, as viewed in R3 space. See figure 12.

Figure 12: Atlas map, which is an R2 azimuthal global projection

An analogy, by extension to the Bering Strait paradox is that the extreme R3 parameters of Macro-space vs micro-space are
actually connected in an R4 torus space. See figure 13.

Figure 13: Macro-space vs micro-space are actually connected in an R4 torus space.
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9 The Unit of Time in an R4 Torus Space

A corollary of the azimuthal projection model of spacetime would be that the unit of time varies with the metric expansion
of space w.r.t. the observer. In macro-space, decreasing time units appear equivalent to increasing universal acceleration. In
micro-space, increased time units appear as a delayed camera shuttle, such that multiple positions of a particle are observed in
a single instant. See "A Fundamental Conservation as a Unification of Quantum Theory and Relativity". [6]

10 Why then do the Most Distant Galaxies Appear Fully Developed?

The James Webb Space Telescope (JWST) observations of the most distant galaxies, some formed just 330 million years after the
Big Bang when the universe was a mere 2 percent of its current age, appear as no less developed than our local group. Conse-
quently, such observations compel theorists to rethink current standard models. Just as The Azimuthal Projection Model of
Universal Expansion implies that our Milky Way galaxy’s rotational curve would appear greatly accelerated and flattened from
vast distances, it predicts the JWST observations as well. The fundamental concept of this model, is that redshifting is viewer
dependent, and a function of projection at any given point. Thus, the radical implication is that the universe must be conceived
of as a higher dimensional dynamic with spacetime as a limited projection which is viewer dependent, rather than as an arrow
from absolute beginning of the big bang.

11 Proposed Proof of the Azimuthal Projection Model

An ideal proof of comparing red-shift (z) values from vast distances, as in figure 5, is highly unrealistic. However, a signifi-
cant proof can be derived from discrepancies (rates of expansion over distance) between visible spectra red-shifting of cepheid
variables (the most recent calculation is Ho = 74.03±1.42km/sec/M pc [7]), and from temperature fluctuations in the Cosmic
Microwave Background (CMB) (which are calculated to be Ho = 68.7± 1.3km/sec/M pc) [8]. This model predicts that by re-
calibrating red-shifting distance ladders with supernova Cosmology Survey Points, and adjusting for Lambert’s Cosine Law of
illumination (equation 19), the Hubble Constant H0 from adjusted red-shifting survey data will more closely match the CMB H0.

12 Conclusion

This parsimonious model, is based solely on a few assumptions. it does not require dark energy to satisfy the Cosmological
ConstantΛ. It implies a smaller universe than conventional estimates, and the universal hypersphere radius is easily derived. A
great many mysteries are resolved, including galaxy rotation curves, accelerated expansion, as well as increased energy density.
In summary, it is conceptually more reasonable.

Data Availability Statement: No Data associated in the manuscript
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