Time evolution and convergence of simple migration models
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In this project, we consider two of the most fundamental mobility models, the Gravity and the

Radiation models, and investigate their long-term trends.

The analysis consists of determining

the models’ steady states and investigating their temporal dynamics for different applications and
scenarios. We find that a simple Gravity model results in two different long-term solutions, de-
pending on its parametrization, which are independent of spatial population divisions and initial
population distributions. The Radiation model on the other hand shows a strong dependency on
spatial properties, due to its usage of intervening opportunities. We find that the dynamics differ
significantly when it is applied to gridded population division or to population distribution divided
into heterogeneous administrative units, like national counties or municipalities.

I. INTRODUCTION

With an increasing amount of data and computational
power, researchers gain the ability to make increasingly
accurate projections for future migration scenarios. Cal-
ibrated with past migration data, these mathematical
models are able to make migration projections for sev-
eral decades to come [1].

These models are not applied to migration scenarios
alone, but to all kinds of mobility problems, like commut-
ing [2, 3], travel [4], displacement [5], public transport [4]
or even epidemic outbreaks [6].

With the desire to run models for a growing number of
time steps, the models’ long-term dynamics grow more
important. While models used for these kinds of tasks
tend to be rather complex, they are often based on a more
simple version of a mobility model, such as the Gravity
or Radiation model[5, 7].

The fundamental difference between the Gravity and
the Radiation models is how the distance between two
places impacts the migration flows magnitude. The
Gravity model uses the distance as a direct variable
with migration flows being inversely proportional to the
distance[8]. The Radiation model on the other hand uses
the number of intervening opportunities [9], correlated
with the population living in the area between origin and
destination.

In the first part of this paper, we investigate the con-
vergence of both the Gravity and Radiation models. We
try to determine the steady states both models will reach
and investigate their stability. Furthermore, we inves-
tigate different geographical and geometrical scenarios,
resembling internal and international mobility using ei-
ther gridded population nets or intrinsic geometries like
country or state borders. In the second part, we consider
the time evolution of both models towards the steady
states and interpret them with regard to real-world ap-
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plications. Last, we take a look at model setups that
have been used in previous research and assign them to
the different scenarios we found.

Citations:

Neues Grav/Rad comparison (die Benutzen auch single
Grav modelle), gut fiir die End Diskussion? —j haben die
Parameter so wie es aussieht nicht angegeben [10]

International Migration: Gravity [11]

Internal Migration: Gravity [12, 13] —

[14]

II. CONVERGENCE OF MIGRATION MODELS
A. Gravity Model

We start our investigation with a simple Gravity model
[15]. The model estimates bilateral migration flows be-
tween two places and is given by:
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with ¢ and j being origin and destination respectively.
The origin and destination population are given by m;
and m;, whereas d;; denotes the distance between both
places. A, «, 5 and ~ indicate fitting parameters.

To investigate the population changes between two
places we compare the bilateral flows in both directions,
M;; and Mj;, with each other:

Mi‘ m; a=p 9
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The flow-ratio, expressed in Eq.(2), is displayed in Fig. 2.
As we can see for the cases where o — 5 > 0 , a larger
flow will originate from the higher populated areas to
the lesser populated areas. Since this is the case for all

times and each pair, this case will eventually lead to a
homogeneous population distribution.
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The case where a — 3 < 0, results in the opposite be-
haviour, meaning that lesser populated areas will send
more people towards higher populated areas than they
receive in return. In this scenario, the system will even-
tually converge towards a population distribution with
one area inhabiting all people.
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FIG. 1: Displayed is the ratio between in- and outflows
of two distinct locations, depending on the ratio of two
populations (y-axis) and the difference between the two
fitting parameters o and 3 (x-axis). The functional
dependency is given by Eq.(2).

As we have seen the Gravity model can converge to-
wards two different steady states depending on the choice
of parameters a and . The parameters A and d;; do not
influence the final state of the system but only the con-
vergence time.

It should be pointed out that both a homogeneous and
a single-city distribution are steady states independently
of the choice of parameters. If systems are initialized
with one of these population distributions they will not
change. For other mobility models, the geometrical lay-
out of the investigated area, like population cell sizes and
shape, can play an important role, these factors do not
have any major impact on the Gravity model.

We would add, that hypothetically there is a third
steady state for « = 3. In that case, the initial popula-
tion distribution is the steady state, since M;; = M;;Vj, .

B. Radiation Model

Next, we investigate the long-term results of the Ra-
diation model introduced by Simini et al.[8]. Just as the
Gravity model the Radiation model estimates bilateral
migration flows and is given by:

NM m;m;

—m; ; 3
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Mij =

with ¢ and j being origin and destination respectively.
The origin and destination population are given by m;
and m;, whereas s;; denotes the intervening opportuni-
ties. Last, Nps/N indicates the ratio of migrating people
compared to the whole population.

The intervening opportunities s;; are calculated as the
aggregated population in a circle around the origin ¢ with
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FIG. 2: Sketch for the application of periodic boundary
conditions. Red dots represent the origin and
destination respectively. Blue dots represent population
cells that will count into the intervening opportunities.

the radius being the distance between the origin and des-
tination:

Sij = Z mig, (4)

k,0<d;k<dij

with d;; being the distance between two points ¢ and
4. If we look at the same flow comparison that we used
for the Gravity model, we can see that this expression
can not be evaluated as easily as for the Gravity model.

As a result, we use classical stability analysis to inves-
tigate the long-term trend of the Radiation model. First,
we consider the following expression which must be sat-
isfied for the Radiation mode to be in a steady state:

> Mj; — My =0. (5)
J

In the following steps, we try to find scenarios that
fulfill Eq.(5) and investigate the resulting dynamics. In
the Radiation model, the magnitude of the intervening
opportunities has a major impact on the flows. We will
consider two different versions of how these opportunities
can be calculated.

First, we will consider the case with non-periodic
boundaries. This case is displayed in Fig.2(a). Areas
close to the borders include a smaller number of popu-
lated areas, since the ”s;;-circle” is partially outside of
the investigated area. As a result, origins in the middle
of the investigated area have statistically higher numbers
of intervening opportunities, leading to smaller outflows.

Second, we consider a scenario with periodic bound-
ary conditions, as displayed in Fig.2(b). Here, all ”s;;-
circles” include the same number of population cells



(even though the actual population might vary). We con-
sider this approach since it resembles the global migration
case.

Both these setups will first be applied on a gridded
population distribution with equally sized and spaced
population cells. Afterwards, we repeat the simulations
using heterogeneous setups, with population cells being
randomly sized and distributed. Such a scenario resem-
bles intrinsic country and state borders.

1. Discrete Boundary Conditions

In this subsection, we investigate the long-term dy-
namics of the Radiation model without periodic bound-
ary conditions. To do so, we consider multiple, different-
sized, rectangular population grids with random initial
population distributions. We found that independently
of size and shape, the system will always converge to-
wards a population distribution with the highest popula-
tion in the center and a decaying number of inhabitants
when moving away from the center. As an example, we
show in Fig. 3 multiple snapshots of a 10x10 population
cell grid at different time steps. We also include graphics
showing the population change.

To estimate the functional dependency between dis-
tance and population in their steady state we use:

Pop(d) = be= " (6)

The distance d is always measured towards the center of
the grid.

[Scenariola b [Time Steps]
5x5 0.384(0.128|1000
6x6 0.348(0.113|3000
=7 0.333(0.106| 5000
8x8 0.326(0.103|5000

10x10 |0.322]0.102|10000
12x12  |0.322|0.100|15000
10x15 |0.320]0.101|15000

TABLE I: Estimated parameters for the distance
population relation given in Eq.(6). The scenario
column indicates the size of the population grid. Every
population grid was randomly initialized. The right
column denotes the number of time steps after which
the Eq.(6) was fitted to the data.

As one can see, the parameters listed in Tab. I are of
the same order and their difference decreases the larger
the grids get. The reason the data points for the 10x10
and the 10x15 do not match the Gauss curve perfectly
is caused by insufficient time steps. We observed that
the longer the model runs, the more accurately the data
fits a Gauss distribution. We assume that the small dif-
ferences in the estimated parameters are the result of us-
ing discrete grids and assuming a continuous dependency

between population and distance. We expect the coeffi-
cients to converge for C' — oo with C being the number
of grid cells.

We have numerically shown that a Gaussian popula-
tion distribution, centered in the middle of the popula-
tion grid, seems to be a steady state for the radiation
model. In this section, we will have a closer look at the
stability of this distribution. To investigate the stability
of such a scenario, we use a linear stability analysis.

We consider a population grid with side length N X
M, each grid-cell is assigned to a population m;(t) =
Mgy (1), with x € 1,..., N and y € 1,..., M being the
coordinates of the grid-cell. The time evolution of the
population is given by:

mi(t—l—l) :mi(t)—FZMji—ZMij. (7)

M;; represents the migration flows from origin ¢ to desti-
nation j as defined in Eq.(3). Summarized the population
at time t + 1 is given by the population at time ¢ plus
immigrants minus emigrants. The population change is
therefore given by:

m; = ZMJZ. - ZMM = Fi(mh). (8)

We define the population change at place i as the func-
tion F;, which is dependent on the population of all other
grid cells expressed with the vector m, including m;. In
order for a system to be in a steady state, F = 0 must
hold. As we can see in Fig.5, if a Gaussian population
distribution is applied to the population grid, F ~ 0.
The approximation is due to the discontinuity of our sys-
tem. We expect that for N, M — oo, F = 0. We show
examples of this behaviour in Fig. 5

After showing that the Gauss distribution is a steady
state, we want to check its stability. We will do this in
two ways, numerically and analytically. Numerically we
will apply perturbation to the system and see if returns
to the previously given Gauss distribution. Examples are
shown in Fig. 5.

To analytically investigate the state’s stability, we cal-
culate the Lyapunov exponents for our steady state. To
obtain these coefficients, we first investigate small pertur-
bations from the Gauss distribution 6 = 7i(t) — MGauss-
Afterwards consider perturbations time evolution 5 =
J(MGauss)d, with J(Maauss) being the Jacobian matrix.
If the real parts of the Jacobian eigenvalues are smaller
than zero, the perturbation will decay and the system
will return to the previous steady state. The Jacobian
diagonals are given by

5. Nu mivj; — (mj 4 s5;)mim; 0
=N 2 o7 ®)
J Jt
2mimjvij —

(2mi +m3 + 28ij)m?mj)
D) )
i

” (10)
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FIG. 3: Time evolution of a randomly initialised population grid. The three left panels show the population after 1,
20, and 50-time steps, whereas the two right panels indicate the population change between the population panels.
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FIG. 4: We display the population share of each population cell for different-sized population grids. The population
distribution of each grid was randomly initialized. The size of the grid, as well as the number of steps that were
simulated, are given in the subcaptions. After the final time step, we plot the population share of each cell (each
represented by a dot) over the distance measured to the center of the population grid. The dotted line represents

the Gauss distribution, given in Eq.(6), fitted to the data. The fit parameters for each grid are given in Tab.I

whereas the off-diagonals are given by We justify this claim by initializing the population with
our Gauss function and letting the system run for a few
Ny (2m; +m; + Sji)m?mi time steps. The population change due to these addi-
Jit - N Z 2. (1) tional time steps is marginal and does not change the
Jrdji<dji 7 shape of the overall state, the positive eigenvalues on the
(2m; + m; + sij)m?m; hand turn negative over time. Furthermore, we observe
-2 7 (12) " that by simulati time steps, the positive eigen-
2. y simulating more time steps, the positive eigen
di<dij , Y values consecutively turn negative.
- (2011 2m; 77211mZ 2mlslz> (13)
Ui
- (Uu — mm; — szu) (14)
Vit

(15)

Finally, we briefly investigate what happens if we ap-
with vi; = (m; + si;) (M +mj + 554). ply the model to areas more complex than rectangles.
Our results show that if the Eigenvalues of the Jaco- The shape we use in Fig. 6 is supposed to resemble the

bian are calculated after the Gaussian population distri- rough shape of Mexico. One of the shapes we considered

bution is applied are mostly positive. For larger grids, a  is a population distribution consisting of two square ar-
few, comparably small, positive eigenvalues emerge. We eas connected by a small corridor, see Fig.6. As we can
assume that those positive eigenvalues are caused by the see, the distribution first shows two maximums, one in
fact, that we use some approximation and we do not each of the squares but still close to the corridor. Consid-
have the analytically exact steady state. Even though ering longer times, the maximums will shift towards the
the state we initialize the system with is not the analyti-  middle of the corridor and start to resemble the Gaus-
cally exact steady state, we still claim that our approach sian population distribution we observed for the previous
can be assumed to be an approximate stable steady state. cases. Other Shapes have yielded the same results.
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FIG. 5: (a) shows a 10x20 cell grid, initialized with a Gauss-distributed population, and its time evolution. The left
panel in (a) shows the population share per cell (each line represents a population cell), whereas the right panel
shows the population change per cell. (b) shows a 10x10 cell grid, initialized with a Gauss-distributed population.
The population distribution is perturbed by random population redistribution of 10% of the total population size at
time step 4. The left panel in (b) shows the population share per cell, whereas the right panel shows the population
change per cell.
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FIG. 6: Time evolution of a randomly initialised population grid. The three left panels show the population after 1,
500, and 1000-time steps, whereas the two right panels indicate the population change between the population
panels. Black areas indicate no population zones.

2. Periodic Boundary Conditions

The reason we observe a Gauss distribution centered
in the middle of the investigated area is due to the lay-
out of the problem. Cells located at the outer parts of
the investigated area have naturally smaller numbers of
intervening cells compared to centred cells.

In this section, we investigate what happens if we apply
periodic boundary conditions as displayed in Fig. 2.

The simulation we run with these new adjustments all
converged towards a homogeneous population distribu-
tion. As one can easily confirm, a homogeneous popula-
tion distribution is a steady state by itself. We assume
that m; = m;,Vi,j. As a result s;; = s;; and therefore
Mij = Mﬂ and Zj Mji - M” = Zj M” - Mij =0.

We now show that the model converges towards a ho-
mogeneous population distribution for other initial con-

ditions as well. Let us assume two populations m; and
m; with m; < m,;. Since there are no geographical limits
for the problem anymore, s;; always contains the same
number of population cells. To be able to do further cal-
culations we assume that s;; ~ s;. Writing down the
probability to migrate:

mq;m;
(mi + si5)(mi +m; + sij)
m;m;
= 17
(my + s5i) (M +mi + s;:) (4"

P = (16)

We can assume that for at least larger distances be-
cause s;; includes a large amount of the same cells. Com-
paring the two probabilities we can see that P;; < Pj;,
meaning it’s less likely for a person to migrate from a
smaller city to a bigger city than vice versa. Now look-
ing at actual migration numbers calculated from Eq.(3)



FIG. 7: Sketch for the creation of randomly shaped
population grids.

we obtain:
NM m mgm; >
N (mi + sij)(mi +m; + Sij)
Ny m;m;

—m
N Y (mj + sji)(mj +m; + Sji)

m;————— > mj—————
“(mi+sij) T my s
ml(mJ + Sji) > mj(mi + Sij)

m;Sji > MjS;j

As a result, we can see that even though the probabil-
ity for an individual to migrate from a smaller city to a
larger city is higher than the other way round, the actual
migration numbers show that in total more people from
a larger city to a smaller one than the other way round.

3. Heterogeneous population cell sizes

Previously, we used population areas that were divided
into equally sized square cells. In reality, countries often
consist of administrative areas that have neither equal
shapes nor sizes.

To investigate, whether such a topological change im-
pacts the dynamics of the Radiation model we use the
following setup: We randomly create a fixed number of
coordinates within a geographical range (compare Fig. 7).
These random coordinates represent the center of some
administrative area. Due to the randomization of the
center points, such a setup could represent all kinds of
differently shaped population cells. The results are dis-
played in Fig. 8.

As we can see, all heterogeneous population grids show
different long-term solutions. Neither is there one dis-
tinct population maximum, nor is the majority of the
population necessarily aggregated in the center of the
grid. Furthermore, we can see even though the pattern
of the ¢t = 500 and t = 1000 plots show roughly the same
population distribution, the net change in population
(left plot) still show high variations even for later times
(contrary to the steadily decreasing population change
for the equally sized population grid). One should also

point out, that even a homogeneous initial population
distribution is not a steady state anymore but will in-
stead converge to some final state depending on the given
geometry of the population map.

Next, we look at whether the degree of heterogeneity
in the cell location impacts the system’s steady state.
We create homogeneously distanced center points. Af-
terwards, we slightly move the center point to create a
small and scaleable degree of heterogeneity. Even if only
a few center points disturb the homogeneous grid, the
steady state can already differ significantly from the un-
perturbed system yielding a Gauss distribution.

Last, we again use the randomly distributed center
points, but instead of a spatially limited grid we investi-
gate the dynamics under periodic boundary conditions.
The setup for the periodic boundary conditions is the
same as we used earlier. Our simulations show similar
results to the scenarios without periodic boundary con-
ditions. We are not able to find a general steady state
independent from the grid’s geometry, each setup has
shown different steady states.

III. SUMMARY & DISCUSSION

In this paper, we investigated the long-term trends of
a simple Gravity-type model and the Radiation model.
We found that both models can reach different steady
states depending on parameters and setting.

The Gravity model converges towards a homogeneous
population distribution or towards a distribution where
one cell holds the whole population. Whether the model
converges towards one or the other state depends on the
population parameters o and . For the Gravity model,
the geographical and geometrical setting does not impact
the type of steady state the system will reach.

For the Radiation mode, on the other hand, the set-
ting used to run the model does play a major role. We
found that for equally sized population cells, the Radi-
ation model can create a homogeneous population dis-
tribution as well. The second steady state is a two-
dimensional Gauss-shaped population distribution cen-
tered in the middle of the investigated area. Since the Ra-
diation model does not have any tunable parameters, the
decision of whether it creates a homogeneous or Gauss-
shaped population distribution is dependent on how one
chooses the boundary conditions. If one chooses an iso-
lated area to apply the model on with no population cells
behind the national border or coastlines, the Radiation
model converges towards the Gauss-shaped distribution.
If periodic boundary conditions (resembling the geome-
try of the globe) are picked, the Radiation model results
in a homogeneous population distribution. One could
consider such a scenario when a gridded population net
is available.

If one wants to use the natural border of countries
or local administrative areas, one would usually not de-
scribe those as homogeneous and equally shaped pop-
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FIG. 8: Each subplot consists of one plot displaying the net change in all population cells over time (left) and three
scatter plots displaying the center points of population cells at different time steps. The markers’ color code
indicates the population of each cell. Subplots (a), (b), and (c) are randomly initialized whereas (d) uses equally
distanced center points. The populations of (a) and (b) have been randomly initialized as well, whereas (c) has a
homogeneous initial population distribution.

ulation cells. For different-shaped population cells, the
Radiation model does not converge towards one indepen-
dent steady state. The steady state is dependent on the
geometry.

In the following, we discuss the significance of these
findings on the application of both models for migration
purposes. First, we point out that homogeneous popu-
lation distributions are an unlikely case if we consider
population distribution nowadays. The trend towards
urbanization contradicts this finding as a realistic long-
term result for population distributions.

Considering the Gravity model "metropol” and the Ra-
diation model ”Gauss” scenario, our biggest concern is
that both of them are only capable of yielding a single
population dense area/cell. It would be desirable if a
model would be able to create multiple high-population
areas. Both of the models have further downsides, the
Gravity model projects that every person will eventu-
ally move towards a single population cell, and for areas
with large numbers of population cells, e.g. the US on
a county level, the result that the whole population is
aggregated in a single cell seems unlikely to impossible.
On the other hand, the location of this designated high-
population cell is not predetermined and can therefore
everywhere within the investigated area. The Radiation
model on the hand shows a better-distributed population
center, resembling a high-population city core with less
populated suburbs. Contrary to the Gravity model, this
population center is always located in the center of the
investigated area, due to the way of calculating the inter-
vening opportunities. As a result, the population of the
border and coastal regions will always be depleted. This
point already becomes important for shorter-time inves-
tigations. During the process of evolving towards a single

high population area, the Radiation model is capable of
having multiple "metropol” areas. These "metropol” ar-
eas will still be moving away from the border and coastal
area, ignoring the fact, that these regions often tend to
be highly populated.

When considering internal or international migration,
neither a densely populated center nor a homogeneous
population represents the reality, but for other fields,
the application of these models may yield better results.
Thinking about urban migration or commuting patterns
within a single metropol region, the Radiation models
Gauss distribution does not seem completely unreason-
able. Even though there are cities with multiple city cen-
ters, the idea of obtaining a highly populated city center
with less populated outskirts/suburbs seems more realis-
tic than a county with a single center region.

This brings us to the last results we found, i.e., the
Radiation model applied on a heterogeneously shaped
topology. Here, we found that different results are possi-
ble. Densely populated areas can be located close to the
borders of the grid as well as in the center. Furthermore,
it is also possible that more than one densely populated
area exists. The only similarity they show, is that large
parts of the population grid are uninhabited except for
smaller strongly urbanized regions.

Finally, we want to include the process of reaching a
steady state in our discussion. The homogeneous Gravity
model, as well as the Radiation models, show reasonable
population changes and convergences. The single-city
Gravity model, on the other hand, exhibits a few prob-
lems. First, it converges comparably quickly, therefore it
might not be suitable for longer time simulations. Sec-
ondly, the dynamic of a high population change peak fol-
lowed by an instant drop to no further population change



needs to be interpreted critically.
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IV. APPENDIX

A. TUniqueness of Radiation steady states in
heterogeneously shaped areas

Previously, we only found that when the Radiation
model is applied to a population grid with unequally
shaped grid cells, the system will not end in the Gauss
distribution we found earlier but will instead converge to-
wards a steady state depending on the geometry of that
population cells. Here, we briefly want to answer the
question of whether the initial population distribution
has an impact on the final state of the system.

We randomly choose a set of center coordinates and in-
vestigated several different randomly created population

distributions. We also include a homogeneous initial pop-
ulation distribution. The scatter plots in Fig.9 display
the population distribution of each of those scenarios af-
ter 2000 time steps (homogeneous scenario = top left).
The line plots display the difference between the random
population scenarios and the homogeneous one.

As one can see, not all scenarios converge toward the
same steady state. The line plot shows that some main-
tain a large, non-decreasing difference to the homoge-
neous case whereas others converge towards the same
state as the homogeneous distribution does. The green
circles in the two top left panels indicate some popula-
tion cells where the two steady states differ. It should
be pointed out that the two steady state do not differ on
a large, they rather show small deviations compared to
each other.
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FIG. 9: Each scatter plot displays the same combination of center coordinates after 2000 time steps. The initial
population was randomized but normalized to 1E6 so that the total population would remain constant for all
scenarios. The top left grid was initialized with a homogeneous population distribution. In the bottom right panel,

each line indicates the total difference of all population cells between the homogeneous case and a randomly
initialized scenario over time.



