
8 January 2025, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

MVD: A Multi-Lingual Software
Vulnerability Detection Framework

Boyu Zhang1,2, Triet Huynh Minh Le3, M. Ali Babar3,4

1. TikTok, Australia; 2. University of Adelaide, Australia; 3. The University of Adelaide, CREST - Centre for Research on Engineering

Software Technologies, Australia; 4. Cyber Security Cooperative Research Centre, Australia

Software vulnerabilities can result in catastrophic cyberattacks that increasingly threaten business

operations. Consequently, ensuring the safety of software systems has become a paramount concern

for both private and public sectors. Recent literature has witnessed increasing exploration of

learning-based approaches for software vulnerability detection. However, a key limitation of these

techniques is their primary focus on a single programming language, such as C/C++, which poses

constraints considering the polyglot nature of modern software projects. Further, there appears to

be an oversight in harnessing the synergies of vulnerability knowledge across varied languages,

potentially underutilizing the full capabilities of these methods. To address the aforementioned

issues, we introduce MVD – an innovative multi-lingual vulnerability detection framework. This

framework acquires the ability to detect vulnerabilities across multiple languages by concurrently

learning from vulnerability data of various languages, which are curated by our specialized pipeline.

We also incorporate incremental learning to enable the detection capability of MVD to be extended to

new languages, thus augmenting its practical utility. Extensive experiments on our curated dataset

of more than 11K real-world multi-lingual vulnerabilities substantiate that our framework

signi�cantly surpasses state-of-the-art methods in multi-lingual vulnerability detection by 83.7%

to 193.6% in PR-AUC. The results also demonstrate that MVD detects vulnerabilities well for new

languages without compromising the detection performance of previously trained languages, even

when training data for the older languages is unavailable. Overall, our �ndings motivate and pave

the way for the prediction of multi-lingual vulnerabilities in modern software systems.

Qeios

qeios.com doi.org/10.32388/4AHQY3 1

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

I. Introduction

Software vulnerabilities refer to weaknesses or �aws in a software system that, if exploited, can

compromise the system’s security and functionality[1]. For instance, the infamous Heartbleed

vulnerability in OpenSSL allowed unauthorized users to access sensitive data, leading to widespread

security breaches and data theft across the internet[2]. With cyberattacks emerging as primary

contributors to revenue loss for many businesses[3], safeguarding software systems has become a

paramount challenge in practice.

To address the challenges posed by software vulnerabilities, both program analysis-based and

learning-based methods have been introduced. Conventional program analysis tools analyze source

code using prede�ned rules and patterns to detect vulnerabilities (e.g.,[4][5][6]). On the other hand,

recent learning-based approaches (e.g.,[7][8][9][10][11][12]), with a particular emphasis on Deep

Learning paradigms, have garnered signi�cant attention for their improved e�cacy over program

analysis counterparts. These learning-based techniques predominantly operate by �ne-tuning neural

network models, typically pre-trained language models, using established supervised datasets

tailored for vulnerability detection. The primary objective of this process is to minimize the

discrepancy between model’s predictions and ground-truth labels.

While most learning-based techniques have been developed and demonstrated e�ective for the C and

C++ languages, there is little study on the performance of these models when applied to detecting

vulnerabilities in other languages. In fact, many of the real-world projects are not written in C/C++,

thus limiting the direct usage of the current models for vulnerability prediction. In addition, there is

an increasing number of applications that are written in multiple languages, namely polyglot

projects[13]. It is also worth noting that such projects not (only) written in C/C++ still have serious

vulnerabilities that potentially lead to catastrophic consequences[14][15][16]. As a result, current

models predicting vulnerabilities in a single language like C/C++ would have limited applications in

modern software development environments.

To address the aforementioned challenges, we introduce an innovative Multi-lingual Vulnerability

Detection (MVD) framework. Unlike conventional models con�ned to a speci�c programming

language, our framework is uniquely designed to detect software vulnerabilities across multiple

languages, making it particularly suitable for contemporary software projects that often involve

several programming languages. MVD is designed based on the observations that many types of

qeios.com doi.org/10.32388/4AHQY3 2

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

vulnerabilities, such as bu�er over�ow and SQL injection, manifest across a multitude of languages.

By harnessing this ubiquitous vulnerability knowledge, our framework can assimilate and transfer

knowledge across diverse languages, thereby fostering a more holistic understanding of

vulnerabilities and enhancing detection performance.

Under the MVD framework, we construct a multi-class classi�er to discern not only the vulnerability

of the input source code but also the speci�c language of the vulnerability. The auxiliary task of

language classi�cation augments vulnerability detection by enhancing the model’s contextual

understanding of language-speci�c vulnerability patterns. The classi�er leverages CodeBERT[17] to

extract syntactic and semantic features from multi-lingual source code. Given the disparity in the

volume of labeled vulnerable data across languages, we also augment the model with a specialized loss

function to address this class imbalance issue. Furthermore, we incorporate an incremental learning

module into MVD to allow it to adapt seamlessly to new languages on which it was not initially trained.

Our exhaustive experiments and ablation studies show that our model signi�cantly surpasses single-

language vulnerability detection baselines, attesting to the e�cacy of our proposed model.

Our key contributions can be summarized as follows:

To the best of our knowledge, we present MVD – the �rst Deep Learning based framework for

multi-lingual vulnerability detection, which has been under-explored in the current literature.

We have extensively evaluated MVD on 11K+ real-world vulnerabilities in six programming

languages, namely Python, Java, C/C++, C#, TypeScript, and JavaScript. We demonstrate that MVD

outperforms the (single-language) state-of-the-art vulnerability prediction models by 83.7% –

193.6% in terms of PR-AUC across the six prominent programming languages, with all the

proposed components contributing meaningfully to the model’s overall performance. Our MVD

model is also e�ectively and e�ciently extensible to new languages, even outperforming the

single-language counterparts in four out of six languages.1 Remarkably, this extension mostly has

modest to no impact on previously trained languages, even without their original training data.

We make our data, models, and code publicly available to support future research in multi-lingual

vulnerability prediction at https://�gshare.com/s/10ec70108294a225f391.

Paper structure

Section II introduces software vulnerability (SV) detection and the missing consideration of multi-

lingual SV detection. Section III presents the proposed MVD model for multi-lingual SV detection.

qeios.com doi.org/10.32388/4AHQY3 3

https://figshare.com/s/10ec70108294a225f391
https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

Section IV describes the settings of empirical evaluation of MVD. Section V reports the experimental

results of performance evaluation of MVD in di�erent settings. Section VI discusses the threats to

validity. Section VII concludes the study.

II. Background, Related Work, and Motivation

A. Learning-based Vulnerability Prediction

In recent years, learning-based approaches have been widely used to automate the

identi�cation/prediction of SVs in source code[18][19]. The predictions have been performed on various

levels of granularity, ranging from package/�le to function and line. Among these levels of

granularity, the function level is the most investigated as it reduces inspection e�ort for developers

while still providing su�cient context of code for prediction[20][11]. Thus, the function-level

prediction is also adopted for our multi-lingual investigations.

Deep Learning has been increasingly investigated for function-level vulnerability prediction[21].

Recurrent Neural Networks like Long-Short Term Memory have been initially used for the task

because of their ability to capture long-term dependencies in code (e.g.,[9][10][8]). Later, to more

precisely capture the structure and semantic meaning of code, graph-based models, including Gated

Graph Neural Networks employed in Devign[22], ReVeal[7] or Graph Convolutional Networks used in

IVDetect[23], Graph Attention Network in LineVD[20], have been explored for function-level

vulnerability prediction. These graph-based models have shown superior performance than LSTM.

Recently, LineVul[11] relying on CodeBERT[17], a pre-trained large language model, has demonstrated

the state-of-the-art performance for function-level vulnerability prediction[24], outperforming

various recurrent and graph-based neural networks. It is important to note that LineVul has only been

evaluated on C/C++ vulnerabilities, and thus, its ability to perform multi-lingual vulnerability

prediction is still largely unknown.

B. Missing Consideration of Multi-Lingual Vulnerability Prediction

As mentioned in Section II-A, function-level vulnerability prediction has gained signi�cant traction in

the recent literature, but the latest advances, particularly using Deep Learning, for this task have

mostly focused on detecting vulnerabilities in C/C++. However, we argue that multi-lingual

vulnerability prediction is crucial in modern software development because of the following three

qeios.com doi.org/10.32388/4AHQY3 4

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

reasons. Firstly, many large and widely used software systems are not written only in C/C++. For

example, many mobile apps are written in Java; modern web development mostly requires JavaScript

and TypeScript; Arti�cial Intelligence-based systems are frequently written in Python; the

development of video games heavily relies on C#. Secondly, contemporary software projects are

increasingly complex, often incorporating multiple programming languages to leverage the strengths

of each, a.k.a. polyglot projects[13]. Speci�cally, Mayer et al.[25] found that polyglot projects are

prevalent in practice, averaging �ve languages per project. This �nding was later con�rmed in a

follow-up study through a survey with 139 software professionals[26]. Thirdly, the most dangerous

vulnerabilities according to the top-25 CWE-IDs list in 2023,2 are mostly language agnostic, except

for NULL Pointer Dereference (CWE-476) only applicable to languages utilizing pointers like C/C++

and Code injection (CWE-94) only applying to interpreted languages. This means that languages other

than C/C++ can also be subjected to high-impact vulnerabilities like the Log4Shell vulnerability[27] in

Java recently. All of the three aforementioned observations show a dire need for approaches that can

perform vulnerability prediction in multiple languages.

Despite the aforementioned bene�ts, multi-lingual vulnerability prediction poses three key

challenges to be addressed. Firstly, the number of programming languages is large, so training and

maintaining a separate model for each language as per the current practice is quite resource-intensive

and ine�cient in practice. A more practical approach is to develop a single model that can consume

data in di�erent languages and predict new vulnerabilities in respective languages. Nevertheless, the

e�ectiveness of such a combined model has not been investigated. Secondly, di�erent languages have

distinct code syntax, creating potential issues for code representation. An e�ective representation

model needs to capture the nuances in various languages without requiring signi�cant changes to the

model architecture. Code models adapted from large pre-trained language models like

CodeBERT[17] are advantageous in this scenario because they have the demonstrated ability to capture

syntactic and semantic information of code in di�erent languages through masked language

modeling[28]. However, the e�ectiveness of large language/code models for multi-lingual

vulnerability prediction has not been well understood. Thirdly, new languages emerge over time,

making it expensive to frequently retrain a model from scratch for the new languages. A better way

would be to reuse the knowledge of a trained model on existing languages to adapt to a new language.

In this case, we only need to train the model on the data of the new language, which would

signi�cantly reduce the training time. This process is commonly referred to as incremental learning or

qeios.com doi.org/10.32388/4AHQY3 5

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

continual learning[29]. However, the use of incremental learning to handle new languages for multi-

lingual vulnerability prediction is yet to be explored. Overall, to the best of our knowledge, our study is

the �rst to address the above three challenges, aiming to propose an e�ective and e�cient solution to

multi-lingual vulnerability prediction.

C. Incremental Learning in Software Engineering

Incremental learning has become an increasingly important yet under-explored area of research

within Software Engineering, particularly for tasks that involve evolving datasets and the need for

models to adapt over time without forgetting previous knowledge. This concept is crucial in software

engineering due to the dynamic nature of software development and the continuous integration of

new code and features.

Pamela et al.[30] presented an innovative approach that combines incremental learning with multi-

feature tossing graphs. This method allows for the continuous updating of the bug triage system with

new data, improving its accuracy and e�ciency over time. By incorporating �ne-grained incremental

learning, the system can adapt to new patterns in bug reports and developer activities without

discarding the valuable knowledge accumulated from historical data. Zi et al.[31] applied incremental

learning to the prediction of bugs in source code changes. This approach is particularly relevant in

continuous integration and deployment environments, where code changes are frequent and models

must rapidly adapt to new data. By employing incremental learning, the model can update its

predictions based on the most recent changes, maintaining high accuracy in bug prediction over time.

More recently, Jingmei et al.[32] addressed the challenge of classifying malware in scenarios where

only limited data is available. This work leverages incremental learning to e�ectively update the

classi�cation model as new malware samples are discovered, ensuring that the model remains current

and e�ective without the need to be retrained from scratch on the entire dataset.

These prior studies have demonstrated the potential of incremental learning in addressing the

challenges of software engineering tasks that require continuous adaptation. Our work adds to the

body of knowledge by investigating the capability of incremental learning for vulnerability prediction.

Speci�cally, to the best of our knowledge, we are the �rst to leverage incremental learning to enable a

multi-lingual vulnerability prediction model to handle a new language without resource-intensively

retraining the model on the data of existing languages.

qeios.com doi.org/10.32388/4AHQY3 6

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

III. MVD: A Framework for Multi-Lingual Software Vulnerability

Detection

In this section, we present the MVD approach for multi-lingual SV detection and elucidate its

adaptability to incorporate new languages.

A. Overview

MVD aims at detecting software vulnerabilities in multiple programming languages simultaneously.

Speci�cally, our model is designed to detect function-level vulnerabilities in di�erent languages. In

contrast, as illustrated in Fig. 1, conventional vulnerability detection models are often constrained by

their language-speci�c designs, where each model is typically tailored for a single programming

language. This results in the need for separate models for each new language, introducing redundancy

and leading to inconsistent vulnerability detection mechanisms across di�erent languages.

To enable multi-lingual vulnerability prediction, MVD capitalizes on the CodeBERT[33] pre-trained

language model. CodeBERT was chosen because it has been pre-trained with CodeSearchNet[34], a

large code corpus of multiple programming languages, which allows CodeBERT to discern and

encapsulate the intricate lexical and logical nuances of diverse code snippets, yielding a detailed

vector representation. It is also worth noting that CodeBERT is currently the state-of-the-art model

for function-level vulnerability prediction[24]. However, MVD is unique and innovative in two

signi�cant ways compared to existing vulnerability prediction models using CodeBERT (e.g.,[11][20]).

Firstly, MVD’s training phase involves processing labeled vulnerability datasets from multiple

languages simultaneously, adopting a multi-class classi�cation approach. During training, MVD is

trained to di�erentiate multiple classes corresponding to the existence of vulnerabilities in di�erent

languages. Note that non-vulnerable/clean code is a separate class. For inference, these vulnerable

classes are consolidated into a single ”vulnerable” category, enabling the model to perform a binary

classi�cation task. This approach allows MVD to assimilate shared vulnerability patterns across

languages, enhancing its detection performance.

Secondly, the utilization of incremental learning in the MVD framework ensures it can e�ortlessly

accommodate new languages without extensive retraining. This positions MVD as a progressive

qeios.com doi.org/10.32388/4AHQY3 7

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

solution in software vulnerability detection, primed to adapt to the ever-evolving programming

language landscape.

Figure 1. An overview architecture of our MVD framework for multi-lingual vulnerability prediction as

compared to the traditional approach for single-language vulnerability prediction.

B. Tokenization

We use the WordPiece[33] tokenizer, which is aligned with the CodeBERT pre-trained model employed

in our framework. WordPiece is a data-driven tokenization method that iteratively breaks down words

into commonly occurring subwords or merges frequent subwords. While it shares similarities with the

Byte-Pair Encoding (BPE)[35] method, where frequent pairs of characters are merged into single

tokens, there are subtle di�erences. Speci�cally, while BPE focuses on merging the most frequent

character pairs, WordPiece prioritizes subwords based on the likelihood of their occurrence in the

data. This distinction allows WordPiece to be more adaptive in representing rare words. In the context

of source code vulnerability detection, WordPiece’s ability to handle out-of-vocabulary words by

representing them as a sequence of subwords is invaluable. It ensures that even unique identi�ers and

terminologies in source code can be meaningfully represented, bolstering the model’s accuracy in

vulnerability detection.

qeios.com doi.org/10.32388/4AHQY3 8

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

C. Model Architecture

Our MVD model inherits the initial weights from the pre-trained CodeBERT[17], which provides a

robust foundation for understanding programming languages. Upon receiving source code, the model

begins by tokenizing the input using the WordPiece tokenizer (see Section III-B). The tokenized

results are then passed through a word embedding layer, which maps each token to a high-

dimensional space, capturing the semantic and syntactic nuances of the tokens. Additionally,

positional encoding is applied to each token to retain the order information, which is crucial in

understanding the structure of the code.

The embedded tokens, now enriched with positional information, are subsequently processed by a

stack of 12 transformer layers. These layers, through self-attention mechanisms, enable the model to

capture dependencies between tokens regardless of their positions in the input sequence. The output

from the �nal transformer layer corresponding to the <cls> token, which aggregates the contextual

information of the entire sequence, is then fed into a multi-class linear classi�cation layer.

The classi�cation layer produces logits, which are essentially raw predictions that have not yet been

normalized. These logits are then transformed into probabilities using the softmax function, which

assigns a probability to each class, indicating the likelihood of the input code belonging to a particular

vulnerability class or being clean.

During the training phase, as illustrated in the bottom left of Fig. 1, the output dimension is ,

accounting for a ‘clean’ class and vulnerable classes corresponding to the programming

languages. This design mirrors our training data, which comprises labeled vulnerable functions from

 languages and their non-vulnerable counterparts. We employ the gradient descent algorithm to

minimize the FOLA loss function, a variant designed to address the class imbalance issue, which we

describe in Section III-D. The model iteration with the highest performance on the validation set is

selected as the �nal trained model.

In the testing phase, the model’s output dimension is binary, distinguishing between ‘clean’ and

‘vulnerable’ classes. Here, the speci�c language of the vulnerability is not of interest; rather, the focus

is on the binary determination of the presence of a vulnerability. To achieve this, the probabilities for

the di�erent vulnerable classes are summed up, resulting in a single probability representing the

overall likelihood of the code being vulnerable. This aggregated probability is then compared to the

probability of the ‘clean’ class to make the �nal binary decision.

n + 1

n n

n

n

qeios.com doi.org/10.32388/4AHQY3 9

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

D. Loss Function for Tackling Class Imbalance

In the domain of multi-class vulnerability detection, the class imbalance phenomenon presents a

signi�cant challenge[36]. Typically, the datasets used for training such models have a disproportionate

number of examples across di�erent classes. This imbalance often results in a model that is biased

toward the majority class, leading to suboptimal performance on the minority classes, which are

usually the more critical vulnerabilities to detect. We did not use sampling techniques to tackle class

imbalance in our study as these techniques lose information in training data (i.e., under-sampling)

and/or increase training size and time too signi�cantly (i.e., over-sampling).

To mitigate this issue, we adopt a hybrid approach that combines the principles of Focal loss[37] with

the logit adjustment method[38]. The Focal loss function is designed to focus more on the hard-to-

classify examples by reducing the relative loss for well-classi�ed examples, thus putting more

emphasis on correcting the misclassi�ed examples. The logit adjustment method, on the other hand,

aims to recalibrate the logits of each class based on their frequency, e�ectively adjusting the decision

boundary for each class. The combined loss function, which we refer to as FOLA loss, is formulated as

follows,

where is the model’s estimated probability for the true class , is a weighting factor to balance

the importance of di�erent classes, and is the focusing parameter of the FOCAL loss that e�ectively

reduces the loss contribution from easy examples and increases the importance of correcting

misclassi�ed examples. The term represents the logit adjustment for class , where is a

hyperparameter that controls the strength of the adjustment and is the frequency of class .

By applying this FOLA loss function during the training of our MVD model, we can e�ectively address

the class imbalance by dynamically adjusting the contribution of each class to the loss based on its

frequency and the di�culty of classifying its examples. This ensures that the model does not become

biased toward the majority class and improves its performance on the minority classes, which is

crucial for achieving reliable performance of vulnerability detection across multiple programming

languages.

= − log () + τlog ()LFOLA αt(1 −)pt
γ

pt qt (1)

pt t αt

γ

τlog ()qt t τ

qt t

qeios.com doi.org/10.32388/4AHQY3 10

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

E. Extending to New Languages

In the realm of software development, the sheer number of programming languages presents a

daunting challenge for vulnerability detection models. It is impractical to encompass all existing

languages in the initial training phase of a model. In real-world applications, the deployed MVD model

may encounter projects written in languages not included in its training corpus. Compounding this

issue is the frequent scenario where users lack access to the original training data[39], making it

di�cult to leverage past knowledge.

A naive solution might involve training a separate model for each new language from scratch, but this

approach is fraught with ine�ciencies, leading to model redundancy and a failure to capitalize on the

knowledge embedded within the already trained MVD model.

To circumvent these issues, our MVD framework incorporates an incremental learning[40] module.

This module enables the model to extend its capabilities to new languages by building upon the

knowledge acquired during its initial training. This method not only facilitates the learning of new

tasks by leveraging existing capabilities but also largely maintains the model’s performance in the

original languages.

As shown in the Fig. 1, we implement this module by introducing a distillation loss that retains the

knowledge of the original languages while accommodating new information. The equation for the

distillation loss is as follows,

where represents the output logits of the new model for the original languages, denotes the

softmax function, and are the logits from the previously trained model. This loss ensures that the

predictions for the original languages remain consistent before and after the model is updated.

The �nal loss function is a composite of the distillation loss and the FOLA loss, which addresses the

class imbalance issue:

By optimizing this combined loss function during the training process, MVD can e�ectively learn to

detect vulnerabilities in new programming languages while preserving its existing knowledge base.

This approach streamlines the extension of the model’s capabilities and ensures that the learned

information is retained and utilized e�ectively.

= (− σ()Ldistillation ∑
i=1

N

zi zoldi)2 (2)

zi σ

zoldi

= +Ltotal Ldistillation LFOLA (3)

qeios.com doi.org/10.32388/4AHQY3 11

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

IV. Experimental Design and Setup

In this section, we describe the experimental design and setup for empirically evaluating our MVD

framework.

A. Research Questions

We set out to answer the following three Research Questions (RQs) to shed light on the e�ectiveness of

MVD for multi-lingual software vulnerability detection.

RQ1: Can MVD outperform state-of-the-art models for software vulnerability detection in di�erent

languages?

RQ2: What are the contributions of the key components in MVD to the model performance?

RQ3: What is the performance of MVD when extended to a new language?

RQ1 seeks to evaluate the e�ectiveness of MVD against current leading models in the �eld of software

vulnerability detection across various programming languages. Given MVD’s architecture, which

leverages the pre-training on data of multi-lingual vulnerabilities and a novel class-imbalance loss

function, it is hypothesized that MVD can provide superior performance by e�ectively learning from a

diverse set of vulnerability patterns across multiple languages. RQ2 aims to dissect the MVD

framework to understand the impact of its individual components on the overall model performance.

This involves analyzing the role of the multi-class classi�cation paradigm, the FOLA loss function,

and the strategy of �ne-tuning either the entire model or just the classi�er layer. By conducting an

ablation study, we can determine how each component contributes to the model’s ability to detect

vulnerabilities and whether they are all critical to achieving the observed performance levels. RQ3

addresses the model’s adaptability and performance when extended to a new programming language

not included in the initial training data. This question is crucial for understanding the practicality of

MVD in real-world scenarios where it may need to be applied to languages that emerge or become

relevant after the model has been deployed. RQ3 is expected to shed light on the extent to which the

incremental learning module can integrate new languages without signi�cant loss of performance on

previously learned languages.

qeios.com doi.org/10.32388/4AHQY3 12

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

B. Datasets

We customized the methods and tools provided by CVE�xes[41] to curate vulnerability data for six

di�erent programming languages, namely C/C++, Python, Java, C#, JavaScript, and TypeScript. C and

C++ were chosen because they have been commonly investigated in the literature (e.g.,[9][8][11][20]).

The other �ve are the most popular languages in practice, according to the developers’ survey

conducted by Stack Over�ow.3 Note that we focused on general-purpose programming languages, so

we excluded task-speci�c languages like SQL for database manipulations, HTML/CSS for web

development, or Bash for scripting on Linux-based operating systems. We �rst collected

vulnerability-�xing commits in each of the aforementioned languages reported on the National

Vulnerability Database[42]. In these commits, the functions encompassing lines changed were

considered vulnerable; otherwise, they were non-vulnerable. Note that this data curation process

follows the same practice of Big-Vul[43], the largest vulnerability dataset widely used in the literature.

To further increase the data quality, we applied a series of �ltering steps to the collected functions. To

ensure that a function was written in a particular language, we de�ned the �le extensions for each

language, as given in Table I. Note that these extensions might not cover all available (vulnerable)

code of each language in the wild, but they are the most commonly used ones in practice, ensuring the

majority of code was curated. We also removed the functions inside test �les to focus on production

code. We also discarded functions that contained only cosmetic (non-functional) changes, e.g.,

changing whitespaces/newlines/comments as these functions were unlikely to contain vulnerabilities.

These �ltering steps are common practices in the literature (e.g.,[44][45][23]). We did not trace/include

latent vulnerable functions as there is not yet an accurate way to automatically determine the origin

(introduction time) of vulnerabilities[45]. After the �ltering steps, the number of vulnerable and non-

vulnerable functions are reported in Table I. It is evident that the number of vulnerable functions was

signi�cantly smaller than that of non-vulnerable ones, con�rming our argument about the existence

of class imbalance in multi-lingual vulnerability prediction.

qeios.com doi.org/10.32388/4AHQY3 13

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

Language Vuln. Non-vuln. % Vuln. Key �le extension(s)

Python 779 10,801 6.7 .py

C/C++ 6,311 116,725 5.1 .c, .cc, .cpp, .h, .hpp

Java 789 10,687 6.9 .java

C# 332 1,280 20.6 .cs, .csx

JavaScript 2,969 28,207 9.5 .js, .jss

TypeScript 151 1,760 7.9 .ts, .tsx

Table I. The numbers of vulnerable and non-vulnerable functions along with the �le extensions used for

extracting the functions in each language.

C. Evaluation Metrics

In our experiments, we assessed the MVD framework using a variety of evaluation metrics that are

widely accepted in vulnerability detection research. We incorporated the Area Under the Precision-

Recall Curve (PR-AUC) as a key metric, which aggregates the precision-recall curve into a single value.

PR-AUC is particularly advantageous in our setting as it evaluates the model’s performance across all

thresholds (threshold-agnostic), o�ering a measure that is una�ected by the selection of any speci�c

decision boundary. This metric is also crucial for imbalanced classi�cation like multi-lingual

vulnerability detection (see Table I), where the cost of missing a true vulnerability (low recall) and the

expense of investigating a false alarm (low precision) must be carefully balanced. By using PR-AUC,

we gain insight into the model’s ability to discern between vulnerable and non-vulnerable code

snippets across the entire spectrum of precision and recall, providing a robust indicator of its overall

predictive quality.

We also employed the F1-score of the binary classi�cation for its balanced consideration of precision

and recall, making it particularly relevant for our imbalanced dataset where true negatives vastly

outnumbered true positives. Precision is critical to ensure the model minimizes false positives, which

can be costly and time-consuming in practical applications, while recall is essential for capturing as

many true vulnerabilities as possible to maintain system security. The Matthews correlation

qeios.com doi.org/10.32388/4AHQY3 14

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

coe�cient (MCC) was also used due to its e�ectiveness in providing a nuanced view of the model’s

performance across all quadrants of the confusion matrix, which is valuable in our context of

imbalanced classes.

D. Methodology for Answering RQ1

In this research question, we aim to compare the performance of a model trained on a multi-lingual

dataset encompassing all six languages against models trained exclusively on single-language

datasets. For each language, we partitioned our dataset into training, validation, and testing sets

following an 8:1:1 ratio, which has been the standard for vulnerability prediction (e.g., [23][11][20][24]).

The model was trained on the training set, and its performance was assessed on the validation set

after each epoch. The iteration achieving the highest PR-AUC on the validation set was preserved as

the �nal model and tested on the testing set.

Regarding hyperparameters, we set the initial learning rate to and employed a cosine

annealing schedule, gradually reducing the learning rate in a cosine curve-like fashion as training

progresses. This approach helps in �ne-tuning the learning rate to converge optimally. We utilized

the backpropagation algorithm and the AdamW optimizer[46], a variant of the Adam

optimizer[47] that is particularly e�ective for �ne-tuning Transformer-based models. This optimizer

updates the model weights to minimize the loss function.

Upon completion of the training phase, we evaluated the model’s performance using the testing set to

ensure an unbiased assessment of its generalization capabilities. For baseline comparisons, we

adopted LineVul[11], the state-of-the-art vulnerability prediction model[24], which involves �ne-

tuning CodeBERT using single-language vulnerability datasets. Consequently, we obtained distinct

models for each language: LineVul-Python, LineVul-C/C++, LineVul-Java, LineVul-C#, LineVul-

JavaScript, and LineVul-TypeScript. We utilized the source code from LineVul4 and retrained the

models using our datasets. The data split ratio, hyperparameters, model selection criteria, and

evaluation procedures were consistent with those used for the multi-lingual model to ensure a fair

comparison.

E. Methodology for Answering RQ2

To ascertain the individual impact of MVD’s components, we conducted an ablation study using the

same evaluation setup as in RQ1. We systematically removed or altered certain components to observe

2 × 10−5

qeios.com doi.org/10.32388/4AHQY3 15

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

the change in performance, thereby validating the signi�cance of each component.

Firstly, we compared the full MVD model, which employs a multi-class classi�cation paradigm, with a

variant we term MVD-binary. The MVD-binary model simpli�es the problem by aggregating all

vulnerable examples into a single class, regardless of the language. This binary classi�cation approach

aligns with traditional single-language vulnerability detection models, where the classi�er is binary.

By comparing the performance of MVD-binary with the full MVD model, we can assess the e�cacy of

the multi-class approach in enhancing the model’s discriminative power across multiple languages.

Next, we turned our attention to the FOLA loss function, which is a composite of Focal loss and logit

adjustment. To evaluate its e�ectiveness, we trained variants of the MVD model using di�erent loss

functions: one with Focal loss alone, one with cross-entropy combined with logit adjustment, and one

with the standard cross-entropy loss. By comparing these variants, we can determine the contribution

of the FOLA loss function to the model’s ability to handle class imbalance and improve performance

for minority classes.

Lastly, we explored the utility of using the base CodeBERT model solely as a feature extractor, wherein

its weights remain frozen during the training of the classi�er. This approach can preserve the original

representations learned by CodeBERT and expedite the training process. By comparing this method

with the full model training, where CodeBERT’s weights are �ne-tuned during training, we can

discern whether the additional �ne-tuning step signi�cantly contributes to the model’s performance

or if the pre-trained representations are su�cient for vulnerability detection tasks.

Through this ablation study, we aim to shed light on the necessity and e�ciency of each component

and training strategy within the MVD framework, providing insights into their roles in achieving the

model’s overall performance.

F. Methodology for Answering RQ3

Our experiment was designed to investigate the adaptability of the MVD model when it is extended to

accommodate a new programming language. This process was conducted in two distinct stages to

simulate the scenario where a previously unencountered language needs to be integrated into an

existing model. The data splits were the same as in RQ1.

Initially, we prepared the groundwork by training six separate MVD models, each intentionally

omitting one of the languages from the training data. This language, excluded in the �rst stage, was

qeios.com doi.org/10.32388/4AHQY3 16

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

designated as the ‘new’ language for the subsequent phase of the experiment. By doing so, we created

a baseline for how the model performs without any prior knowledge of the new language.

In the second stage, we employed the incremental learning module, described in Section III-E, to

introduce the new language to the pre-trained MVD models. This step allows us to observe how the

model assimilates new information and whether it can leverage the knowledge acquired from the

original languages to enhance its performance on the new language.

Upon completion of the incremental learning process, we conducted a series of comparisons to

evaluate the e�cacy of this approach. We measured the performance of the MVD model on the new

language and compared it with that of a single-language vulnerability detection model trained solely

on the new language. This comparison aims to highlight the advantages of using a multi-lingual

model that can transfer learned knowledge to new contexts/languages.

Furthermore, we assessed the performance of the original languages both before and after the

application of incremental learning. This comparison is essential to ensure that the extension process

does not detrimentally a�ect the model’s existing capabilities.

Finally, we compared the performance of the incrementally updated model with the MVD model that

was trained with all six languages from the outset. This comparison is intended to illustrate the gap, if

any, between the incrementally learned model and the theoretical optimum, where the model has

been trained on all languages simultaneously.

Overall, RQ3 aims to not only validate the incremental learning approach but also to quantify its

impact on both the new and original languages, thereby providing a better understanding of the

model’s extensibility and robustness in the face of evolving software development practices.

V. Experimental Results

We present the experimental results of our proposed model, MVD, per the methods described in

Section IV.

A. RQ1: MVD vs. Single-Language Baselines

Table II presents a comparative analysis between the performance of the multi-lingual Vulnerability

Detection (MVD) model and the single-language LineVul models based on CodeBERT, which were

trained on individual programming languages. Each sub-table is titled with the language used for

qeios.com doi.org/10.32388/4AHQY3 17

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

testing, and the rows labeled LineVul-language represent the LineVul models trained speci�cally for

that language. The colors red and blue in the table highlight the top-1 and top-2 performance metrics,

respectively.

The experimental results showcased that the MVD model consistently achieved top-tier performance,

either ranking �rst or at least second, often outperforming the single-language LineVul models

trained on their respective languages. The signi�cant improvements included 34.9% for C/C++, 30.7%

for Java, and 24.9% for TypeScript in terms of PR-AUC. For the remaining languages, MVD performed

on par (within 5% in PR-AUC) compared to that of the single-language LineVul counterparts. The

general trend of the MVD model outperforming the baselines was also observed for the other metrics.

These results con�rm the e�ectiveness of our uni�ed MVD model, con�rming that training across

multiple languages can leverage cross-linguistic knowledge of vulnerabilities and signi�cantly

improve vulnerability detection e�cacy.

Overall, the results illustrated that a single MVD model could e�ectively operate across di�erent

languages, unlike the LineVul models, which often exhibited substantial performance declines when

tested outside their training language. On average, MVD had 83.7%, 167.2%, 137.9%, 101.5%, 125.6%,

and 193.6% better performance (PR-AUC) of predicting vulnerabilities in all six languages than the

state-of-the-art LineVul models trained speci�cally for Python, C/C++, Java, and JavaScript, C# and

TypeScript, respectively. It is also worth noting that MVD was approximately 7% better PR-AUC than

that (0.5008) of the LineVul models trained for each language individually and requiring nearly �ve

times more resources. All these results highlight the MVD model’s superior capability to identify

vulnerabilities in software projects developed in multiple languages, thereby enhancing its practical

utility in diverse development environments.

qeios.com doi.org/10.32388/4AHQY3 18

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

qeios.com doi.org/10.32388/4AHQY3 19

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

Table II. The comparison between our MVD model and the baseline single

language vulnerability detection models. Note: For a given language, the red

and blue colors denote the top-1 and top-2 values of each metric for that

language.

B. RQ2: Ablation Study of MVD’s Components

The impacts of the components on the performance of our MVD model are shown in Table III. The

di�erent variants of the MVD model included in the ablation study are described and analyzed

hereafter.

Firstly, we compared the full MVD model, which employs a multi-class classi�cation paradigm, with a

variant termed MVD-binary. The MVD-binary model simpli�es the problem by aggregating all

vulnerable examples into a single class, irrespective of the language. This binary classi�cation

approach aligns with traditional single-language vulnerability detection models, where the classi�er

is binary. While the MVD-binary model performed competitively, the full MVD model, utilizing a

multi-class approach, outperformed the MVD-binary model in all metrics across all languages (only

except Recall in JavaScript), as well as by 4% in PR-AUC, on average. This highlights the improved

e�cacy of the multi-class approach over the conventional binary counterpart.

We next assessed the e�cacy of the FOLA loss function, a hybrid of Focal loss and logit adjustment.

Variants of the MVD model were trained using distinct loss functions: MVD-focal, employing Focal

loss; MVD-lace, combining cross-entropy with logit adjustment; and MVD-ce, using standard cross-

entropy. The outcomes demonstrated that the FOLA loss function was superior in managing class

imbalance and enhancing performance in minority classes, consistently achieving at least top-2 PR-

AUC across all languages. Conversely, models employing other loss functions exhibited performance

variability across di�erent languages, complicating the task of achieving balanced performance.

Regarding the average performance, the MVD outperformed the models with all other loss functions

by at least 0.2% in PR-AUC. These results substantiate the bene�cial impact of the FOLA loss function.

Lastly, we explored the utility of using the base CodeBERT model solely as a feature extractor (MVD-

freeze), with its weights remaining frozen during the training of the classi�er. This approach aimed to

preserve the original representations learned by CodeBERT and expedite the training process.

However, the results indicated that MVD-freeze struggled to achieve comparable performance to the

qeios.com doi.org/10.32388/4AHQY3 20

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

fully �ne-tuned MVD. Speci�cally, the average performance showed a signi�cant gap of around 30%

in PR-AUC. These �ndings suggest that �ne-tuning CodeBERT during training signi�cantly enhances

the model’s performance.

All the above observations elucidate the necessity and e�ciency of every component and training

strategy within the MVD framework. The results have provided insights into the roles of multi-class

classi�cation, the FOLA loss function, and �ne-tuning of pre-trained models in achieving superior

performance in multi-lingual vulnerability detection, con�rming the overall e�ectiveness of our MVD

framework.

qeios.com doi.org/10.32388/4AHQY3 21

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

Table III. The comparison between our MVD model and its variants for ablation

analysis. Note: For a given language, the red and blue colors denote the top-1

qeios.com doi.org/10.32388/4AHQY3 22

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

and top-2 values of each metric for that language.

C. RQ3: Extension of MVD to New Languages

This experiment was conducted to assess the adaptability of the MVD model when a new

programming language is integrated incrementally and the training data of old language(s) is no

longer accessible. The results in Table IVhighlighted several promises of the e�ectiveness of

incremental learning compared to training a model from scratch with all languages.

The incremental learning approach (inc-X, where X represents the newly introduced language) was

generally better for four out of six languages in PR-AUC for the new language compared to models

that were trained on that language alone (LineVul). This trend indicates that the incremental learning

approach can e�ectively assimilate new information and improve the model’s performance in the

newly added language.

The results also revealed that the performance on the original languages did not degrade signi�cantly

and could even improve following the incremental learning process. For example, when C/C++ was

incrementally added, the performance of the model on Python decreased from 0.9018 (w/o-C/C++) to

0.8846 (inc-C/C++), which suggests some loss. However, we also witnessed performance increase

after incremental learning; for instance, when Java was incrementally added, the performance on

TypeScript even improved (from 0.1653 to 0.2860). This suggests that the model retains much of its

original knowledge even when the training data of old languages are unavailable. Further, we observed

that the performance of MVD for each of the six languages after incrementally extending to a new

language could vary. For example, the PR-AUC of MVD for TS ranged from 0.1260 to 0.2860 when

incrementally learned in di�erent languages. In addition, incrementally training MVD in a new

language did not always lead to better performance for that language than incremental training in

other languages. These results imply that the language-wise performance of MVD after incremental

learning depends on the combination and order of the languages on which the model was previously

trained.

qeios.com doi.org/10.32388/4AHQY3 23

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

Table IV. The comparison in terms of PR-AUC when expanding to new languages

with incremental learning. Note: For a given extension to a new language, the red

color denotes the best value of each language for that scenario.

Furthermore, we compared the incrementally trained models (denoted as inc-X) with the MVD model

trained on all six languages. While the incrementally trained models could occasionally outperform

the full MVD model on speci�c languages (e.g., inc-Python slightly outperforming the MVD model for

Python by 0.5% in PR-AUC), the full MVD model generally achieved higher PR-AUC across all

languages. This suggests that the MVD model bene�ts from simultaneous multi-lingual training,

capturing diverse and shared patterns and features that lead to a more stable and balanced

performance overall. However, incremental learning remains an e�ective strategy for e�ciently

adapting the model to new languages without retraining from scratch, despite not always reaching the

peak performance of a fully trained multi-lingual model using the data of all available languages.

Overall, the experimental results have demonstrated the e�cacy of the incremental learning approach

in extending the MVD model to accommodate new languages while largely preserving its performance

on previously known languages. Although the incrementally trained models do not achieve the same

level of performance as a model trained with all languages from the start, they still provide a viable

solution for environments where retraining on all data is impractical.

qeios.com doi.org/10.32388/4AHQY3 24

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

VI. Threats to Validity

A. Threats to Construct Validity

The threats to construct validity concern the data selection in multiple programming languages. We

utilized the methods and tools provided by CVE�xes, one of the largest multi-lingual vulnerability

datasets in the literature, for our data collection. This dataset follows the latest practice to curate

vulnerable and non-vulnerable functions. On top of the data provided by CVE�xes, we also improved

the quality by removing the code irrelevant to vulnerability based on the recent checklist of

vulnerability data quality assessment[48].

B. Threats to Internal Validity

The internal validity threats are related to the optimality of the vulnerability prediction models. With

limited computational resources, we could not try all possible hyperparameters. We still tuned our

models using the common hyperparameters from relevant studies. For the LineVul baseline model, we

also leveraged the recommended hyperparameters to tune it. The performance of our proposed MVD

model may not be the highest possible for multi-lingual vulnerability prediction, but at least it

established a strong foundation for future work to compare with and build upon.

C. Threats to External Validity

The external validity threats are pertinent to the generalizability of our �ndings. We performed

experiments and analysis of MVD using data from hundreds of projects in six di�erent languages and

various application domains, but our �ndings may still not generalize to other languages.

VII. Conclusion and Future Work

We introduce MVD, a novel framework for multi-lingual software vulnerability detection that

addresses the limitations of existing single-language-focused approaches. Speci�cally, MVD is a

uni�ed model that is capable of predicting the existence of vulnerable functions written in multiple

languages at the same time. By leveraging a curated dataset of over 11,000 real-world vulnerabilities

across six popular programming languages, MVD demonstrates superior detection performance by

83.7% to 193.6% compared to state-of-the-art models. Our novel use of incremental learning also

enables seamless extension to new languages without signi�cantly degrading performance on

qeios.com doi.org/10.32388/4AHQY3 25

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

previously supported ones, even in the absence of prior training data. The promising results of MVD

are envisioned to inspire future research into innovative approaches for managing vulnerabilities in

modern multi-lingual software ecosystems. To advance toward this vision, we plan to enhance MVD

by incorporating support for additional programming languages and extending its capabilities to

predict crucial information such as exploitability, impact, and severity following the detection step.

These enhancements aim to empower developers with deeper insights to e�ectively understand and

address detected vulnerabilities.

Notes

The work was conducted when Boyu Zhang was a postdoctoral researcher at CREST and the University

of Adelaide, Australia.

Statements and Declarations

Data Availability

The data and code of this study are available at https://�gshare.com/s/10ec70108294a225f391.

Acknowledgments

The work was supported by the Cyber Security Research Centre Limited whose activities are partially

funded by the Australian Government’s Cooperative Research Centres Programme. This work was

supported with supercomputing resources provided by the Phoenix HPC service at the University of

Adelaide.

Footnotes

1 We use the term MVD model to refer to the multi-lingual vulnerability prediction model in the MVD

framework.

2 https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

3 https://survey.stackover�ow.co/2023/#most-popular-technologies-language-prof

4 https://github.com/awsm-research/LineVul

qeios.com doi.org/10.32388/4AHQY3 26

https://figshare.com/s/10ec70108294a225f391
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://survey.stackoverflow.co/2023/#most-popular-technologies-language-prof
https://github.com/awsm-research/LineVul
https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

References

1. ^Harzevili NS, Belle AB, Wang J, Wang S, Ming Z, Nagappan N, et al. (2023). "A Survey on Automated So

ftware Vulnerability Detection Using Machine Learning and Deep Learning." arXiv preprint arXiv:2306.

11673. arXiv:2306.11673.

2. ^Durumeric Z, Li F, Kasten J, Amann J, Beekman J, Payer M, Weaver N, Adrian D, Paxson V, Bailey M, et

al. (2014). "The matter of heartbleed." In: Proceedings of the 2014 conference on internet measurement

conference. 2014. p. 475–488.

3. ^Anderson R, Barton C, Böhme R, Clayton R, Van Eeten MJ, Levi M, Moore T, Savage S (2013). "Measuri

ng the cost of cybercrime." The economics of information security and privacy. Springer. pp. 265–300.

4. ^Bishop M (2007). "About penetration testing". IEEE Security & Privacy. 5 (6): 84–87.

5. ^Godefroid P, Levin MY, Molnar D (2012). "SAGE: whitebox fuzzing for security testing." Communicatio

ns of the ACM. 55 (3): 40–44.

6. ^Bessey A, Block K, Chelf B, Chou A, Fulton B, Hallem S, Henri-Gros C, Kamsky A, McPeak S, Engler D (2

010). "A few billion lines of code later: using static analysis to �nd bugs in the real world." Communicati

ons of the ACM. 53 (2): 66–75.

7. a, bChakraborty S, Krishna R, Ding Y, Ray B (2021). "Deep learning based vulnerability detection: Are we

there yet?" IEEE Transactions on Software Engineering. 48 (9): 3280--3296.

8. a, b, cLi Z, Zou D, Xu S, Jin H, Zhu Y, Chen Z (2021). "Sysevr: A framework for using deep learning to dete

ct software vulnerabilities." IEEE Transactions on Dependable and Secure Computing. 19 (4): 2244–225

8.

9. a, b, cLi Z, Zou D, Xu S, Ou X, Jin H, Wang S, Deng Z, Zhong Y (2018). "Vuldeepecker: A deep learning-bas

ed system for vulnerability detection". arXiv preprint arXiv:1801.01681.

10. a, bRussell R, Kim L, Hamilton L, Lazovich T, Harer J, Ozdemir O, Ellingwood P, McConley M. "Automate

d vulnerability detection in source code using deep representation learning." In: 2018 17th IEEE internat

ional conference on machine learning and applications (ICMLA). IEEE; 2018. p. 757-762.

11. a, b, c, d, e, f, gFu M, Tantithamthavorn C (2022). "Linevul: A transformer-based line-level vulnerability

prediction." In: Proceedings of the 19th International Conference on Mining Software Repositories. pp. 6

08–620.

12. ^Nguyen VA, Nguyen DQ, Nguyen V, Le T, Tran QH, Phung D (2022). "ReGVD: Revisiting graph neural n

etworks for vulnerability detection." In: Proceedings of the ACM/IEEE 44th International Conference on

qeios.com doi.org/10.32388/4AHQY3 27

https://arxiv.org/abs/2306.11673
https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

Software Engineering: Companion Proceedings. 2022. pp. 178–182.

13. a, bMussbacher G, Combemale B, Kienzle J, Burgue\u00f1o L, Garcia-Dominguez A, J\u00e9z\u00e9que

l JM, Jouneaux G, Khelladi DE, Mosser S, Pulgar C, et al. "Polyglot Software Development: Wait, What?" I

EEE Software. 2024.

14. ^Livshits VB, Lam MS (2005). "Finding Security Vulnerabilities in Java Applications with Static Analysi

s." In: USENIX Security Symposium. 14: 18–18.

15. ^Li W, Li L, Cai H. "On the vulnerability proneness of multilingual code." In: Proceedings of the 30th AC

M Joint European Software Engineering Conference and Symposium on the Foundations of Software En

gineering. 2022. p. 847–859.

16. ^Alfadel M, Costa DE, Shihab E (2023). "Empirical analysis of security vulnerabilities in python package

s". Empirical Software Engineering. 28 (3): 59.

17. a, b, c, dFeng Z, Guo D, Tang D, Duan N, Feng X, Gong M, Shou L, Qin B, Liu T, Jiang D, et al. (2020). "Cod

ebert: A pre-trained model for programming and natural languages." arXiv preprint arXiv:2002.08155.

2020. Available from: https://arxiv.org/abs/2002.08155.

18. ^Lin G, Wen S, Han QL, Zhang J, Xiang Y (2020). "Software vulnerability detection using deep neural ne

tworks: A survey." Proceedings of the IEEE. 108(10): 1825--1848.

19. ^Hanif H, Nasir MHNM, Ab Razak MF, Firdaus A, Anuar NB (2021). "The rise of software vulnerability:

Taxonomy of software vulnerabilities detection and machine learning approaches". Journal of Network

and Computer Applications. 179: 103009.

20. a, b, c, d, eHin D, Kan A, Chen H, Babar MA. "LineVD: Statement-level vulnerability detection using grap

h neural networks." In: Proceedings of the 19th International Conference on Mining Software Repositori

es; 2022. p. 596–607.

21. ^Zeng P, Lin G, Pan L, Tai Y, Zhang J (2020). "Software vulnerability analysis and discovery using deep l

earning techniques: A survey." IEEE Access. 8: 197158–197172.

22. ^Zhou Y, Liu S, Siow J, Du X, Liu Y (2019). "Devign: E�ective vulnerability identi�cation by learning com

prehensive program semantics via graph neural networks". Advances in neural information processing

systems. 32.

23. a, b, cLi Y, Wang S, Nguyen TN (2021). "Vulnerability detection with �ne-grained interpretations." In: Pr

oceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposiu

m on the Foundations of Software Engineering. pp. 292–303.

qeios.com doi.org/10.32388/4AHQY3 28

https://arxiv.org/abs/2002.08155
https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

24. a, b, c, dSteenhoek B, Rahman MM, Jiles R, Le W. "An empirical study of deep learning models for vulner

ability detection." In: 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). I

EEE; 2023. p. 2237–2248.

25. ^Mayer P, Bauer A (2015). "An empirical analysis of the utilization of multiple programming languages

in open source projects." In: Proceedings of the 19th International Conference on Evaluation and Assess

ment in Software Engineering. pp. 1--10.

26. ^Mayer P, Kirsch M, Le MA (2017). "On multi-language software development, cross-language links an

d accompanying tools: a survey of professional software developers". Journal of Software Engineering R

esearch and Development. 5: 1–33.

27. ^NIST. Log4Shell vulnerability on NVD [Internet]. Available from: https://nvd.nist.gov/vuln/detail/CVE-

2021-44228.

28. ^Xu FF, Alon U, Neubig G, Hellendoorn VJ (2022). "A systematic evaluation of large language models of

code." In: Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming. 2

022. p. 1–10.

29. ^De Lange M, Aljundi R, Masana M, Parisot S, Jia X, Leonardis A, Slabaugh G, Tuytelaars T (2021). "A co

ntinual learning survey: Defying forgetting in classi�cation tasks." IEEE Transactions on Pattern Analys

is and Machine Intelligence. 44 (7): 3366–3385.

30. ^Bhattacharya P, Neamtiu I (2010). "Fine-grained incremental learning and multi-feature tossing gra

phs to improve bug triaging." In: 2010 IEEE International Conference on Software Maintenance. IEEE. p

p. 1–10.

31. ^Yuan Z, Yu L, Liu C, Zhang L (2013). "Predicting bugs in source code changes with incremental learnin

g method." J. Softw.. 8 (7): 1620--1633.

32. ^Li J, Xue D, Wu W, Wang J (2020). "Incremental learning for malware classi�cation in small datasets".

Security and Communication Networks. 2020: 1–12.

33. a, bWu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, et al.

(2016). "Google's neural machine translation system: Bridging the gap between human and machine tr

anslation." arXiv preprint arXiv:1609.08144. 2016.

34. ^Husain H, Wu HH, Gazit T, Allamanis M, Brockschmidt M (2019). "Codesearchnet challenge: Evaluatin

g the state of semantic code search". arXiv preprint arXiv:1909.09436.

35. ^Sennrich R, Haddow B, Birch A. "Neural Machine Translation of Rare Words with Subword Units." In: E

rk K, Smith NA, editors. Proceedings of the 54th Annual Meeting of the Association for Computational Li

qeios.com doi.org/10.32388/4AHQY3 29

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

nguistics (Volume 1: Long Papers). Berlin, Germany: Association for Computational Linguistics; 2016. p.

1715-1725. Available from: https://aclanthology.org/P16-1162. doi:10.18653/v1/P16-1162.

36. ^Croft R, Xie Y, Babar MA (2022). "Data preparation for software vulnerability prediction: A systematic l

iterature review". IEEE Transactions on Software Engineering. 49 (3): 1044–1063.

37. ^Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017). "Focal loss for dense object detection." In: Proceedi

ngs of the IEEE international conference on computer vision. 2017. pp. 2980–2988.

38. ^Menon AK, Jayasumana S, Rawat AS, Jain H, Veit A, Kumar S. "Long-tail learning via logit adjustmen

t." In: International Conference on Learning Representations; 2021. [Online]. Available from: https://op

enreview.net/forum?id=37nvvqkCo5.

39. ^Nong Y, Sharma R, Hamou-Lhadj A, Luo X, Cai H (2022). "Open science in software engineering: A stu

dy on deep learning-based vulnerability detection". IEEE Transactions on Software Engineering. 49

(4): 1983–2005.

40. ^Li Z, Hoiem D (2017). "Learning without forgetting." IEEE transactions on pattern analysis and machi

ne intelligence. 40 (12): 2935–2947.

41. ^Bhandari G, Naseer A, Moonen L. "CVE�xes: automated collection of vulnerabilities and their �xes fro

m open-source software." In: Proceedings of the 17th International Conference on Predictive Models an

d Data Analytics in Software Engineering; 2021. p. 30–39.

42. ^NIST. National Vulnerability Database [Online]. Available: https://nvd.nist.gov.

43. ^Fan J, Li Y, Wang S, Nguyen TN (2020). "A C/C++ code vulnerability dataset with code changes and CV

E summaries." In: Proceedings of the 17th International Conference on Mining Software Repositories. 2

020. pp. 508--512.

44. ^Croft R, Newlands D, Chen Z, Babar MA (2021). "An empirical study of rule-based and learning-based

approaches for static application security testing." In: Proceedings of the 15th ACM/IEEE International S

ymposium on Empirical Software Engineering and Measurement (ESEM). pp. 1–12.

45. a, bCroft R, Babar MA, Chen H (2022). "Noisy label learning for security defects." In: Proceedings of the 1

9th International Conference on Mining Software Repositories. p. 435–447.

46. ^Loshchilov I, Hutter F. "Decoupled Weight Decay Regularization." In: International Conference on Lear

ning Representations; 2019. [Online]. Available from: https://openreview.net/forum?id=Bkg6RiCqY7.

47. ^Kingma DP, Ba J (2014). "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.698

0.

qeios.com doi.org/10.32388/4AHQY3 30

https://aclanthology.org/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://openreview.net/forum?id=37nvvqkCo5
https://openreview.net/forum?id=37nvvqkCo5
https://nvd.nist.gov/
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

48. ^Croft R, Babar MA, Kholoosi MM. "Data quality for software vulnerability datasets." In: 2023 IEEE/AC

M 45th International Conference on Software Engineering (ICSE). IEEE; 2023. p. 121-133.

Declarations

Funding: The work was supported by the Cyber Security Research Centre Limited whose activities are

partially funded by the Australian Government’s Cooperative Research Centres Programme. This work

was supported with supercomputing resources provided by the Phoenix HPC service at the University

of Adelaide.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/4AHQY3 31

https://www.qeios.com/
https://doi.org/10.32388/4AHQY3

