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Large Language Models (LLMs) are trained on Web data that might contain spelling errors made by

humans. But do they become robust to similar real-world noise? In this paper, we investigate the

e�ect of real-world spelling mistakes on the performance of 9 language models, with parameters

ranging from 0.2B to 13B, in 3 di�erent NLP tasks, namely Natural Language Inference (NLI), Name

Entity Recognition (NER), and Intent Classi�cation (IC). We perform our experiments on 6 di�erent

languages and build a dictionary of real-world noise for them using the Wikipedia edit history. We

show that the performance gap of the studied models on the clean and noisy test data averaged

across all the datasets and languages ranges from   to   absolute percentage points. In addition,

mT5 models, in general, show more robustness compared to BLOOM, Falcon, and BERT-like models.

In particular, mT5 (13B), was the most robust on average overall, across the 3 tasks, and in 4 of the 6

languages1.

1. Introduction

Multilingual Large Language Models (LLMs) such as mT5[1]  and BLOOM[2]  have shown remarkable

performance across a variety of tasks and languages. Given that they are usually trained on Web data,

they might have already seen noisy data such as words with spelling errors during their pre-training.

Figure 1 shows examples of such errors in di�erent languages. It also shows that these errors can

negatively in�uence the model prediction. This raises the critical question of how well these models

perform in the presence of real-world noise. Additionally, given the multilingual nature of LLM

interactions, understanding how performance varies across di�erent languages is essential. Finally,

the wide range of LLM sizes, from millions to billions of parameters, prompts the question of whether

larger models are inherently more robust to real-world noise than smaller ones.
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Figure 1. Typos that users make may lead LLMs to misclassify the input sentences.

The sentences in the table are clean and noisy test samples of the intent

classi�cation data (SNIPS) that were misclassi�ed by the studied models after

typical typographical errors from our WikiTypo corpus were inserted.

Previous research has only partially addressed these questions, often focusing on monolingual

datasets or using simulated noise that may not accurately re�ect real-world errors[3][4].

A closely related study by[5]  investigated real-world noise in a multilingual setting using

mBERT[6]  and XLM-R[7]. However, given the varying behaviors of language models at di�erent

scales[8], it is crucial to examine the robustness of larger models to real-world noise. Furthermore,

limitations in data accessibility due to corporate policies led us to create our own noisy test sets, which

will be publicly available upon publication.

Our research aims to address these gaps by constructing a collection of real-world noisy data, called

WikiTypo, using Wikipedia edit history. Speci�cally, we ask three research questions (RQ):

RQ1: Are larger models more robust to real-world noisy data than smaller models?

RQ2: Are di�erent tasks equally sensitive to real-world noise?

RQ3: How does the model performance di�er from English to other languages under the noise?
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We evaluate the robustness of multilingual LLMs against real-world noisy inputs by �ne-tuning them

on multilingual datasets and assessing their performance on clean and noisy test sets across three

NLP tasks: Natural Language Inference (NLI), Name Entity Recognition (NER), and Intent

Classi�cation (IC). To create a noisy NER test set, we employ a word augmenter from the NLPAug

library[9].

Our �ndings reveal that all studied models exhibit vulnerability to real-world noise, but the

performance gaps vary across tasks (§5). NLI tasks generally show the largest gaps, while intent

classi�cation demonstrates the smallest (§5.2). Moreover, decoder-only models like BLOOM and

Falcon tend to exhibit larger gaps in the NER task (§5.1).

Our contributions are twofold: 1) We build a multilingual dictionary of real-world typos (called

WikiTypo) for �ve languages from Wikipedia and create noisy data for three di�erent NLP tasks,

namely NLI, NER, and Intent Classi�cation (IC); 2) We evaluate the robustness of nine multilingual

language models varied in size from a fraction of a billion parameters to 13 billion parameters on

WikiTypo.

2. Related Work

Given the widely used devices that allow user interactions in the form of written textual

communication with language models, several studies have investigated the e�ects of user errors on

these models. Some prior works have studied language models in the context of noisy test data that

were created arti�cially using simulation techniques[10][11][12]. To simulate the e�ects of typos and

misspelling errors, the authors inserted noise by randomly selecting a percentage of characters in

close proximity on the QWERTY keyboard layout to mimic errors in data. However, real-world

applications will frequently face authentic noise, including linguistic variations which are absent in

many benchmarks[5].

Moreover, some works have focused on monolingual datasets (mainly English) and failed to explore

the capacity of multilingual LLMs using multilingual test sets[10][3][4]. These studies on textual noise

have been limited to the exploration of noise within English language datasets. Although large

multilingual models perform impressively on various tasks and languages, their performance is

usually degraded in non-English languages, especially low-resource ones[13].
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Finally, various studies have mostly focused on BERT-like models thus far, indicating the need for

studying larger language models that have gained popularity and widespread usage recently[14][15][5].

Prior studies have demonstrated the robustness of models such as BERT, XLM-Roberta, and XLNet to

textual noise. Notably, these models achieve impressive performance despite having parameter sizes

below 0.3 billion. This observation highlights a signi�cant disparity between the models evaluated in

prior research and the current LLMs. The parameter size of contemporary LLMs often has billions of

parameters, suggesting a potential for further analysis of their capabilities against noise.

Filling the gap between multilingual models, model size, and real-world noise, we evaluate the

robustness of 6 language models (with 0.2B to 13B parameters) to real-world multilingual noisy data

in 6 languages for 3 NLP tasks.

3. WikiTypo: A Collection of Real-World Typos from Wikipedia

Wikipedia is an online encyclopedia that anyone can have access to edit the articles. A massive group

of volunteers, called Wikipedians, keep it running by adding and updating information. Anyone can

access the content of Wikipedia articles and the history of each page. This history shows the order in

which the edits were made, and how the content changed between versions. This timeline, therefore,

is called revision or edit history.

While some projects have focused on �nding typos in Wikipedia edit history, there is a lack of publicly

available code to do this for various languages. Similar to[16]  who work on mining typos from

Wikipedia for Japanese articles, and our baseline[5], we have leveraged Wikipedia revisions on random

pages to �nd typos for speci�c languages.

To identify the typos and their corrections, �rst, we consider each article and its revisions and parse

the main pages using the BeatutifulSoap library2. Then, we �lter out the added and removed words on

each page and extract a pair of words that 1) have one character-level Levenshtein edit distance from

each other; 2) do not contain any number of special characters; and 3) have at least two characters

each. The result is a dictionary of misspelled words with their corresponding correct spelling. Table 1

shows the number of entries in our dictionary for each language.
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Languages Number of typos

English (en) 9370

German (de) 15000

Spanish (es) 8200

French (fr) 14900

Hindi (hi) 3300

Turkish (tr) 4060

Table 1. Number of typos for each language collected after inspecting 320000 pages.

NLPAug augmenter[9]. NLPAug is a text data augmentation tool that handles various languages. In

particular, its keyboard augmenter module can be used to inject typos into text data, mimicking the

types of errors people commonly make when typing. For instance, it might replace an i with an o or

vice versa, considering the proximity of these keys on a keyboard (based on Levenshtein distance).

Noisy test data creation. The WikiTypo noise dictionary is used to construct the noisy test sets for

XNLI and SNIPS datasets. We use NLPAug augmenter to create noisy data for the WikiANN dataset

since some sentences, in this dataset, contain only 2 or 3 words, and most of the words are proper

nouns such as person, location, or organization names. In this case, the use of WikeTypo is limited

since in Wikipedia edit history, misspelled words are rarely found.

To create a noisy version of the original test set (for all datasets), we randomly replace words in a

sentence with their incorrect version from the noise dictionary. The maximum number of augmented

words ( ) and the ratio of the sentence ( ) to be changed can be set beforehand as the

hyperparameters of the noise insertion procedure. We choose   and   as the default values

resulting in the noisy test sets with details in Table 2.

m r

r = 0.2 m = 4
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    #Tokens Avg #Tokens #Noise Noise Ratio

XNLI

en 137850 27 19269 0.14

de 135213 26 16999 0.13

es 147127 29 16130 0.11

fr 152867 30 17355 0.11

hi 159243 31 14701 0.09

tr 104793 20 16211 0.15

WikiANN

en 80326 8 8214 0.10

de 97646 9 7902 0.08

es 64727 6 7244 0.11

fr 68754 6 7235 0.11

tr 75731 7 8176 0.11

SNIPS

en 13159 9 1822 0.14

de 13546 9 1912 0.14

es 14411 10 1889 0.13

fr 14323 10 1964 0.14

hi 13968 9 1239 0.09

tr 10329 7 1513 0.15

Table 2. Number of tokens for each language in the test set of each dataset along with the number of noise

inserted in to the test set and the noise ratio per language.

4. Experimental Setup

In our experiments, we utilized four A100 and A40 GPUs to �ne-tune the models. To optimize memory

usage and train the models on multiple GPUs, we also employed Deepspeed3[17].
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4.1. Datasets and Tasks

To evaluate the robustness of LLMs to real-world noisy data, we opted for 3 NLP tasks that are

di�erent from one another. Table 3 shows the training and test size of each dataset for each language.

Datasets Languages Train Test

WikiANN en, de, fr, es, tr 20000 10000

WikiANN hi 5000 1000

XNLI en, de, fr, es, hi, tr 392702 5010

SNIPS en, de, fr, es, hi, tr 13100 1400

Table 3. Statistics of the utilized datasets in our experiments. The languages are English (en), German(de),

French (fr), Spanish (es), Turkish (tr), and Hindi (hi). Values show the size of the train and test sets for

each language in three datasets. Only the Hindi (hi) language in WikiANN dataset is smaller than the other

languages.

SNIPS[18]. The SNIPS Natural Language Understanding dataset is a publicly available voice collection

of over    user queries, categorized into seven distinct user intentions with varying degrees of

complexity. This dataset is used for the Intent classi�cation (IC). The extracted text dataset in English

is available on a HuggingFace repository4. Using the SeamlessM4T v2 model[19], we construct a

multilingual dataset of SNIPS consisting of its translation in German, Hindi, French, Spanish, and

Turkish languages.

XNLI[20]. This dataset is used for the Natural Language Inference (NLI) task determining whether a

hypothesis is true (entailment), false (contradiction), or undetermined (neutral) given a premise.

WikiANN[21]. WikiANN (also known as PAN-X) is a multilingual named entity recognition (NER)

dataset consisting of Wikipedia articles annotated with LOC (location), PER (person), and ORG

(organization) tags.

To ensure that each model is trained on the same data, we construct a combined, shu�ed dataset

containing all six languages (�ve languages for WikiANN) in our study.

16000
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4.2. Models

To understand how the complexity of a model (measured by the number of parameters) impacts its

performance against noisy input, we opted for 9 models of various sizes, from mBERT-base with close

to 0.2B parameters to the largest version of the mT5 model with 13B parameters.

mBERT-base[6]. This model has been trained on the top 100 largest languages in Wikipedia and has a

Transformer-based (encoder-only) structure.

XLM-RoBERTa-base[7]. This is a Transformer-based multilingual masked language model trained on

2.5TB of �ltered CommonCrawl data.

mT5[1]. This model’s design is similar to the T5 model[22], which uses a basic encoder-decoder

Transformer architecture[23]  trained on mC4 corpus5. We evaluate �ve versions of the mT5 model

listed in Table 11 in the appendix.

Falcon[24]. The architecture of the Falcon models is based on PaLM which uses a standard

Transformer model architecture in a decoder-only setup[25]  and has been trained on Re�nedWeb

dataset[26]. This model mainly supports English, German, French, and Spanish languages. We use the

Falcon-7B model in our benchmarks.

BLOOM[2]. The BLOOM model architecture is based on the causal-decoder Transformer model trained

on multilingual data with 350 billion tokens data. Although 46 languages were supported, BLOOM

lacks compatibility with German and Turkish languages. We use the 7B version of the BLOOM model.

4.3. Fine-tuning

To prevent over�tting, we have examined the validation and training loss values for di�erent

languages and models, revealing that 2 epochs are enough in most scenarios. Figure 2 depicts the

training and evaluation losses for the WikiANN dataset running for six epochs. For some models that

required more training to show convergence, we performed �ne-tuning for six epochs. Table 15 in the

appendix contains detailed information about hyperparameters. We used the same con�guration

when doing the experiments on the clean and noisy sets to perform a fair comparison of these data.
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Figure 2. Training and evaluation losses for NER task on WikiANN dataset.

After the second epoch model over�ts.

5. Results and Findings

We �ne-tune the models on WikiANN (NER) and SNIPS (IC) three times and on the XNLI (NLI) two

times (due to the size of this dataset which is computationally expensive) and choose the best model

based on its clean performance for evaluating on the test sets. We investigate the performance gap of

the clean and noisy test sets (C-N) for models and languages and the averaged values.
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Models  

XNLI (NLI) - Accuracy(%)

Average

en de es fr hi tr

mBERT-179M

Clean 82.55 78.24 79.56 78.82 69.90 73.37 77.07

Noisy 71.94 72.51 71.50 72.10 66.93 68.64 70.60

C-N 10.61 5.73 8.06 6.72 2.97 4.73 6.47

XLM-R-279M

Clean 84.79 80.06 81.94 80.68 74.35 77.29 79.85

Noisy 75.21 74.21 75.23 75.03 70.86 71.86 73.73

C-N 9.58 5.85 6.71 5.65 3.49 5.43 6.12

mT5-300M

Clean 73.91 68.76 71.12 70.02 63.83 66.81 69.08

Noisy 65.83 65.87 66.09 65.01 61.92 62.85 64.60

C-N 8.08 2.89 5.03 5.01 1.91 3.96 4.48

mT5-580M

Clean 84.45 79.82 81.36 80.38 74.67 76.25 79.49

Noisy 74.25 74.71 75.07 75.55 69.56 72.55 73.61

C-N 10.20 5.11 6.29 4.83 5.11 3.70 5.87

mT5-1B

Clean 88.82 83.97 85.03 84.33 79.40 81.26 83.80

Noisy 80.38 78.88 79.64 79.52 74.27 77.23 78.320

C-N 8.44 5.09 5.39 4.81 5.13 4.03 5.48

mT5-3B

Clean 90.1 86.47 87.03 86.91 81.82 83.91 86.04

Noisy 83.09 81.36 82.0 81.92 77.66 79.4 80.90

C-N 7.01 5.11 5.03 4.99 4.16 4.51 5.14

Falcon7B

Clean 90.68 84.63 86.31 86.25 - - 86.97

Noisy 84.59 78.54 80.42 81.54 - - 81.27

C-N 6.09 6.09 5.89 4.71 - - 5.70

BLOOM-7B

Clean 89.52 - 86.63 85.73 78.32 - 85.05

Noisy 82.46 - 81.44 80.98 73.81 - 79.67

C-N 7.06 - 5.19 4.75 4.51 - 5.38
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Models  

XNLI (NLI) - Accuracy(%)

Average

en de es fr hi tr

mT5-13B

Clean 91.28 87.23 88.12 87.29 84.33 85.25 87.25

Noisy 86.03 82.87 83.91 83.43 79.22 81.84 82.88

C-N 5.25 4.36 4.21 3.86 5.11 3.41 4.37

Table 4. Performance (F1 score) of each model on the �ve languages. Clean means clean data, Noisy means

our created noisy data, and C-N means the di�erence between the performance on the clean and noisy

data. English exhibits the highest performance gap among the languages, due to the quantity and types

(PoS) of noise inserted.

5.1. Are larger models more robust?

To analyze the overall performance of the selected models, we average the results (performance gap)

over all the languages and datasets. Looking at the mT5 models which have the same components with

only di�erence in size, we see that the largest model (mT5-13B) is also the most robust while the

smallest model (mT5-300M) is the most vulnerable. Considering di�erent models with various

architectures and tokenizers, Tables 5 and 6 show that mT5 models are less vulnerable to typos than

other models with only 2.27 percent degradation in performance, while Falcon and BLOOM perform

poorly despite having larger sizes, with 3.67 and 4.27 percent degradation, respectively. This can be

attributed to two reasons. Looking at Table 7, we hypothesize that the main reason is the amount of

training data used for each of these models. The mT5 model has by far seen the largest number of

tokens in all the languages. This could have helped the model to be more resistant to small

perturbations in the input. However, Table 7 also shows that Falcon and BLOOM models have seen

more data than BERT-like models but perform worse than them. This leads us to the second reason

which is their language modeling paradigm. Given their decoder-only structure, they can have

di�culty with some tasks such as named entity recognition compared to mBERT and XLM-R which

use masked language modeling (see §3).
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Model Average gap

mT5-13B 2.27

mT5-300M 2.47

mT5-3B 2.64

mT5-1B 2.76

mT5-580M 2.95

Table 5. Average performance gap over all the languages and all the datasets in increasing order for mT5

models

Model Average gap

XLM-R-279M 3.29

mBERT-179M 3.58

Falcon-7B 3.67

BLOOM-7B 4.27

Table 6. Average performance gap over all the languages and all the datasets in increasing order for XLMR,

mBERT, Falcon, BLOOM models.
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Languages mT5 XLM-R Falcon mBERT BLOOM

English 2733 0.30 750 4.59 112

Spanish 433 0.05 17 1.20 40

German 347 0.07 18 1.56 -

French 318 0.06 16 1.68 46

Turkish 71 0.02 - 0.16 -

Hindi 24 0.02 - 0.06 5.6

Table 7. Number of tokens used in the training dataset of each model for each language. The data for mT5,

XLM-R (XLM-RoBERTA), and the BLOOM models were collected from their main article.

5.2. Are di�erent tasks equally sensitive to real-world noise?

Figure 3 compares the average performance gap over the languages for the individual datasets. For the

�gure, we can see that, at around 5 percentage points ( ), the performance decrease is similar for all

the models in the NLI task as well as the intent classi�cation (IC) task, where we see less than one

percent degradation. Looking at Table 2, we can justify the similarly big gap in the NLI task across all

models. Since the samples are longer in the XNLI dataset, there are more noisy words inserted in each

sample (around 3 times the noise in other datasets). As a result, all models show similar vulnerability

in this task. However, in the NER task, the performance drop greatly varies across the models from

around 2 percent for mT5 models to more than 8 percent for the BLOOM model and a mid-range

decrease for the BERT-like models. It is also worth mentioning that the second largest gap belongs to

the other decoder-only model in our experiments, Falcon, with close to a 5 percent performance drop,

making the two decoder-only models, the least robust in the NER task. The reason for such

discrepancy can be attributed to the training algorithm for these models, being next-token prediction,

compared to the algorithm for other models which is masked language modeling (MLM). It seems that

it is easier to perform the NER task with the MLM paradigm than the next-token prediction.

±1
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Figure 3. Average gap (in percentage points) between the accuracy of the experimented models on the

clean data and the noisy data. The numbers indicate the average gap over all the six languages on SNIPS,

Wikiann, and XNLI datasets.

5.3. How does the performance di�er from English to other languages?

To look at the performance gap for each language, we average the results over the datasets. Figure 4

shows the heatmap of these results, where we can see that almost all models perform poorly on

English than on other languages. A similar pattern was also observed by[5], where the authors

attributed this to the higher performance of these models on English compared to others. Indeed, this

can be con�rmed by looking at the absolute performance numbers in Table 4. Further results for other

datasets can be seen in Tables 13 and 14 in the Appendix.
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Figure 4. Heatmap of average performance gap over datasets models per language.

5.4. Noisy training narrows the gap

Introducing noise to the training data can boost the robustness of a language model[27]. To show this

for our setting, we �ne-tune the BLOOM model on the WikiANN which has shown the largest

performance drop. Interestingly, as shown in Table 8, �ne-tuning the BLOOM model on only the noisy

training data reduces the performance gap on the languages in the WikiANN dataset. However, while

the reduction is partly due to the increase in the performance of the model on the noisy test data, it is

also partly because of the performance drop on the clean data.
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    en es fr

Clean Train

Clean 45.68 66.39 62.23

Noisy 39.56 56.75 53.05

C-N 6.12 9.64 9.18

Noisy Train

Clean 43.45 64.41 60.01

Noisy 40.09 59.49 54.68

C-N 3.36 4.92 5.33

Improvement C-N 2.76 4.72 3.85

Table 8. Bloom-7B model’s clean and noisy performance and the gap between them after evaluating two

sets of experiments. 1) Fine-tuning the model with the original training set. 2) Fine-tuning the model

after inserting noise into the training set. The gap is decreased after �ne-tuning the model with the noisy

training data.

5.5. Why are models less robust to WikiTypo English noise?

To investigate the performance gap of the di�erent languages, we look into the noise in the

grammatical categories introduced into our largest dataset (XNLI). We analyzed the distribution of

part-of-speech (PoS) tags within the injected noise in the test set, using spaCy6. Table 9 presents the

POS tag distribution across the four languages supported by spaCy. Our analysis revealed that there are

almost twice as many noisy verb instances in English compared to other languages. Furthermore, the

number of noisy nouns and proper nouns is also higher in English. Earlier studies have demonstrated

that replacing the adverbs and adjectives has less impact on the semantics of the sentence than the

verbs and nouns[28]. This observation aligns with the English language’s higher performance gap on

the XNLI dataset.

Another compelling �nding is the disproportionate impact of noise on the English language compared

to other languages, particularly in smaller model sizes. On the XNLI dataset, the performance gap

between clean and noisy data is signi�cantly larger for English models compared to their counterparts
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(see Table 4). However, as model size increases, this disparity tends to diminish, with English

performance converging towards the average performance across all languages.

PoS English Spanish German French

ADJ 1117 1665 790 1948

ADP 2102 2112 2323 1918

ADV 1233 880 1776 1662

AUX 1707 1183 1570 721

CCONJ 164 61 524 492

DET 901 2513 2200 2429

INTJ 216 35 0 14

NOUN 4767 3302 1863 3927

NUM 155 131 39 72

PART 1646 2 269 0

PRON 1032 1154 2133 1190

PROPN 799 119 522 344

PUNCT 6 2 0 0

SCONJ 161 729 284 387

SYM 0 2 0 0

VERB 4475 2240 2537 2227

Other 11 0 169 24

Table 9. Distribution of part of speech for all the noises inserted in the XNLI noisy test set. Number of

noisy verbs injected to the test sets are almost twice as much in English than other languages.
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6. Conclusion

We build a corpus of real-world noise (typos) from Wikipedia edits history and explore how the noisy

data impacts the performance of LLMs across languages. Performance gap across six languages

indicates that all models exhibit vulnerability when encountering noisy input. In addition, our

�ndings suggest that the robustness of language models against noisy input is in�uenced by various

factors, including the size and language coverage of their training data, their underlying architectural

design and parameter count, and the speci�c task they are evaluated on. While mT5 models

demonstrate the best performance against noise likely due to their massive training data, size was not

the sole factor. Architecture-wise, decoder-only models such as BLOOM and Falcon show more

vulnerability to noise, especially in the NER task. These �ndings highlight the importance of

considering all model and dataset features in evaluating the robustness of language models.

7. Limitations

While we evaluated a broad range of models (200M to 13B parameters), current capabilities extend

beyond this. Due to time and computational constraints, we couldn’t explore even larger models. Our

work focused on six languages. However, recent multilingual models can handle over 100 languages.

Therefore, a complete assessment of LLM robustness should ideally consider more languages. We

utilized typos from Wikipedia edits as our realistic noise source. While e�ective, exploring other noise

sources and data-gathering methods for real-world noise could further strengthen the research. We

presented results using a noise insertion ratio of 0.2. To gain a more comprehensive understanding of

model robustness to noise, various noise levels could be explored. Our study investigated three NLP

tasks, but a broader exploration of di�erent tasks using diverse datasets would depict a greater

perspective on the model’s reliability. Finally, While the WikiTypo noise collection contains over

40,000 typos, it is limited in proper noun examples due to the relatively infrequent occurrence of such

errors in Wikipedia articles. Therefore, due to the high concentration of proper nouns in the WikiANN

dataset, we employed di�erent strategies for generating the noisy test set.

Appendix A. Models’ Characteristics

Tables 10 and 11 show each model’s tokenizer algorithm and the number of parameters and table 12

show the proportion of each language used in training the models.
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Model Tokenizer Techniqe

mBERT WordPiece

XLM-RoBERTa SentencePiece

mT5 SentencePiece

Falcon Byte-level BPE

BLOOM Byte-level BPE

Table 10. Tokenizer algorithm for the models evaluated in this study. BPE stands for Byte Pair Encoding.

Model # Params

mBERT-base 179M

XLM-RoBERTa-Base 279M

mT5-small 300M

mT5-base 580M

mT5-large 1.2B

mT5-xl 3.7B

Falcon-7b 7B

BLOOM-7b 7B

mT5-xxl 13B

Table 11. Studied models’ size based on the number of parameters in million (M) and billion (B).
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Language mT5 XLMR Falcon mBERT BLOOM

English 5.67 12.14 46.43 10.84 33.68

Spanish 3.09 2.15 4.62 3.10 12.16

German 3.05 2.69 5.84 4.62 -

French 2.89 2.29 4.64 4.15 14.46

Turkish 1.93 0.84 - 0.96 -

Hindi 1.21 0.81 - 0.26 1.71

Table 12. Percent of languages (in our study) used in the training dataset of each model. English has the

highest ratio among the languages in the pre-training process.

Appendix B. Results

The complete results of the SNIPS and WikiANN datasets are available in Tables 13, 14. Figure 5

indicates the clean and noisy performance and the gap between them for each of the six languages.
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Models language

SNIPS (IC) - Accuracy(%)

Average

en de es fr hi tr

mBERT-179M

Clean 99.07 99.07 98.71 98.64 98.57 98.36 98.74

Noisy 98.29 98.29 97.93 98.14 97.86 97.57 98.01

C-N 0.78 0.78 0.78 0.5 0.71 0.79 0.72

XLM-R-279M

Clean 99.0 98.93 99.0 99.07 98.71 98.57 98.88

Noisy 98.57 98.71 98.29 98.36 98.07 98.07 98.34

C-N 0.43 0.22 0.71 0.71 0.64 0.5 0.54

mT5-300M

Clean 98.71 98.36 97.93 97.86 97.0 96.86 97.79

Noisy 97.79 97.71 96.64 97.07 95.29 96.57 96.84

C-N 0.92 0.65 1.29 0.79 1.71 0.29 0.94

mT5-580M

Clean 99.07 98.71 98.86 98.64 97.71 97.86 98.48

Noisy 98.43 98.29 98.07 98.07 96.57 97.5 97.82

C-N 0.64 0.42 0.79 0.57 1.14 0.36 0.65

mT5-1B

Clean 98.79 98.57 98.07 98.43 98.64 98.29 98.46

Noisy 98.29 98.43 97.57 98.07 97.21 98.07 97.94

C-N 0.5 0.14 0.5 0.36 1.43 0.22 0.52

mT5-3B

Clean 99.29 99.0 98.71 98.79 98.71 98.86 98.89

Noisy 98.93 98.5 98.71 98.5 98.36 98.71 98.62

C-N 0.36 0.5 0.0 0.29 0.35 0.15 0.27

Falcon-7B

Clean 98.93 97.71 97.64 97.79 - - 98.02

Noisy 97.57 97.36 97.57 97.07 - - 97.39

C-N 1.36 0.35 0.07 0.72 - - 0.62

BLOOM-7B

Clean 98.5 - 98.71 98.57 97.86 - 98.41

Noisy 97.93 - 98.0 97.86 97.5 - 97.82

C-N 0.57 - 0.71 0.71 0.36 - 0.59
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Models language

SNIPS (IC) - Accuracy(%)

Average

en de es fr hi tr

mT5-13B

Clean 99.29 99.21 99.14 99.0 98.5 98.93 99.01

Noisy 98.71 98.86 98.86 98.93 97.79 98.86 98.67

C-N 0.58 0.35 0.28 0.07 0.71 0.07 0.34

Table 13. SNIPS dataset clean and noisy test results form the WikiTypo noise insertion method for each

model and each language. C-N shows the performance degradation amount. Hindi exhibits the highest

performance gap, particularly in mT5 models, while Turkish demonstrates the least.
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Models  

WikiANN (NER) - (F1)

Average

en de es fr tr

mBERT-179M

Clean 84.67 89.73 92.4 91.37 92.66 90.17

Noisy 79.87 86.12 88.57 87.19 89.72 86.29

C-N 4.8 3.61 3.83 4.18 2.94 3.87

XLM-R-279M

Clean 82.58 87.14 90.61 89.27 91.55 88.23

Noisy 79.18 84.03 87.14 85.24 88.4 84.80

C-N 3.4 3.11 3.47 4.03 3.15 3.43

mT5-300M

Clean 42.46 28.62 37.76 47.09 34.55 38.10

Noisy 40.41 26.99 35.47 44.76 32.81 36.09

C-N 2.05 1.63 2.29 2.33 1.74 2.01

mT5-580M

Clean 54.45 39.08 44.14 56.36 47.44 48.29

Noisy 51.66 37.07 42.37 53.86 45.73 46.14

C-N 2.79 2.01 1.77 2.5 1.71 2.16

mT5-1B

Clean 59.54 44.15 47.03 60.86 51.47 52.61

Noisy 56.7 42.65 45.02 58.45 49.95 50.55

C-N 2.84 1.5 2.01 2.41 1.52 2.06

mT5-3B

Clean 54.97 38.29 45.04 57.28 48.38 48.79

Noisy 51.37 36.41 42.7 54.4 46.22 46.22

C-N 3.6 1.88 2.34 2.88 2.16 2.57

Falcon-7B

Clean 42.25 52.04 55.25 53.15 - 50.67

Noisy 37.58 48.27 50.49 47.57 - 45.98

C-N 4.67 3.77 4.76 5.58 - 4.69

BLOOM-7B

Clean 45.69 - 66.40 62.24 - 58.11

Noisy 39.57 - 56.76 53.05 - 49.79

C-N 6.12 - 9.64 9.19 - 8.32
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Models  

WikiANN (NER) - (F1)

Average

en de es fr tr

mT5-13B

Clean 52.63 32.4 42.11 54.81 44.07 45.20

Noisy 50 30.81 40.4 52.25 42.86 43.26

C-N 2.63 1.59 1.71 2.56 1.21 1.94

Table 14. Performance (F1 score) of each model on the �ve languages. Clean means clean data, Noisy

means our created noisy data, and C-N means the di�erence between the performance on the clean and

noisy data. Decoder-only models (BLOOM and Falcon) are more vulnerable to noise
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Figure 5. Performance gap between clean and noisy test sets of SNIPS (IC), XNLI (NLI) and WikiANN (NER)

datasets for English (en), German (de), Spanish (es), French (fr), Hindi (hi), and Turkish (tr) languages.
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Figure 6 shows the impact of the amount of each language used in training on the clean performance

and the gap between clean and noisy for the SNIPS, WikiANN, and XNLI datasets. The experiments

�ne-tuning details and hyperparameters are shown in Table 15.

Figure 6. The heatmaps show the (Pearson) correlation of the performance gap and the model’s clean

performance with the language size of the models over three SNIPS, XNLI, and WikiANN datasets. The

correlation varies across di�erent datasets (tasks). However, clean performance generally exhibits a

positive correlation with language model size, except for the WikiANN dataset when considering models

other than mT5.
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Model Lr Batch size Weight decay Epochs

SNIPS

mBERT, XLM-R, mT5-3B, Falcon-7B, BLOOM-7B, mT5-13B 1e-05 8 0.1 2

mT5-300M, mT5-580M 1e-04 8 0.01 6

mT5-1B 1e-04 8 0.01 2

WikiANN

All Models 3e-04 32 0.01 2

XNLI

mBERT, XLM-R, mT5-3B, Falcon-7B, BLOOM-7B, mT5-13B 1e-05 32 0.01 2

mT5-300M, mT5-580M , mT5-1B 1e-04 32 0.01 6

Table 15. Hyper-parameters use to �ne tune the models for each dataset. Other parameters are the same

for all the experiments: gradient_accumulation=4, optimizer=Adam, bf16=True,

gradient_checkpointing=True.

Footnotes

1 https://github.com/caisa-lab/LLMs-Real-World-Noise-Robustness

2 https://pypi.org/project/beautifulsoup4

3 https://deepspeed.ai

4 https://huggingface.co/datasets/benayas/snips

5 https://huggingface.co/datasets/allenai/c4

6 https://spacy.io

References

1. a, bXue L, Constant N, Roberts A, Kale M, Al-Rfou R, Siddhant A, Barua A, Ra�el C (2020). "mT5: A mass

ively multilingual pre-trained text-to-text transformer". arXiv preprint arXiv:2010.11934.

qeios.com doi.org/10.32388/3X6CXV 27

https://github.com/caisa-lab/LLMs-Real-World-Noise-Robustness
https://pypi.org/project/beautifulsoup4
https://deepspeed.ai/
https://huggingface.co/datasets/benayas/snips
https://huggingface.co/datasets/allenai/c4
https://spacy.io/
https://www.qeios.com/
https://doi.org/10.32388/3X6CXV


2. a, bLe Scao T, Fan A, Akiki C, Pavlick E, Ili{\'c} S, Hesslow D, Castagn{\'e} R, Luccioni AS, Yvon F, Gall

{\'e} M, et al. (2022). "Bloom: A 176b-parameter open-access multilingual language model".

3. a, bMoradi M, Samwald M (2021). "Evaluating the robustness of neural language models to input pertur

bations". arXiv preprint arXiv:2108.12237. Available from: arXiv:2108.12237.

4. a, bWang H, Ma G, Yu C, Gui N, Zhang L, Huang Z, Ma S, Chang Y, Zhang S, Shen L, et al. (2023). "Are La

rge Language Models Really Robust to Word-Level Perturbations?" arXiv preprint arXiv:2309.11166.

5. a, b, c, d, eStickland AC, Sengupta S, Krone J, He H, Mansour S (2023). "Robusti�cation of multilingual la

nguage models to real-world noise in crosslingual zero-shot settings with robust contrastive pretrainin

g." In: 17th Conference of the European Chapter of the Association for Computational Linguistics, EACL

2023. Association for Computational Linguistics (ACL); p. 1367–1383.

6. a, bDevlin J, Chang MW, Lee K, Toutanova K (2018). "Bert: Pre-training of deep bidirectional transform

ers for language understanding". arXiv preprint arXiv:1810.04805.

7. a, bConneau A, Khandelwal K, Goyal N, Chaudhary V, Wenzek G, Guzmán F, Grave E, Ott M, Zettlemoyer

L, Stoyanov V (2019). "Unsupervised cross-lingual representation learning at scale". arXiv preprint arXi

v:1911.02116.

8. ^Du M, He F, Zou N, Tao D, Hu X (2023). "Shortcut learning of large language models in natural langua

ge understanding". Communications of the ACM. 67 (1): 110–120.

9. a, bMa E (2019). NLP Augmentation. Available from: https://github.com/makcedward/nlpaug.

10. a, bSrivastava A, Makhija P, Gupta A (2020). "Noisy Text Data: Achilles� Heel of BERT". Proceedings of

the Sixth Workshop on Noisy User-generated Text (W-NUT 2020). pp. 16�1.

11. ^Cai S, Venugopalan S, Tomanek K, Narayanan A, Morris M, Brenner M (2022). "Context-Aware Abbre

viation Expansion Using Large Language Models". Proceedings of the 2022 Conference of the North Am

erican Chapter of the Association for Computational Linguistics: Human Language Technologies. pages

1261–1275.

12. ^Almagro M, Almazán E, Ortego D, Jiménez D (2023). "Lea: Improving sentence similarity robustness to

typos using lexical attention bias". Proceedings of the 29th ACM SIGKDD Conference on Knowledge Disc

overy and Data Mining. pp. 36–46.

13. ^Etxaniz J, Azkune G, Soroa A, Lopez de Lacalle O, Artetxe M (2023). "Do multilingual language models

think better in English?" arXiv preprint arXiv:2308.01223.

14. ^Náplava J, Popel M, Straka M, Straková J (2021). "Understanding model robustness to user-generated

noisy texts". arXiv preprint arXiv:2110.07428.

qeios.com doi.org/10.32388/3X6CXV 28

https://arxiv.org/abs/2108.12237
https://github.com/makcedward/nlpaug
https://www.qeios.com/
https://doi.org/10.32388/3X6CXV


15. ^Xu G, Ding W, Fu W, Wu Z, Liu Z (2021). "Robust learning for text classi�cation with multi-source nois

e simulation and hard example mining." In: Machine Learning and Knowledge Discovery in Databases.

Applied Data Science Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13--17,

2021, Proceedings, Part V 21. Springer. pp. 285--301.

16. ^Tanaka Y, Murawaki Y, Kawahara D, Kurohashi S (2020). "Building a Japanese typo dataset from Wiki

pedia’s revision history". Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics: Student Research Workshop. pages 230–236.

17. ^Rajbhandari S, Rasley J, Ruwase O, He Y (2020). "Zero: Memory optimizations toward training trillion

parameter models". In: SC20: International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE. pp. 1–16.

18. ^Coucke A, Saade A, Ball A, Bluche T, Caulier A, Leroy D, Doumouro C, Gisselbrecht T, Caltagirone F, Lav

ril T, et al. (2018). "Snips voice platform: an embedded spoken language understanding system for priva

te-by-design voice interfaces". arXiv preprint arXiv:1805.10190. Available from: https://arxiv.org/abs/1

805.10190.

19. ^Barrault L, Chung YA, Meglioli MC, Dale D, Dong N, Duppenthaler M, Duquenne PA, Ellis B, Elsahar H,

Haaheim J, et al. Seamless: Multilingual expressive and streaming speech translation. arXiv preprint arX

iv:2312.05187. 2023.

20. ^Conneau A, Rinott R, Lample G, Williams A, Bowman S, Schwenk H, Stoyanov V (2018). "XNLI: Evaluat

ing Cross-lingual Sentence Representations." Proceedings of the 2018 Conference on Empirical Method

s in Natural Language Processing. 2475--2485.

21. ^Rahimi A, Li Y, Cohn T (2019). "Massively multilingual transfer for NER". arXiv preprint arXiv:1902.00

193.

22. ^Ra�el C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ (2020). "Exploring the

limits of transfer learning with a uni�ed text-to-text transformer". Journal of machine learning researc

h. 21 (140): 1–67.

23. ^Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017). "Attent

ion is all you need". Advances in neural information processing systems. 30.

24. ^Almazrouei E, Alobeidli H, Alshamsi A, Cappelli A, Cojocaru R, Debbah M, Go�net E, Hesslow D, Laun

ay J, Malartic Q, et al. (2023). "The falcon series of open language models". arXiv preprint arXiv:2311.16

867.

qeios.com doi.org/10.32388/3X6CXV 29

https://arxiv.org/abs/1805.10190
https://arxiv.org/abs/1805.10190
https://www.qeios.com/
https://doi.org/10.32388/3X6CXV


25. ^Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, Roberts A, Barham P, Chung HW, Sutton C, Gehr

mann S, et al. (2023). "Palm: Scaling language modeling with pathways". Journal of Machine Learning

Research. 24 (240): 1--113.

26. ^Penedo G, Malartic Q, Hesslow D, Cojocaru R, Cappelli A, Alobeidli H, Pannier B, Almazrouei E, Launay

J (2023). "The Re�nedWeb dataset for Falcon LLM: outperforming curated corpora with web data, and

web data only". arXiv preprint arXiv:2306.01116.

27. ^Pan L, Leng Y, Xiong D (2024). "Can Large Language Models Learn Translation Robustness from Nois

y-Source In-context Demonstrations?" In: Proceedings of the 2024 Joint International Conference on C

omputational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pp. 2798–2808.

28. ^Periti F, Cassotti P, Dubossarsky H, Tahmasebi N (2024). "Analyzing Semantic Change through Lexical

Replacements". arXiv preprint arXiv:2404.18570. Available from: https://arxiv.org/abs/2404.18570.

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/3X6CXV 30

https://arxiv.org/abs/2404.18570
https://www.qeios.com/
https://doi.org/10.32388/3X6CXV

