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Benchmarking is an important step in the improvement, assessment, and comparison of the

performance of drug discovery platforms and technologies. We revised the existing benchmarking

protocols in our Computational Analysis of Novel Drug Opportunities (CANDO) multiscale

therapeutic discovery platform to improve utility and performance. We optimized multiple

parameters used in drug candidate prediction and assessment with these updated benchmarking

protocols. CANDO ranked 7.4% of known drugs in the top 10 compounds for their respective

diseases/indications based on drug-indication associations/mappings obtained from the

Comparative Toxicogenomics Database (CTD) using these optimized parameters. This increased to

12.1% when drug-indication mappings were obtained from the Therapeutic Targets Database.

Performance on an indication was weakly correlated (Spearman correlation coe�cient >0.3) with

indication size (number of drugs associated with an indication) and moderately correlated

(correlation coe�cient >0.5) with compound chemical similarity. There was also moderate

correlation between our new and original benchmarking protocols when assessing performance per

indication using each protocol. Benchmarking results were also dependent on the source of the

drug-indication mapping used: a higher proportion of indication-associated drugs were recalled in

the top 100 compounds when using the Therapeutic Targets Database (TTD), which only includes

FDA-approved drug-indication associations (in contrast to the CTD, which includes associations

drawn from the literature). We also created compbench, a publicly available head-to-head

benchmarking protocol that allows consistent assessment and comparison of di�erent drug

discovery platforms. Using this protocol, we compared two pipelines for drug repurposing within

CANDO; our primary pipeline outperformed another similarity-based pipeline still in development

that clusters signatures based on their associated Gene Ontology terms. Our study sets a precedent

Qeios

qeios.com doi.org/10.32388/2YLBWO 1

https://www.qeios.com/
https://doi.org/10.32388/2YLBWO


for the complete, comprehensive, and comparable benchmarking of drug discovery platforms,

resulting in more accurate drug candidate predictions.

Corresponding authors: Zackary Falls, zmfalls@bu�alo.edu; Ram Samudrala, ram@compbio.org

1. Introduction

Drug discovery is a di�cult problem: according to one 2010 estimate, 24.3 early “target-to-hit”

projects were completed per approved drug[1]. These preclinical projects were estimated to account for

at least 31% and up to 43% of total drug discovery expenditure[1][2]. The result is a high and increasing

price for novel drug development, with estimates ranging from $985 million to over $2 billion for one

new drug to be successfully brought to market[2][3][4]. The creation and re�nement of more e�ective

computational drug discovery pipelines promises to reduce the failure rate and increase the cost-

e�ectiveness of drug discovery[5][6]. This is already an active �eld, with thousands of articles

published and multiple drugs discovered and/or optimized through computational methods already in

use[7][8].  Modern drug discovery and repurposing techniques range from traditional single-target

molecular docking and retrospective clinical analysis to more novel signature matching,

network/pathway mapping, and deep learning platforms[9][10][11]. The successes and failures of novel

and repurposed therapeutics in �ghting the rapid rise and spread of COVID-19 made more clear than

ever that robust and e�ective drug discovery pipelines are essential for healthcare in a modern

world[11][12][13][14]. Still, systems for the assessment, incorporation, and adoption of the discoveries of

computational platforms and studies need improvement and standardization[15].

For this study, we de�ne a drug discovery platform as consisting of one or more pipelines, themselves

comprising protocols (such target selection, docking, interaction scoring, and/or compound ranking),

that come together to allow the prediction of novel drug candidates for one or more indications. This

excludes platforms that facilitate drug discovery but do not, themselves, predict novel drug-

indication associations, such as those for drug-target interaction prediction. Benchmarking is the

process of assessing and comparing the practical utility of existing platforms, pipelines, and

protocols.[16][17]  In drug discovery, quality benchmarking can assist in (1) designing, re�ning, and

optimizing computational pipelines; (2) estimating performance on novel drug candidate predictions;

and (3) choosing the most suitable pipeline for a speci�c scenario (e.g., repurposing a drug for a novel
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disease/indication). Neutral studies that impartially compare multiple indications and protocols are

the gold standard in benchmarking[16][17][18]  However, such studies are both more di�cult to

complete and less prioritized by high-ranking journals than those reporting novel methods.[17]

[19]  Di�ering ground truth data, metrics, and benchmarking protocols render benchmarking results

incomparable between studies of individual pipelines.[15][20]  Authors may compare their drug

discovery pipelines to others, but these comparisons are generally restricted to similar pipelines that

use similar input data.[21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43]

[44][45][46][47][48][49][50][51][52][53][54]  Head-to-head benchmarking also tends to �nd the authors’

pipeline superior due to publication bias, greater familiarity with one’s own protocols, selective metric

reporting, information leak, and over�tting.[19][55]  This makes benchmarking less useful for

developers, end users, and the scienti�c community as a whole in determining which drug discovery

pipelines perform how well under what circumstances.[17][19]

Current drug discovery benchmarking protocols vary widely from study to study[15][20].  Drug

discovery benchmarking generally starts with a ground truth mapping of drugs to their associated

indications. A variety of data sources are currently in use, including databases, like DrugBank, KEGG

BRITE, and the Comparative Toxicogenomics Database (CTD), and pre-extracted mappings, like

Cdataset, PREDICT/Fdataset, and the LRSSL dataset[20][30][33][34][56][57][58][59].  Negative drug-

indication associations (i.e., non-associations) may be inferred from failed clinical trials, or all

associations not in the ground truth may be considered negative, resulting in di�ering ratios of

positive and negative samples[20]. The drug-indication mappings are then usually split into training

and testing data. K-fold cross-validation is a comprehensive (every drug-indication association is

assessed) and computationally inexpensive (only K rounds of training are required) way of splitting

these mappings; it is thus very commonly used[22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37]

[38][39][40][41][42][43][44][45][46][48][49][50][51][52][53][60][61][62][63][64][65][66][67][68][69][70][71][72][73]

[74][75][76].  Other protocols, such as a simple training/testing split, a leave-one-out protocol, or a

“temporal split” (non-random split based on drugs approved before and after a speci�c date) are also

infrequently used[76][77][78][79].  The results of these assessments are then encapsulated in varying

metrics[15].  Area under the receiver-operating characteristic curve (AUROC) and area under the

precision-recall curve (AUPR) are among the most commonly used metrics as they assess a pipeline at

all thresholds[22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46]
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[47][48][49][50][51][52][53][54][60][61][62][63][64][65][66][67][68][69][70][71][72][73][75][76][78][79][80][81][82]

[83][84][85][86][87][88][89][90][91].  However, the relevance of these metrics to drug discovery remains

unclear[15][82][92]. More easily interpreted metrics like recall, precision, and accuracy above a certain

threshold (e.g., precision at rank 10 or recall with a p-value < 0.05) are also commonly used[21][24][26]

[27][28][33][34][35][36][37][40][41][51][69][79][84][86][93][94][95].  Case studies are frequently utilized

alongside (and occasionally in the absence of) systematic assessment to provide a more tangible

con�rmation of predictive power[22][23][24][26][27][28][29][31][34][35][36][37][38][39][40][41][42][43][44]

[45][46][47][48][49][50][51][52][53][54][61][65][66][68][69][73][76][79][82][83][84][87][89][96][97][98][99][100]

[101][102][103].  The ability of a platform to predict biological properties of small molecules, such as

ADMET (absorption, distribution, metabolism, excretion, and toxicity) features, is also assessed on

occasion[87][95][97][103][104].  A lack of benchmarking standards has thus lead to a plethora of data,

protocols, and metrics being in use. Our goal for this study is to bring the benchmarking protocols of

our drug discovery platform into strong alignment with best practices.

We developed the Computational Analysis of Novel Drug Opportunities (CANDO) platform for

multiscale therapeutic discovery[15][104][105][106][107][108][109][110][111][112][113][114][115][116][117][118][119]

[120].  CANDO comprises multiple pipelines for drug discovery that vary in the speci�c protocols and

parameters utilized. The fundamental hypothesis underlying CANDO is that drugs with similar

multitarget protein interaction pro�les or “interaction signatures” will result in similar biological

e�ects. CANDO calculates all-against-all similarities between interaction signatures to predict drug

candidates, including repurposing existing drugs for novel uses[106].  Other means of assessing

compound similarity, such as chemical �ngerprints, may also be used[118]. CANDO and its components

have been extensively validated[15][105][109][110][111][115][120][121][122][123][124][125][126][127][128][129][130].

Previous e�orts to benchmark CANDO have focused on assessing its ability to generate useful drug-

drug similarity lists, which are then used to predict novel therapeutic e�ects for existing drugs[15][106]

[116][118].  Evaluating the �nal predictions generated by our platform based on a consensus of these

similarity lists should increase the relevance of our benchmarking results to practical application. We

therefore updated our internal benchmarking protocol to assess the ability of CANDO to both

accurately rank behavioral similarity (as determined by the interaction signature) and incorporate

those rankings into e�ective novel drug predictions. We optimized multiple parameters used in

CANDO and examined the in�uence of certain features on its performance with these revised
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protocols. Further, we created a head-to-head benchmarking protocol that can be used to consistently

assess multiple varieties of drug discovery pipelines, including those within CANDO, an example use

of which we present herein. Utilizing the updated protocols and parameters thus created will result in

signi�cantly improved performance.

2. Methods

2.1. Drug discovery using the CANDO platform

The CANDO multiscale drug discovery platform predicts novel compounds for diseases/indications

based on the multitarget interaction signatures of the compounds. A signature is an attempt to

describe how a compound interacts with biological systems. Every compound is compared to every

other compound based on their interaction signatures under the hypothesis that compounds with

similar interaction signatures will exhibit similar behaviors. Each compound is thus associated with a

sorted “similarity list” that contains every other compound ranked by signature similarity, with lower

ranks indicating greater similarity. We used proteomic interaction signatures in this study, which are

vectors of predicted compound-protein interaction scores, to evaluate compound-compound

signature similarity based on the root mean squared distance between two signatures[106]. CANDO has

been described extensively in other publications[15][105][106][107][112][114][116][117][118][120].

CANDO uses a consensus protocol to combine multiple similarity lists into novel drug predictions for

an indication via the following steps: (1) The similarity lists of any drugs corresponding to the

indication (associated drugs) are examined. (2) The most similar compounds to each associated drug

are ranked; an adjustable cuto� parameter called the similarity list cuto� determines the number of

similar compounds considered for the next step. (3) All compounds are scored based on the number of

similar lists in which they appear above the similarity list cuto� (consensus score), with ties broken by

their average ranks in those lists. Compounds that are not above the similarity list cuto� (i.e., those

with less than the desired similarity to associated drugs) are not considered further. (4) The

compounds are sorted by the consensus scores and average ranks. The best ranked compounds in this

consensus list are considered to be the top predictions for an indication. The overall prediction

pipeline is summarized in Figure 1.
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Figure 1. Primary prediction pipeline used in the CANDO platform. The primary prediction pipeline of

CANDO is shown, with data sources represented by their respective logos, protocols represented by blue

boxes, and key data structures represented by red boxes. COACH is used to predict protein binding sites

based o� of experimental structures from the Protein Data Bank (PDB) and/or computational models

created via tools like I-TASSER[131]. Predicted ligands and con�dence scores for each binding site are

combined with compound �ngerprints (from RDKit) to predict protein interaction scores for every small

molecule in the compound library (from DrugBank) using the bioanalytic docking (BANDOCK) protocol.

These interaction scores are arranged into interaction signatures for every compound. Drug-drug

signature similarity scores are calculated from these signatures. Drug-indication mappings are extracted

from the CTD and/or TTD, and the most similar compounds to each drug associated with an indication are

examined. Novel compound predictions are generated and ranked based on the number of times a

compound appears in these lists above the similarity list cuto�; ties are broken based on average rank in

these lists. In the example, the yellow compound is �rst because it appears the most times, and the cyan

compound is second because its average rank is better than that of the magenta compound. The original

and new benchmarking protocols di�er in what is assessed: the original focuses on the individual

similarity lists, whereas the new evaluates the �nal consensus list.
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2.2. Data extraction and generation

Proteomic interaction signatures were created using predicted compound-protein interaction data.

We used the CANDO version 2.5 compound and human protein libraries. The protein library comprised

8,385 nonredundant human protein structures, including 5,316 experimentally determined structures

extracted from the Protein Data Bank and 3,069 models generated using I-TASSER version 5.1[112][131]

[132][133][134]. Our bioanalytic docking (BANDOCK) protocol requires speci�c binding site data to

calculate compound-protein interaction scores. We used the COACH pipeline to generate these data

for our protein library[135]. COACH compared potential binding sites to solved bound protein

structures to calculate binding site similarity scores and likely interacting ligands[110][135]. The

chemical similarity between each compound in our library and the most similar predicted ligand of a

protein was calculated using ECFP4 chemical �ngerprints generated by RDKit[110][118][136].

Compound-protein interaction scores were then calculated in three ways: (1) as the chemical

similarity score alone (the compound-only or C score), (2) as the product of the chemical similarity

score and the binding site similarity score (the compound-and-protein or CxP score), or (3) as the

product of the percentile chemical similarity score and the protein binding score (the percentile

compound-and-protein or dCxP score). We compared all three interaction scoring types in our

protocol optimization study (section 2.4); the second score was used for our predictive power

assessment and head-to-head comparison studies.

Benchmarking requires known drug-indication mappings, which we obtained from two sources. We

combined drug approval data extracted from DrugBank and drug-indication associations from the

CTD to make the “CTD mapping”[56][57]. These data are also available in version 2.5 of CANDO. The

second mapping, the “TTD mapping,” was created from drug approval and indication association data

downloaded from the TTD on October 30, 2023[137]. Only approved drug-indication associations were

extracted from the TTD, and only drugs already in our compound library were considered. In total,

there were: 2,449 approved drugs across 2,257 indications with at least one associated drug and 22,771

associations in the CTD drug-indication mapping; 1,810 drugs across 535 indications and 1,977

associations in the TTD mapping; and 2,739 unique drugs altogether. Of these indications, 1,595 were

associated with at least two drugs and thus could be benchmarked in CTD, and 249 were associated

with at least two drugs in TTD.
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2.3. Benchmarking CANDO internally

The original version of the CANDO benchmarking protocol examined the similarity lists of each

indication-associated drug[15][104][105][106][107][108][109][110][111][112][113][114][115][116][117][118][119][120].

Indication accuracy (IA) was calculated as the percentage of similarity lists of associated drugs in

which at least one other associated drug appeared above a certain cuto�. Indication accuracies were

then averaged for every indication with at least two drugs (required to assess a similarity list) to

obtain an overall average indication accuracy (AIA).

We developed a new benchmarking protocol that directly evaluates consensus scoring protocol to

more accurately re�ect the drug prediction performance of CANDO. This protocol examines each

indication with two or more associated drugs. Each associated drug is withheld in turn from its

indication and ranked against all compounds to determine whether it would be predicted for that

indication if it were not already associated. Next, compounds are ranked by the number of times they

appear in the similarity lists of the associated drugs above the similarity list cuto�, resulting in a

consensus list. Ties are broken based on the best average rank above that cuto�. Two additional

tiebreakers are used to ensure compounds outside of the top ranks are still ordered: (1) best average

rank across the similarity lists of the associated drugs and (2) greatest average similarity to the

associated drugs. We determine the rank of each withheld drug in the �nal, sorted list and calculate

multiple metrics to quantify the performance of these consensus lists. New indication accuracy (nIA)

is similar to recall, and it is calculated as the percentage of withheld drugs that are predicted as

therapeutics for the indication in question at or above the de�ned rank cuto�s in the consensus list.

We set rank cuto�s at 10, 25, and 100 for this study. nIA is then averaged across all indications to

calculate the new average indication accuracy (nAIA).

Our protocol also calculates normalized discounted cumulative gain (NDCG), which prioritizes early

discovery of true positives and is described in further detail elsewhere[15]. It ranges from zero to one,

with a higher score indicating better performance. The discounted cumulative gain can be calculated

from the rank of a single associated drug using the following formula: 

This is divided by the ideal discounted cumulative gain (equal to one in this case) to obtain the NDCG.

This metric will be referred to as new NDCG (nNDCG) when calculated by our new benchmarking

DCG = 1/ (rank +1)log2
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protocol for the consensus lists. We calculated nNDCG without a rank cuto� (“overall”) and at rank

cuto�s of 10, 25, and 100 in this study.

2.4. Optimizing a key parameter

We optimized multiple CANDO parameters with regards to the performance of the consensus scoring

protocol used for predictions. We randomly split our drug-indication mappings 30/70 to create

independent mappings for parameter optimization and performance evaluation, with 30% of drug-

indication associations reserved for parameter optimization and 70% for the �nal assessment. All

drug associations with the same indication were assigned to the same group, and only indications with

at least two associated drugs were (and could be) assessed. The CTD mapping was split into 5,714

drug-indication associations across 501 indications for parameter optimization and 13,226

associations across 1,094 indications for the �nal assessment. The smaller TTD mapping was split

into 490 associations across 82 indications for parameter optimization and 1,160 associations across

167 indications for the �nal assessment.

The �rst parameter optimized was the similarity list cuto� used in our consensus scoring protocol

(section 2.1). We quanti�ed the performance using nAIA and nNDCG on the CTD and TTD drug-

indication mappings for every value of this parameter up to the number of approved compounds in the

mapping (2,449 for CTD, 1,810 for TTD). The similarity list cuto� used when each metric reached its

maximum was considered the optimal value. A random control was calculated for each metric and

mapping at each optimal value. A hypergeometric distribution was used to calculate the control value

for nAIA. For nNDCG, ten randomized drug-protein interaction matrices were generated and

benchmarked per optimal parameter and mapping, and the nNDCG values were averaged. We repeated

the similarity list cuto� optimization using all 13,218 compounds, approved or otherwise, in the v2.5

CANDO compound library, and similarity list cuto�s up to 1,000 were assessed.

The second parameter optimized was the compound-protein interaction scoring type. We compared

all three scoring types used by BANDOCK (section 2.2). We benchmarked CANDO using proteomic

interaction matrices generated using each scoring type with similarity cuto�s ranging from 1 to 100,

and we compared the best performances of each protocol using nAIA and nNDCG.

The third and �nal parameter optimized was the tiebreaker used in our consensus scoring protocol.

CANDO sorts predicted compounds based on the number of times they appear within the similarity list

cuto� in the similarity lists of drugs associated with an indication. Ties are broken by average rank
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above that cuto� in our original tiebreaker[106].  In benchmarking, we also use the overall average

rank, the average rank of a compound in the full similarity lists (i.e., not limited to the similarity list

cuto�), as a secondary tiebreaker to ensure that all compounds are ranked. The summed similarity

score is used as a �nal tiebreaker. We compared average rank within the similarity list cuto� to overall

average rank by benchmarking CANDO with similarity list cuto�s ranging from 1 to 100 using overall

average rank as the primary tiebreaker and average rank within the cuto� as the secondary tiebreaker.

Performance was evaluated using nAIA and nNDCG.

2.5. Evaluating features a�ecting performance

A �nal assessment was completed using the 70% of indications not used for parameter optimization.

Similarity list cuto�s, interaction scoring types, and tiebreakers were chosen based on parameter

optimization results (section 2.4): similarity list cuto�s of six, ten, and thirteen, the compound-and-

protein score, and average rank above the similarity list cuto� were used. We calculated nAIA and

nNDCG at rank cuto�s of 10, 25, and 100, in addition to overall nNDCG, in this �nal assessment.

We examined how multiple features correlated with performance, including our previous

benchmarking metric (AIA), the number of drugs associated with an indication, and the chemical

similarity of the drugs associated with an indication. The correlation between these features and

performance were considered at the drug scale using the rank at which each individual drug was

predicted and at the indication scale using nIA and nNDCG. Rankings are ordinal, and our metrics are

unlikely to follow a normal distribution, which violates the assumptions of Pearson correlation.

Therefore, Spearman correlation coe�cients were calculated using the scipy package[138]. For brevity,

correlation results are reported for a similarity list cuto� of ten only.

AIA, which measures similarity list quality, was calculated using our original benchmarking protocol

(section 2.3).[106] The correlation between the rank of a drug associated with an indication using our

new bench-marking protocol (i.e, the rank in the consensus list) and the best rank of another

associated drug in its similarity list was calculated. The correlations between IA and nIA at the top10,

25, and 100 cuto�s were also calculated. Correlation coe�cients were re-calculated when only

considering indications with a certain number of associated drugs: those with two associated drugs

(208 indications in CTD, 71 in TTD), with four or fewer drugs (485 in CTD, 109 in TTD), and with �ve

or more drugs (609 in CTD, 58 in TTD).
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We examined the relationship between the number of drugs associated with an indication (indication

size) and performance using nIA and nNDCG. Including associated drugs in the consensus list would

negatively bias performance for indications with more associated drugs. For example, for an

indication with 101 associated drugs, a withheld drug would need to outcompete every other

associated drug, all of which should be ranked highly for that indication, to be ranked in the top 100.

However, excluding associated drugs positively biases performance for larger indications; in the

previous example, the withheld drug would need to outcompete 99 fewer drugs than if it were in an

indication with 2 associated drugs. We therefore calculated nIA and nNDCG including all associated

drugs in the consensus list, and we also re-calculated these metrics while excluding all associated

drugs but the withheld drug from the rankings. The unbiased value should fall between these two

measurements. In both cases, we measured the overall correlation and the correlation for only

indications with �ve or more drugs.

Lastly, we examined the in�uence of drug chemical similarity within an indication on the

performance of CANDO, expanding on previous work[118].  Drug-drug chemical signature similarity

was measured using the Tanimoto coe�cient using 2048-bit Extended Connectivity Fingerprints with

a diameter of 4 (ECFP4) vectors that encode the chemical features of a compound, which were

generated by RDkit to represent each drug[136][139].  The best and average similarities of each

individual drug to every other drug associated with the same indication were calculated. The

correlation between these metrics and the rank of that drug in the consensus list generated by our

benchmarking protocol was determined. Three similarity metrics were also calculated for each

indication: best similarity between any pair of associated drugs, average of the best similarities of the

associated drugs, and average of the average similarities of the associated drugs. We calculated the

correlation between these per-indication metrics and nIA and nNDCG, respectively. Finally, we

benchmarked the performance of CANDO using the ECFP4 chemical signature similarity in place of

interaction signature similarity.

2.6. Comparing drug-indication mappings

We examined the e�ects of the drug-indication mapping used on performance by comparing the

mappings extracted from CTD and TTD. We combined the drugs from both mappings into a single

drug library and re-benchmarked CANDO on this library using each mapping. We manually matched

each TTD indication to the most appropriate CTD indication for comparison purposes. When no
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appropriate CTD indication match existed, for instance, for the TTD indication “Contraception,” that

indication was excluded from the comparison. When multiple TTD indications were initially mapped

to the same CTD indication, only the most similar TTD indication was matched: for instance, “Open-

angle glaucoma” in TTD was matched to “Glaucoma, Open-Angle” in CTD, so “Chronic open-angle

glaucoma” was not. The di�erence in performance using nIA and nNDCG between the two mappings

was evaluated for the matched indications. Average performance on the matched and unmatched

indications was also calculated. Finally, we compared the rankings of the drugs that appeared in the

same indications in both CTD and TTD.

2.7. Benchmarking platforms head-to-head

The CANDO platform consists of both similarity-based and non-similarity-based pipelines for novel

drug prediction[106]. We focused on the similarity-based pipelines in this study, which have speci�c

benchmarking requirements. However, other platforms or pipelines may have other requirements;

thus, we created compbench, a protocol for head-to-head benchmarking of drug discovery platforms

in general. This protocol will ease comparison of disparate pipelines and platforms, including those

within CANDO and those created by others. Our head-to-head benchmarking protocol uses k-fold

cross-validation to accommodate pipelines that are computationally expensive or slow to train. Drug-

indication associations are randomly split into a number (k) of equally sized subsets (folds), one of

which is used for testing and the remainder of which are used for training. Assessment is repeated

once per fold and the results from all fold assessments are averaged. We strati�ed this splitting by

indication: drugs from each indication are randomly, but evenly, distributed between folds. This

ensures that there is consistent training data available for each indication in each fold. Indications

with fewer than two associated drugs are excluded from assessment, as before. The number of folds

used can be set as desired; for this study, we used ten.

We used metrics that are widely applicable, comparable, and useful for our head-to-head comparison.

Area under the receiver operating characteristic curve (AUROC) is commonly used for holistically

assessing computational models[15] However, only the most selective thresholds are practically useful

for drug discovery. This has led some to suggest calculating AUROC up to a maximum false positive

rate cuto�[92]  Therefore, we assessed on both traditional AUROC and partial AUROC up to a false

positive rate of 0.05. We also consider NDCG useful as it prioritizes early retrieval of e�ective

therapies, and it is applicable to any platform that generates ranked predictions. We considered NDCG
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without a cuto� and with a rank cuto� of ten as our �nal two metrics for this assessment. These

metrics were calculated based on the ranks at which the withheld drugs were recovered for their

corresponding indications. We used a theoretical random control with a slope of 0.5 for AUROC, and

we scored the ranks created by randomly shu�ing our compound list to create a random control for

nNDCG.

Compbench is publicly available as a Python script. The protocol gives a set of indication-associated

drugs and a set of other compounds, including any withheld drugs, as input to the drug discovery

pipeline or a wrapper thereof; other input may be provided as necessary. It must then receive the list of

other compounds sorted by likelihood of e�cacy for the indication (greatest to least). Data splitting

and metric calculation is automatically completed as outlined above. The code is available on Github at

https://github.com/ram-compbio/compbench and on our server at

http://compbio.bu�alo.edu/software/compbench/; the cross-validation data used for this assessment

is available in both places as well.

2.7.1. Assessing the subsignature pipeline

To fully demonstrate the above head-to-head benchmarking protocol, we created a pipeline that was

su�ciently dissimilar to our primary one. We chose a pipeline that predicts novel drugs based on

subsignature similarity. This involves splitting the complete proteomic signature into shorter

subsignatures based on the Gene Ontology terms mapped to each protein[140][141]  Gene Ontology-

protein associations were extracted from UniProt[142]  A protein associated with a term was also

considered to be associated with its parent terms in the Gene Ontology hierarchy. We used 650 higher-

level Gene Ontology terms that mapped to at least one protein as the basis for our subsignatures.

The compound ranking protocol of the subsignature pipeline involves the following steps: (1) The

subsignatures of the drugs associated with an indication are clustered. The number of clusters is

chosen based on repeated assessment of cluster centrality using an adapted version of the kneedle

knee/elbow-�nding protocol[143]. This protocol uses the curvature of a cost/bene�t graph to �nd the

point at which increased cost (additional clusters) is no longer worth the bene�t (increased

centrality). The cluster number is limited to 20% of the compounds associated with an indication or

ten, whichever was lower. (2) The similarity between the compound subsignatures and the indication

clusters corresponding to the same Gene Ontology terms are calculated. (3) These similarities are

summed in one of three ways: unweighted, weighted by the negative logarithm of cluster centrality
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(log weighted), or weighted to only consider the 25 most central clusters (25 weighted). (4) The

compounds are ranked by this summed similarity from most to least similar.

The subsignature pipeline was benchmarked on the CTD and TTD drug-indication mappings using

comp-bench. The code for this version of the subsignature pipeline, the wrapper used to make it

compatible with compbench, and the associated data (including Gene Ontology terms used) can be

accessed at http://compbio.bu�alo.edu/software/compbench.

2.7.2. Assessing the primary pipeline

We also benchmarked the primary drug discovery pipeline of CANDO using compbench. We used

overall average rank and summed similarity as additional tiebreakers in our internal benchmarking

protocol. This ensured that the consensus list as a whole was sorted, rather than only those

compounds that appeared above the similarity list cuto� being sorted. However, doing this required

changing the internal protocols of CANDO; we cannot do this in our head-to-head protocol as it is not

part of CANDO. Instead, we needed to use features and parameters already present in CANDO to create

a full ranked list. Therefore, we created three di�erent pipeline variants based on varying the

similarity list cuto� to create a full ranked list: First, we used a similarity list cuto� equal to the total

number of compounds (all similar variant), resulting in compounds being sorted based on their

overall average rank as they all have the maximum possible consensus score. Second, we used a

similarity list cuto� of ten (ten similar variant), with any compounds not appearing in the top ten

compounds being sorted by average overall rank. Finally, we created predictions using multiple

similarity list cuto�s {10, 20, 30…} (multiple lists variant), combining the lists so that compounds

recovered at lower similarity list cuto�s had better ranks than those recovered at higher cuto�s.

All three variants were assessed on the CTD and TTD drug-indication mappings using compbench.

The wrappers used to integrate CANDO with this benchmarking protocol and the data used in this

assessment can be accessed at http://compbio.bu�alo.edu/software/compbench/.

3. Results and discussion

In this study, we created two new benchmarking protocols to allow more consistent assessment of

CANDO and computational drug discovery platforms in general. We present results obtained via these

new protocols, including (1) the optimization of multiple key parameters involved in our drug

prediction protocol; (2) an assessment of the performance of CANDO using these optimized
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parameters, including the correlations between performance on the new benchmarking protocol and

the number of drugs associated with a disease/indication, the results of our original benchmarking

protocol, and the drug-drug chemical signature similarity within an indication; (3) a comparison of

performance when using two di�erent drug-indication mappings as a ground truth; and (4) the

application of compbench, a novel tool for generalized and head-to-head benchmarking of drug

discovery platforms, to a comparison of the primary pipeline of CANDO and a novel pipeline in

development, the subsignature pipeline.

3.1. Optimization of three key CANDO parameters

Our new internal benchmarking protocol allows us to directly assess the performance of the consensus

scoring protocol used in CANDO to rank potential therapeutics (section 2.3). This allowed us to

improve CANDO by optimizing a key consensus scoring parameter, assessing the e�ects of the protein

interaction scoring protocol used, and comparing two di�erent ways of breaking ties when ranking

novel compound predictions.

CANDO requires a similarity list cuto� when generating predictions; this determines how many

similar compounds the consensus scoring protocol considers per drug associated with the indication

when predicting new drugs or benchmarking. This parameter was set to ten by default, but various

values have been used in previous applications of CANDO[104][109][111][115][119][120].

We also compared the performance of CANDO on subsets of drug-indication mappings extracted from

the CTD and TTD. Results were quanti�ed using new average indication accuracy (nAIA) and new

normalized discounted cumulative gain (nNDCG) metrics at top10, top25, and top100 rank cuto�s;

nNDCG was also calculated without a rank cuto�. The results for similarity list cuto�s up to 1,810 are

shown in Figure 2.
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Figure 2. E�ects of the similarity list cuto� on benchmarking performance. We used our new

benchmarking protocol to optimize the similarity list cuto� parameter, which represents the number of

similar compounds the consensus protocol considers per associated drug when predicting a new

compound for an indication. Assessments were completed on two drug-indication mappings extracted

from the CTD and TTD. Results were summarized using nAIA and nNDCG metrics at multiple rank cuto�s;

nNDCG was also calculated without a rank cuto�. Performance using nAIA (A) and nNDCG (B) is shown for

similarity list cuto�s up to 1,810. Dotted black lines indicate the cuto�s of 1 and 50, between which all

optimal values for this parameter fall. An expanded graph of only this range is shown for nAIA (C) and

nNDCG (D). Bar charts (E–F) show the maximum values of each metric against random controls. Optimal

values are marked with a yellow triangle and listed in the tables (G) at the bottom. The optimal parameter

values for nAIA varied from 6 to 31 based on the cuto� and mapping used. The range was smaller for

nNDCG, ranging from 7 to 13. The similarity list cuto� a�ected performance on multiple key metrics, and

optimal performance was only achieved when less than 2% of compounds were considered.

The performance of CANDO varied widely based on the similarity list cuto� used. The largest gap

between the best and worst performances was observed in the CTD mapping for nAIA top100, with the

best nAIA being 21.4% (similarity list cuto� of 31) and the worst nAIA being 9.2% (cuto� of 805).

CANDO outperformed the random control in all cases, including when there was suboptimal

performance. Di�erent optimal parameter values were obtained for di�erent metrics and drug-

indication mappings, ranging from 6 (nAIA top10 using CTD and nAIA top25 using TTD) to 31 (nAIA

top100 using CTD). Performance was better with both the nAIA and nNDCG metrics and at all cuto�s
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when using the TTD mapping relative to the CTD mapping. The optimal similarity list cuto� for both

mappings was greatest when considering nAIA top100, and the range of optimal values was greater for

nAIA (6 to 31) than for nNDCG (7 to 13). For instance, the optimal similarity list cuto� was 13 for all

four nNDCG cuto�s when using the TTD mapping. This may be because the inherent prioritization of

top-ranked hits in the calculation of NDCG makes the consensus list cuto� used matter less.

In general, we only rank approved compounds during benchmarking so that the results are not be

dependent on the number of unapproved compounds included. However, there are numerous

unapproved small molecules that could potentially have novel therapeutic uses, and it is often

desirable to use CANDO with a compound library that includes such small molecules in hopes of

�nding a completely novel therapeutic. Therefore, we repeated this optimization assessment on the

full 13,218 compound library in CANDO version 2.5, which includes experimental/investigational

drugs, to obtain a parameter value relevant to this scenario (Supplementary Table 1A). Performance

overall decreased with the inclusion of additional compounds without any associated indications, and

the optimal parameter values were also a�ected. The optimal parameter value increased for twelve of

the fourteen metric/mapping combinations used, with the largest increase being 27 (from 6 to 33,

nAIA top10 using CTD). This demonstrates the necessity of considering application conditions when

completing benchmarking assessments and making corresponding predictions.

Another feature that we assessed is the protocol used to calculate the drug-protein interaction scores

required to generate drug-proteome interaction signatures. These signatures are compared to

produce drug-drug interaction signature similarity scores. Our BANDOCK interaction scoring protocol

(section 2.2) computes three types of interaction scores: compound-only, compound-and-protein,

and percentile compound-and-protein. We optimized the similarity list cuto� using nAIA and nNDCG

with all three interaction scoring types and compared the best values for each benchmarking metric

(Supplementary Table 1B). The compound-and-protein type showed the best performance on most

benchmarking metrics when using the drug-indication mapping from CTD, with the percentile

compound-and-protein protocol performing the best on the remaining metrics (nNDCG top10, overall

nNDCG). On the other hand, the compound-only protocol performed best on the majority of metrics

when using the TTD mapping, with the compound-and-protein protocol performing best on one

(nAIA top25). The compound-and-protein scoring type was often the best performing one, and never

the worst performing; we therefore consider it the optimal type of protein interaction score for use

with CANDO.
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Finally, we examined the impact of the tiebreakers used in our consensus scoring protocol (section

2.1). Following sorting by the consensus score (section 2.3), our original tiebreaker took the average

rank of a drug within each similarity list limited to the similarity list cuto�. We compared this to using

overall average similarity rank without using the cuto� (Supplementary Table 1C). Average rank

within the cuto� performed better than the overall average rank for all metrics in both mappings.

nAIA was 2.9% (nAIA top100 using TTD) to 11.8% (nAIA top10 using CTD) higher and nNDCG was 2.4%

(nNDCG overall using TTD) to 12.3% (nNDCG top100 using CTD) higher when average rank within the

cuto� was used as the primary tiebreaker.

3.2. Assessment of predictive power

Our new benchmarking protocol also allowed us to obtain a more accurate estimation of the predictive

power of CANDO. We used parameters based on our optimization results to conduct three assessments

with similarity list cuto�s of six, ten, and thirteen to cover the variety of optimal values obtained. We

used the compound-and- protein interaction scoring type as it was often the best performing one and

never the worst performing. Finally, we used average rank within the cuto� in the consensus scoring

protocol as it was dominant in our optimization assessment (section 3.1).

We assessed the overall performance of CANDO using drug-indication associations that were not used

for optimization. The results are shown in Figure 3A–B. CANDO outperformed random controls when

using both drug-indication mappings and for all metrics. The nAIA results suggest that CANDO

recovered approximately 7.3% to 7.4% of approved drugs within the top 10 compounds when using the

CTD mapping and 11.4% to 12.1% when using the TTD mapping (out of 2,449 in CTD and 1,810 in TTD).

This rose to 19.0% to 21.1% when using CTD and 29.9% to 31.0% when using TTD at the top 100 cuto�.

nNDCG top10 ranged from 0.038 to 0.040 using CTD and 0.061 to 0.066 using TTD, more than an order

of magnitude greater than the corresponding random control values. Complete performance data for

all similarity list cuto�s are available in Supplementary Table 2.
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Figure 3. Assessment of predictive power. CANDO was assessed using the protocols and parameters

obtained through our optimization. nAIA (A) and nNDCG (B) metrics are shown at multiple cuto�s for the

two drug-indication mappings, CTD and TTD. The random control is shown as a dotted line on each group

of bars with the same mapping and cuto�. CANDO outperformed the control on all assessments, and

performance was best when using the TTD mapping. Performance on this assessment was correlated with

multiple features: the number of compounds in an indication (C–D); our original indication accuracy (IA)

metric, which measures similarity list quality (E–F); and drug-drug interaction signature similarity

within each indication, measured as the average similarity score between each drug and its most similar

other associated drug (G–H). The upper sub�gures (C, E, and G) plot each feature against new indication

accuracy (nIA) above rank 100 in CTD, whereas the lower plots (D, F, and H) show the relationship between

the same two features when their values are ranked; these ranks were used to calculate Spearman

correlation coe�cients. The size of the bubble surrounding each dot represents the number of indications

plotted there. Trendlines are shown as dotted black lines. Positive correlations of varying strength were

observed in all cases. Knowledge of the features in�uencing benchmarking can enable more accurate

assessment of expected predictive performance. Based on these results, we can expect CANDO to perform

best when predicting compounds for indications with large numbers of associated drugs and when

chemical signature similarities are relatively high.

Performance increased by up to 11.2% (nAIA top100 using the CTD mapping) and at least 1.9% (overall

nNDCG using CTD) between the worst and best performing similarity list cuto� used. Performance
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also di�ered from what we observed during parameter optimization. Performance on this assessment

using CTD was 1.2% (NDCG overall, similarity list cuto� of 6) to 7.8% (NDCG top10, cuto� of 10) better

than performance at the same similarity list cuto� on the optimization assessment. The change was

more extreme and more negative using the TTD mapping: performance decreased by 0.4% (nAIA

top100, cuto� of 10) to 38.8% (nNDCG top10, cuto� of 13) when using the TTD mapping. The increase

using CTD and decrease using TTD made the di�erence in performance between the mappings more

similar, but performance was still consistently and substantially higher when using the TTD mapping.

In �ve out of seven assessments using CTD (nAIA and nNDCG at the speci�ed cuto�s), the similarity

list cuto� that was closest to the previously observed optimal value showed the best performance.

However, the previous optimal value and best performance on this assessment did not align for any

assessment on TTD. This and the up to 38.8% decrease in performance on this assessment suggest

that our random splitting of the TTD mapping resulted in somewhat dissimilar indication libraries for

optimization and assessment. The smaller size of the TTD mapping may have also contributed to this

di�erence, demonstrating the need for large and robust benchmarking ground truth datasets for drug

discovery.

3.2.1. In�uence of the number of associated drugs

We investigated three features that could in�uence the performance of CANDO to understand what

makes it perform better on some indications than others. First, we considered the in�uence of the

number of approved drugs associated with an indication (or “indication size”) on performance. We

include all associated drugs in the performance assessments of our new benchmarking protocol by

default. However, performance may be negatively impacted when there are more drugs associated

with an indication since other associated drugs will be competing with the one being withheld and

assessed (section 2.5), biasing the correlation coe�cient. On the other hand, excluding the non-

withheld drugs associated with the indication would positively bias results as there would be fewer

total compounds being ranked against the withheld drug. Therefore, we assessed CANDO once when

including other associated drugs and once when excluding them, and we calculated two correlation

coe�cients per assessment. The actual correlation should fall between the positively biased and

negatively biased coe�cients so measured.

Greater data availability generally improves the performance of computational models, so we

anticipated a positive correlation between nIA and indication size. Indeed, there was a weak positive
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correlation, with Spear-man correlation coe�cients ranging from 0.324 to 0.352 using the CTD

mapping and from 0.337 to 0.505 using the TTD mapping when associated drugs were included in

rankings. Coe�cients raised only slightly when associated drugs were excluded, ranging from 0.326 to

0.355 using the CTD mapping and 0.342 to 0.511 using the TTD mapping. The correlation between nIA

at the top100 cuto� and indication size when using the CTD mapping and excluding associated drugs

is illustrated in Figure 3C–D. Correlations using nIA at the top10, 25, and 100 cuto�s using both

mappings are shown in Supplementary Figure 1.

Although there was a positive Spearman correlation, from visual inspection of the datapoints in Figure

3C–D alone, one might anticipate a neutral or negative correlation between indication size and

performance using CTD. We observed a large number of indications with few approved drugs that had

an nIA of zero, so we hypothesized that the positive correlation may be largely due to low performance

on indications with very few associated drugs. We thus re-calculated the correlation coe�cient using

only indications with �ve or more associated drugs (Supplementary Table 3B). The strength of the

correlation between nIA and indication size weakened in this assessment, becoming negligible at

0.026 to 0.075 when using the CTD mapping with associated drugs excluded. Correlation coe�cients

also shrunk when using the TTD mapping, ranging from 0.161 to 0.281. This suggests that, particularly

when using the CTD mapping, increasing indication size may not improve performance beyond a

certain point, for example, when nonzero performance has been achieved.

This could be because indications with more associated drugs may include those with disparate

mechanisms of action. This would lower drug-drug interaction signature similarity within the

indication, decreasing performance. Relatedly, indications with more associated drugs could contain

multiple related, smaller indications, which would lower drug-drug interaction signature similarity

between drugs aimed at these di�erent sub-categories. For example, drugs intended to treat “Breast

cancer” may actually be aimed at treating HER2-positive breast cancer, triple negative breast cancer,

metastatic breast cancer, and so on. Finally, it could be because larger indications may be more likely

to include at least one spurious drug association. This would also explain why the correlation between

indication size and performance was weaker when using the CTD mapping, which includes drug-

indication assocations drawn from the literature, than when using the TTD mapping, in which

associations were based on the stricter standard of FDA approval.
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3.2.2. In�uence of similarity list quality

We also considered the primary metric of our previous internal benchmarking protocol: indication

accuracy (IA; section 2.3). IA directly measures the quality of the drug-drug interaction signature

similarity ranks calculated within CANDO. Note that IA is more lenient than nIA as it checks whether at

least one other associated drug appears above a certain cuto� in the similarity list of a drug rather

than the percentage of associated drugs recalled. IA thus tends to have higher values than nIA when

assessing the same indication.

We calculated the Spearman correlation coe�cient between the rank assigned to each drug in the

consensus list and the best rank of a drug associated with the same indication in its similarity list, as

calculated by the original benchmarking protocol. There was a moderate-to-strong correlation

between the two ranks, with a correlation coe�cient of 0.592 when using the CTD drug-indication

mapping and 0.704 when using the TTD mapping. We also examined the relationship between nIA and

IA at the top10, 25, and 100 cuto�s for each indication. This correlation was even stronger, with

coe�cients ranging from 0.741 to 0.807 using the CTD mapping and 0.859 to 0.905 using the TTD

mapping. There was no consistent relationship between the cuto� considered and the strength of the

correlation. The correlation between nIA and IA at the top100 cuto� using the drug-indication

mapping from CTD is illustrated in Figure 3C–D. The remaining correlations are shown in

Supplementary Figure 2. The correspondence between IA and nIA suggests that our previous

benchmarking results did have relevance to actual performance, as has also been demonstrated by

extensive prospective validation[15][105][109][110][111][115][120][121][122][123][124][125][126][127][128][129]

[130]  This also, unsurprisingly, suggests that high-quality similarity lists result in high-quality

consensus predictions.

A stronger correlation between IA and nIA was observed using the TTD drug-indication mapping. We

hypothesized that this may have resulted from a di�erence in the number of drugs associated with

each indication on average in the two mappings: indications in the CTD mapping were associated with

12.1 drugs on average compared to 6.9 drugs in the TTD mapping. We calculated the correlation

coe�cient between IA and nIA when only considering indications associated with up to four drugs and

with at least �ve drugs to test this (Supplementary Table 3A). Correlation coe�cients were higher

when only indications with up to four associated drugs were included (485 indications in CTD and 109

in TTD), ranging from 0.831 to 0.925 using CTD and from 0.879 to 0.948 using TTD. Meanwhile,

correlation coe�cients were lower when only indications associated with �ve or more drugs were
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considered (609 indications in CTD and 58 in TTD), ranging from 0.476 to 0.635 using CTD and from

0.419 to 0.636 using TTD. These results can be explained by the increased impact of each individual

similarity list (assessed using IA) and decreased impact of the consensus scoring protocol (assessed

using nIA) in indications with fewer associated drugs. This indicates that benchmarking the consensus

scoring protocol directly, as done in this study, is important to accurately capture performance on

indications with a greater number of associated drugs.

3.2.3. In�uence of chemical signature similarity

CANDO typically uses the proteomic interaction signature similarity between indication-associated

drugs and other compounds to predict whether those compounds would be e�ective for that

indication. Compounds that are alike in chemical structure tend to have similar protein interactions

and, therefore, similar interaction signatures[118].

We assessed the extent to which chemical similarity, calculated as the Tanimoto coe�cient between

the chemical �ngerprints of two drugs, in�uences the performance of CANDO[139]. There were

moderate correlations of -0.589 when using the CTD mapping and -0.618 when using the TTD

mapping between the rank at which a drug was recalled and its average chemical similarity to other

drugs associated with the same indication. The negative coe�cients indicate that lower (better) ranks

correspond with higher similarity. The strength of the correlations were similar or slightly stronger

when using maximum similarity to any other associated drug: -0.593 using the CTD and -0.671 using

the TTD mapping.

Next, we examined the correlation between indication-wide similarity and performance using nIA and

nNDCG. We quanti�ed indication similarity through three metrics: maximum chemical similarity

between any pair of associated drugs; average chemical similarity across all pairs of associated drugs;

and the average of the maximum chemical similarities of each associated drug. The correlation was

strongest using average maximum similarity, for which coe�cients ranged from 0.635 to 0.750 using

CTD and 0.697 to 0.744 using TTD (Supplementary Table 3C). The greater correlation between

performance and average maximum similarity as compared to overall average similarity suggests that

CANDO does not require an indication be totally chemically homogeneous to perform well, but that it

performs best when drugs have at least one chemically similar partner in the same indication. The

correlation between nIA top100 and average maximum similarity using the CTD mapping is illustrated
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in Figure 3G–H, and correlation with nIA top10, top25, and top100 using both mappings are shown in

Supplementary Figure 3.

We examined whether using proteomic interaction signature similarity confers an advantage over

chemical signature similarity since the latter had a moderate-to-strong relationship with the

performance of CANDO, even when using the proteomic signature. We reassessed CANDO using

chemical signatures in place of proteomic interaction signatures[118][139].  Performance was slightly

worse when using the chemical signature; for example, nIA top10 decreased from 7.4% to 5.9% using

the CTD mapping and from 12.1% to 10.9% using the TTD mapping. This represents a 20.5% decrease

when using CTD and a 9.8% decrease when using TTD, respectively. A similar decrease was observed

at the other nIA cuto�s and for nNDCG; the exception were nNDCG overall using both mappings and

nNDCG top10 when using TTD mapping only. This result demonstrates that, though the protein

interaction scores of compounds are calculated based on their chemical signatures and though

compound chemical similarity correlates with performance, the use of the protein interaction

signature adds value to the performance of CANDO.

3.3. Comparison of drug-indication mappings used

CANDO consistently performed better in the above assessments when using the drug-indication

mapping created from the TTD relative to the one from the CTD. These databases di�er from one

another in a few ways. Drug-indication associations in the CTD are curated from evidence of a

therapeutic association in the literature. The associations in TTD are based on FDA approval instead,

which is a higher standard of evidence. This may lead to higher quality associations, which could

improve the performance of CANDO. CTD contains indications with more associated drugs on average,

which should result in improved performance based on the observed positive correlation with

indication size. It also includes more total approved drugs, which means that the assessed drug has to

outcompete more compounds during benchmarking and leads to decreased performance (as observed

in the lower random control when using the CTD mapping). CTD and TTD also contain di�erent

indications. If the indications in the TTD mapping are easier to predict drugs for on average, this could

also explain the better benchmarking performance when using the TTD mapping.

We examined the two drug-indication mappings head-to-head to determine whether using the TTD

mapping with CANDO actually results in improved performance. We benchmarked CANDO on both

drug-indication mappings using the full library of drugs that were marked as approved in either
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mapping. CANDO still performed better when using the TTD mapping, with a top10 nAIA of 6.8%

using CTD compared to 11.3% using TTD and a top100 nAIA of 19.1% using CTD compared to 27.5%

using TTD. However, this di�erence decreased when we only considered the 191 indications that

appeared in both mappings. The top10 nAIA using CTD with matched indications was 6.5% compared

to 9.3% using TTD, and the top100 nAIA using CTD was 24.5% compared to 26.4% using TTD. The

di�erences in performance per matched indication using nIA top10 and top100 are shown in Figure

4A–B. The CTD mapping performed best on more indications than the TTD mapping, but the TTD

mapping generally outperformed by a greater magnitude, leading to its higher nAIA.

Figure 4. In�uence of drug-indication mapping on performance. CANDO was benchmarked using drug-

indication mappings extracted from two databases, CTD and TTD. The di�erences in nIA at the top10 (A)

and top100 (B) cuto�s for each indication that appeared in both mappings are shown. Performance was

better using CTD for more indications, but TTD outperformed by more when it was superior. This lead to a

higher overall nAIA when using TTD. We also compared the ranks of 576 drug-indication associations that

appeared in both mappings. The ranks of those drugs when predicted or their indications in each mapping

are plotted in log scale (C) and arithmetic scale (D). Black lines indicate the 100th rank, beyond which

predictions are less likely to be useful for drug discovery, and a grey line represents equivalent ranks

between the mappings. The number of associations for which each mapping performed better is shown

(E); these counts are separated by whether both, only one, or neither mappings ranked the drug within the

top100 cuto�. TTD outperformed CTD on more drugs than vice versa. A drug was more likely to rank well

for its indication when using the TTD drug-indication mapping, but more individual indications

performed better at the most stringent top10 cuto� when using the CTD mapping.
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The top10 nAIA was 21.5% greater when the full TTD mapping was used compared to assessing on only

TTD indications also present in the CTD mapping. Likewise, the top10 nAIA was 17.6% when only the

51 indications not matched to CTD were considered, an increase of 55.8% over that observed when

using the full TTD mapping. CTD had only a slight performance gap: its top10 nAIA was 6.5% on

matched indications and 6.8% on both unmatched indications and the full CTD mapping. TTD

indications that had high nIAs and did not appear in the CTD mapping included anesthesia (ICD-11

9a78.6; 33 drugs, 15.1% top10 nIA) and contraception (ICD-11 qa21; 10 drugs, 30% top10 nIA). Virus

infection (ICD-11 1a24-1d9z; 8 drugs, 50% top10 nIA) appeared in both mappings, but it was only

associated with one drug in the CTD mapping and was thus only benchmarked using the TTD

mapping. The higher performance of TTD on indications not in CTD suggests that the apparent better

performance when using TTD is, in part, due to its inclusion of “easier” indications, ones that CANDO

more accurately predicts novel drugs for. However, this cannot be the only factor as performance

using the TTD mapping was still higher when only indications in both mappings were considered.

We then examined drugs that were associated with the same indications in both mappings. There were

576 drug-indication associations that appeared in both CTD and TTD; the rankings assigned to these

drugs by our benchmarking protocol when using each mapping are plotted in Figure 4C–E. Of these

drugs, 208 had better ranks when using CTD, 359 were better when using TTD, and 9 had the same

ranks in both scenarios. However, CTD generally outperformed TTD by a greater magnitude when it

was the better performer, as can be seen in the distance of the dots from the center line in Figure 4C.

Still, the average di�erence in rank between the mappings was 23.5 in favor of TTD. Drugs associated

with the same indications in both the CTD and TTD mappings were more likely to be ranked in the

top10, 25, and 100 cuto�s when using TTD.

Overall, these results support the hypothesis that using the current TTD mapping improves

performance, likely due to the higher standard of evidence for inclusion in this mapping (section 2.2).

Benchmarking and prediction generation using the TTD mapping may thus provide more meaningful

and reliable results for certain indications. That being said, the CTD mapping contains more total

indications than the TTD mapping, and many individual indications showed better performances

when using this mapping. The CTD mapping is still useful for such indications not present in the TTD

mapping or with poor benchmarking performance using TTD. This demonstrates another justi�cation

for the development of rigorous benchmarking protocols: benchmarking allows us to create optimal
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parameter and mapping combinations for our predictions on a case-by-case or indication-by-

indication basis.

3.4. Case study of head-to-head benchmarking

We designed compbench, a head-to-head benchmarking protocol, to facilitate consistent comparison

of di�erent drug discovery platforms, including CANDO. We compared the performance of the primary

pipeline of CANDO with a new pipeline we are developing (the “subsignature pipeline”) as a case study

of compbench; three variants of each pipeline were assessed to give both pipelines multiple

opportunities to perform at their best (section 2.7).

The primary pipeline in CANDO outputs a ranked list of compounds that appear above a chosen

similarity list cuto� at least once by default, which results in not all compounds being ranked. We

therefore utilized the similarity list cuto� in three ways to create the all similar, ten similar, and

multiple lists variants (section 2.7.2). We also created three variants of the subsignature pipeline that

use di�erent scoring types: the unweighted, log weighted, and 25 weighted variants (section 2.7.1).

We assessed all six variants using the CTD and TTD mappings (section 2.7). We quanti�ed the

performance of each on top10 NDCG, overall NDCG, AUROC above a false positive rate of 0.05 (“partial

AUROC”), and overall AUROC. The results of these assessments are shown in Figure 5. All pipeline

variants performed better when using the TTD mapping relative to using the CTD, which is consistent

with our internal benchmarking results. The remainder of this section will therefore focus on the TTD

results, as those results show each variant at its best. Similar patterns were observed in the CTD

results.
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Figure 5. Head-to-head comparison of disparate drug discovery technologies. Three variants each of our

primary drug discovery pipeline and the subsignature pipeline, which uses smaller interaction signatures

of proteins grouped by common Gene Ontology terms, were benchmarked. All six were assessed using both

the CTD and TTD drug-indication mappings. Top10 (A) and overall (B) NDCG were calculated, and the

receiver operating characteristic curves (ROC) were plotted (C). A random control NDCG is shown for each

mapping, and the theoretical random ROC is plotted. A vertical line in (C) marks a false positive rate of

0.05, which was used to calculate partial area under the ROC (AUROC); overall AUROC was also calculated.

Performance was better for all pipelines when using TTD relative to CTD. The primary pipeline

outperformed the subsignature pipeline with the exception of the “all similar” variant, which uses a

suboptimal similarity list cuto�. All pipelines and variants outperformed random control. Though the

primary pipeline was superior when used optimally, the subsignature pipeline still outperformed its least

optimized variant, suggesting that this relatively new pipeline may be able to catch up with further

optimization.

All variants performed above random chance on all metrics examined and using both drug-indication

mappings. The multiple lists variant, which combines the output of the primary pipeline when run

with multiple similarity list cuto�s (section 2.7.2), had the best performance, with a top10 NDCG of

0.106, overall NDCG of 0.247, partial AUROC of 0.0163, and overall AUROC of 0.767. There was no

single best-performing subsignature variant, with the unweighted and log weighted variants slightly
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outperforming the 25 weighted one at the most stringent cuto�s but underperforming at laxer

thresholds. The best subsignature performance for each metric was as follows: top10 NDCG of 0.0540

(log weighted), overall NDCG of 0.191 (log weighted), partial AUROC of 0.00821 (unweighted), and

overall AUROC of 0.685 (25 weighted). The all similar variant of the primary pipeline, which uses the

largest possible similarity list cuto�, performed the worst; it had a top10 NDCG of 0.0319, overall

NDCG of 0.172, partial AUROC of 0.00637, and overall AUROC of 0.648. Its lower performance

compared to the other primary pipeline variants was expected based on the results of our similarity

list cuto� optimization trial (section 3.1). This shows some promise for the subsignature pipeline:

though it underperforms the mature and optimized primary pipeline, it overperforms a suboptimal

implementation of the primary pipeline. Thus, the subsignature pipeline may be able to match or

exceed the primary pipeline with further optimization or through the implementation of consensus

scoring strategies, which is the major feature lacking in the underperforming all similar pipeline.

This head-to-head assessment of the primary pipeline replicated trends observed using our new

internal benchmarking protocol. CANDO performed best when the TTD drug-indication mapping was

used on both assessments. Both our head-to-head assessment and our parameter optimization trial

showed worse performance at higher (less stringent) similarity list cuto�s past the optimal value

(section 3.1). This correspondence of results provides additional validation to the �ndings of our

benchmarking protocols. However, we did not internally benchmark a pipeline like the multiple lists

variant, which performed best in our head-to-head assessment. Future work can explore this new

pipeline, which may result in further improvements to the consensus scoring protocol of CANDO. This

demonstrates yet another bene�t of thorough benchmarking: comparison of platforms may inspire

re�nements that would otherwise be overlooked.

4. Concluding remarks

Drug discovery benchmarking should be accurate, output results that are realistic to novel prediction

scenarios, and allow comparison between platforms and technologies. We updated the internal

benchmarking protocol of the CANDO platform and created a head-to-head protocol in service of

these goals. We assessed CANDO using both protocols. CANDO recalled up to 12.1% of approved drugs

in the top 10 compounds for their respective indications; this rose to 31.0% for the top 100 compounds.

Positive correlations were observed between performance and the number of drugs associated with an

indication, the output of our previous benchmarking protocol, and the drug-drug chemical signature
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similarity within an indication. Finally, we were able to compare a new drug discovery pipeline to the

primary pipeline of CANDO using our head-to-head benchmarking protocol, which allows comparison

of disparate pipelines, whether similarity-based or not.

We evaluated performance using multiple metrics, both new and old, in this study. nAIA proved to be

useful because it can be directly related to practical performance above a certain rank. nNDCG resulted

in a smaller range of optimal similarity list cuto� values used for optimization, likely due to its

inherent prioritization of top-ranking true positives. This lower volatility makes it an attractive

metric for future optimization studies. AUROC is a well known and comprehensive metric; however, all

false positive thresholds are equally weighted in AUROC calculations. Using predictions with a false

positive rate of even 0.1 in a real scenario could require screening hundreds or thousands of drugs,

which is rarely practical. The majority of AUROC therefore comes from thresholds that are not

practically useful in drug discovery. This is the reason the 25 weighted subsignature pipeline had a

better AUROC than the other subsignature pipelines, despite other metrics indicating it is inferior.

NDCG similarly su�ers when used without a cuto�: the overall nNDCGs calculated by our internal

benchmarking protocols in our �nal assessment using CTD were over two times the top100 nNDCGs

measured using the same similarity list cuto�. This indicates that the majority of the overall nNDCG

was based on drugs appearing at ranks that are unlikely to be useful in practical application.

Therefore, we recommend that more drug discovery studies report partial AUROC and NDCG with a

reasonable cuto� among their primary metrics, consistent with previous recommendations[15][92].

We focused on the CANDO platform in this study. That being said, we invite researchers working on

drug discovery to compare their platforms head-to-head with CANDO and others using the drug-

indication mappings we collated and our head-to-head benchmarking protocol devised for this

purpose, which is publicly available via Github at https://github.com/ram-compbio/compbench.

Comparison will help develop the �eld, ensure the reliability of published platforms, and inspire new

re�nements to the assessed platforms. This work may also serve as a fundamental model of internal

benchmarking to be re�ned, expanded upon, and employed for thorough optimization and

assessment of drug discovery platforms and pipelines.

5. Data and code availability

CANDO is publicly available through Github at https://github.com/ram-compbio/CANDO.

Supplementary data, drug–indication interaction matrices, and drug–indication mappings are
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available at http://compbio.bu�alo.edu/data/mc_cando_benchmarking2. Our head–to–head

benchmarking protocol is also available through Github at https://github.com/ram-

compbio/compbench. This code and additional code for the subsignature pipeline, wrappers for the

primary and subsignature pipelines, and associated data are available at

http://compbio.bu�alo.edu/software/compbench.
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