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Alzheimer’s Disease (AD) is a neurological disorder that affects cognitive functions, including

memory, thinking, and behavior. Early detection of Alzheimer’s disease is critical for effective

treatment and management of the condition. Deep Learning (DL) is a powerful tool that can be used

for AD detection and diagnosis. DL algorithms can learn patterns and features in large datasets that

can be used to classify and predict the presence of Alzheimer’s Disease. The most common approach is

to use brain imaging techniques, such as computed tomography and brain MRI scans, to extract

features that are characteristic of Alzheimer’s Disease. Transfer learning-based deep learning models

can be effective in detecting Alzheimer’s disease from medical images. Transfer learning involves

using pre-trained neural network models as a starting point and �ne-tuning them to suit a speci�c

task, such as Alzheimer’s disease detection. This paper focuses on classifying AD patients into various

stages (early mental retardation, mild mental impairment, late mild mental impairment, and �nal

Alzheimer’s stage) by utilizing transfer learning with ResNet50, VGG16, and DenseNet121 along with

CNN networks on a large dataset. The work classi�es Alzheimer’s patients into various stages using

transfer learning with ResNet50, VGG16, and DenseNet121 along with CNN on a large dataset. The

model is trained and tested on ADNI data using Keras API and divides the MRI images into: EMCI, MCI,

LMCI, and AD. The performance of VGG16, DenseNet121, and ResNet50 outperformed other models

signi�cantly. The results demonstrate a signi�cant improvement in accuracy compared to previous

approaches, with a �nal accuracy of 96.6%.
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1. Introduction

Alzheimer’s disease is a global health crisis that affects millions of people around the world. This

debilitating condition erodes the brain’s ability to comprehend, remember, and perform basic functions,

ultimately leading to death [1]. With projections indicating that the number of Alzheimer’s patients will

rise from 50 million to 152 million by 2050, it is imperative that we act now to address this growing

health crisis [2]. The cost of treating Alzheimer’s is staggering, with expected global expenses reaching

nearly $186 billion in 2018  [3]. Unfortunately, this number is only expected to increase in the coming

years, putting an enormous strain on the world’s healthcare system. According to the established Clinical

Dementia Rating (CDR) result, the disorder is split into four stages: early mild cognitive impairment, mild

cognitive impairment, late mild cognitive impairment, and Alzheimer’s (AD). Early diagnosis of dementia

disorders is crucial for patient recovery and treatment expenses because the cost of treating patients with

EMCI and LMCI is different. Diagnosis of Alzheimer’s is best possible after the death of a patient since

Alzheimer’s pathology changes in patients could not be assessed early.

The initial diagnostic criteria for Alzheimer’s disease were created in 1984 and relied solely on clinical

symptoms. With the discovery of different biomarkers such as CSF, MRI, and PET data, the international

working group devised a new approach in 2014, which served as the model for the National Institute on

Aging and Alzheimer’s Association’s (NIA-AA) subsequent set of standards. Biomarker data are used to

link the clinical condition of dementia or mild cognitive loss to intrinsic Alzheimer’s pathological

changes with high, moderate, or low risk in the NIA-AA criteria [4]. Imaging biomarkers are used to assess

Alzheimer’s disease, such as CT, fMRI, MRI, and PET scans. The hippocampus and entorhinal cortex have

shown extremely early changes in Alzheimer’s disease that are consistent with pathology, but it is still

uncertain which structure would be best for an early diagnosis  [5]. The physiology of dementia and its

differential diagnosis have greatly bene�ted from structural and functional imaging, which also holds

considerable potential for tracking the course of the disease  [6]. Numerous articles have been written

regarding how various imaging methods can be used to detect Alzheimer’s disease. In volumetric MRI,

patterns of sick and healthy subjects were identi�ed using feature-based morphometry (FBM)  [7]. In

computerized medical image processing, convolutional neural networks (CNNs) have achieved major

advancements. As a result, various CNN models, including VGG, MobileNet, AlexNet, and ResNet, are
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available for object detection and segmentation. Despite the fact that CNNs are renowned deep learning

techniques, their effectiveness is hampered by the absence of an extensive medical imaging dataset [8].

Transfer learning is one of the ef�cient methods for building deep convolutional neural networks

without over�tting when the amount of data is minimal  [8]. A pre-trained network serves as the

foundation of transfer learning. The proposed method can learn the most useful features instead of

training a speci�c CNN network from scratch. To categorize AD into �ve classes, the proposed research

study has used four pre-trained networks, including VGG 16, ResNet, and DenseNet121. The main

contribution of this research paper is to detect and classify the Alzheimer’s stages, and it is done in the

following stages:

Identi�cation of the image dataset, and the identi�ed dataset is in ANN format.

Conversion of this image dataset into JPEG format.

Application of different normalization techniques on the dataset to remove ambiguities.

Application of various data augmentation techniques on the normalized dataset.

Ensemble of different deep learning approaches on the normalized dataset to detect and diagnose

Alzheimer’s stages.

Finally, a comparison of the ef�ciency of deep learning models was performed, and it was found that

VGG 16 and DenseNet121 outperform ResNet 50 and other models.

The rest of the paper is organized as follows: Section 2 illustrates the literature review, Section 3

discusses transfer learning (Section 3.1) VGG16, (Section 3.2) Resnet50, (Section 3.3) DenseNet121. Section

4 discusses the proposed work and its experimental evaluation.

2. Literature Review

A literature review on the use of machine learning techniques in Alzheimer’s disease (AD) research shows

a growing trend in the development of models that can assist in early diagnosis, predict disease

progression, and improve the understanding of the underlying biological mechanisms of AD. One of the

most common approaches in AD research is the use of magnetic resonance imaging (MRI) scans to study

brain changes associated with the disease. Convolutional neural networks (CNNs) have been used to

classify and differentiate between healthy brains and those with AD based on MRI scans. Some of the

promising research in detecting early signs of AD, which can help in early intervention and improve

patient outcomes, are described as follows.
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An automated framework was developed by U. Rajendra et al. [9] to evaluate whether a baseline brain scan

will detect any evidence of Alzheimer’s disease. Lihua Wang et al. [10]  integrated genomic data from six

different brain areas using SVM machine learning techniques to �nd AD biomarkers. Martin Randles and

Mohamed Mahyoub  [11]  proposed that, relying on characteristics including lifestyle, medical history,

demography, and other considerations, Alzheimer’s is predicted at various stages. Rueda et al. suggested

a fusion-based image processing technique that identi�es discriminative brain patterns connected to the

presence of neurodegenerative disorders  [12]. The effectiveness of classi�cation using a support vector

machine (SVM) was assessed on several datasets once the discriminative patterns had been identi�ed. Li

et al. [13] presented a classi�cation approach based on multilayer brain divisions. Using SVM, histogram-

based parameters from MRI data were used to categorize various brain levels.

Giraldo et al.  [14]  proposed an automated technique recently developed for identifying structural

abnormalities in the thalamus, planum temporale, amygdala, and hippocampal areas. Hina Nawaz et

al.  [15] devised a framework based on the computer-aided system, which needs real-time AD diagnosis.

They have suggested identifying the stages of AD. For certain deep feature modeling and extraction,

researchers have used classi�cation algorithms like KNN (K-nearest neighbor), RF (Random Forest), and

SVM (Support Vector Machine). Large datasets were necessary for classi�cation and extracting deep

features to avoid over�tting problems. To attain the maximum accuracy in early Alzheimer’s diagnosis,

they have recommended on-time depth and propagation of learning techniques compared to previous

approaches. There is currently no treatment for AD using any medical reasoning approaches, and early

detection of Alzheimer’s disease is complicated. To attain high accuracy, Ketki Tulpule et al. [16] focused

on nonlinear SVM for the radial base purpose when developing a computerized machine learning

approach for categorizing Alzheimer’s phases.

Muazzam Maqsood et al. [17] devised a transfer learning approach to identify Alzheimer’s disease. They

suggested breaking down the AD category into different divisions. Since Alzheimer’s is an incurable

ailment, it is an emerging topic for research globally. The contribution of researchers across the globe for

detection and diagnosis of this disorder is listed in Table 1.
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References Dataset Classi�cation Results

[18] MIAS dataset Binary 95%

[19] Retinal photographs Binary 93%

[20] MNIST Binary 85%

[21] ADNI Binary 96%

[22] ADNI Binary 85%

[23] ADNI Binary 88%

[24] ADNI MULTI 96%

Table 1. Literature review for Alzheimer’s detection

In addition to diagnosis and progression prediction, machine learning techniques have also been applied

to understand the biological mechanisms underlying AD. This includes the analysis of genomic data,

protein expression data, and other biological markers to identify potential drug targets and predict

disease outcomes. This literature review highlighted the potential of machine learning techniques in

advancing the understanding and treatment of Alzheimer’s disease. While the �eld is still in its early

stages, the results to date are promising, and continued research and development are necessary to fully

realize the potential of these approaches.
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Figure 1. Basic CNN architecture for AD detection procedure

3. Transfer Learning

A model created for one task is used as the basis for another using the machine learning technique

known as transfer learning. Deep learning tasks in computer vision and natural language processing are

built on pre-trained models. Compared to building neural network models from scratch, they are both

cheaper and faster, and they perform remarkably better on related tasks. Transfer learning is learning a

new activity more effectively by applying what has already been learned about a related one [25]. For this

approach to be practical, the features must be generic, i.e., applicable to both the base task and the target

task [26]. Convolutional neural networks, often known as ConvNet, are a subset of Deep Neural Networks

(DNN) and are most frequently applied to the processing of medical images. The fundamental structure

of the CNN is shown in Figure 1. Various pre-trained deep learning models with transfer learning

approaches have been explored in research. VGG 16, ResNet 50, and DenseNet 121 were used in this study.

3.1. VGG16: A Convolutional neural network with 16 layers is called VGG-16. The ImageNet database

contains a pre-trained version of this network that has been trained on more than a million images [27].

The pre-trained model can categorize images into 1000 distinct object groups. The network has,

therefore, acquired rich feature representations for a variety of images.

3.2. ResNet50: A ResNet model version called ResNet50 contains forty-eight Convolution layers, one

MaxPool layer, and one Average Pool layer. There are 3.8 x 10^9 �oating-point operations available. It is a

qeios.com doi.org/10.32388/4RIOQC 6

https://www.qeios.com/
https://doi.org/10.32388/4RIOQC


commonly used architecture, and we thoroughly examined the ResNet50 design [28].

3.3. DenseNet121: In densely connected Convolutional networks, each layer is linked to every other layer.

There are L (L+1)/2 direct connections between ‘L’ layers. DenseNet resolves the vanishing gradient

problem by altering the typical CNN architecture and streamlining the connectivity between layers [29].

4. Proposed Work and Its Experimental Evaluation

MRI images from the ADNI dataset are used in this study (adni.loni.usc.edu). There are 3400 images in

this dataset (680 images from each class), each measuring 224 × 224. The research �ow of the proposed

work is shown in the �owchart below (Figure 2). Data balancing is essential for the Model to predict with

optimal accuracy. Unbalanced data leads to over�tting and under�tting; thus, data needs to be balanced.

Here in this study, we use downsampling techniques to balance the data.

Figure 2. The basic �owchart of this proposed work

The images from each AD stage are selected and given input to the speci�ed models. The data is divided

into training, validation, and testing. The complete information regarding each stage is listed in Table 2.
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AD stage

Total images in the dataset

Training data Test data Validation data Total

NC 500 90 90 680

EMCI 500 90 90 680

MCI 500 90 90 680

LMCI 500 90 90 680

AD 500 90 90 680

Table 2. The images given as inputs to the model

4.1. Data Augmentation: The size of the dataset is signi�cant for deep learning models. These models

predict more accurately and yield better accuracy results with large datasets. The major drawback of

image datasets is their limited size. Therefore, it needs to be augmented to enlarge the dataset for the

models. We applied different data augmentation techniques to the datasets, such as horizontal �ipping of

the images, rotating the images by 5 degrees, and adjusting the width and shift in the images. In this

study, we applied data augmentation with the help of an image data generator from the Keras API. Figure

3 below shows the effect of data augmentation techniques on brain MRI images.
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Figure 3. Application of data augmentation techniques on the public dataset

5. Result Evaluation

The dataset used in this paper is divided into testing, training, and validation data. A total of 2900 images

are used in this research: 2000 images for training (400 from each class), 450 for testing (90 from each

category), and 450 for validation (90 from each type). We applied transfer learning by using pre-trained

CNN models such as DenseNet121 and VGG16 with ImageNet weights. For multiclass classi�cation, we are

utilizing RMSProp as our optimizer with a learning rate of 0.00001 and categorical cross-entropy as the

loss metric while monitoring accuracy metrics to provide training and validation results as well as loss

and accuracy values.

5.1. DenseNet121: DenseNet121 comprises one 7x7 Convolution layer, �fty-eight 3x3 Convolution layers,

sixty-one 1x1 Convolution layers, four AvgPool layers, and one Fully Connected Layer (Figure 4).
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Figure 4. DenseNet121 model architecture for the prediction of Alzheimer’s stages

The performance of the classi�cation models for a particular set of test data is assessed using a confusion

matrix. Figure 5 below shows the accuracy and loss plot generated by the DenseNet121 model.

Figure 5. Accuracy and loss plot generated by the DenseNet121 model over 100 epochs.

5.2. VGG16: The VGG16 model comprises 16 layers and is implemented on an input image with

dimensions (224x224) and converts it into (7x7) and �ve dense layer feature matrices as output. The

overall accuracy of the model is 96.0. The loss and accuracy over 100 epochs are shown in Figure 6.
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Figure 6. Accuracy and loss plot generated by the VGG 16 model over 100 epochs.

Classi�cation Report Precision Recall F1-score support

Final AD JPEG 0.90 1.00 0.95 90

Final CN JPEG 0.94 0.89 0.91 90

Final EMCI JPEG 0.98 0.92 0.95 90

Final LMCI JPEG 0.97 0.99 0.97 90

Final MCI JPEG 0.98 0.96 0.97 90

Accuracy 0.95 450

Macro Avg. 0.95 0.95 0.95 450

Weighted Avg. 0.95 0.95 0.95 450

Table 2. Classi�cation report generated by the VGG16 model
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5.3. ResNet50: The input image size (224x224) is converted to (7x7) by applying the ResNet50 model,

which has �fty layers of convolution, and the output feature matrix has �ve dense layers. The Model’s

accuracy is measured based on different parameters such as Recall, score, Precision, etc. The basic

architecture and loss plot are shown in Figure 7 and Figure 8, respectively.

Figure 7. Basic architecture of the ResNet50 Mode for the detection of AD stages

Figure 8. Accuracy and loss plot generated by the ResNet50 model over 100 epochs
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Finally, the classi�cation report generated by the model on the speci�ed dataset is shown in Table 3.

Classi�cation Report Precision Recall F1-score support

Final AD JPEG 0.77 0.74 0.76 90

Final CN JPEG 0.52 0.64 0.57 90

Final EMCI JPEG 0.86 0.47 0.60 90

Final LMCI JPEG 0.49 1.00 0.66 90

Final MCI JPEG 1.00 0.22 0.36 90

Accuracy 0.62 450

Macro Avg. 0.73 0.62 0.59 450

Weighted Avg. 0.73 0.62 0.59 450

Table 3. Classi�cation report generated by the ResNet50 model

6. Discussion and Signi�cance of the Proposed Work

The proposed model evaluates the ef�ciency of models in different performance metrics, such as the

confusion matrix, accuracy, loss, F1 Score, precision, recall, ROC, and sensitivity. The general formulas to

calculate different parameters are calculated by the following equations.

Accuracy = (Number of Correct Predictions) / (Total Number of Predictions) (1)

Precision = (No of True Positives) / (No of True Positives + No of False Positives) (2)

Recall = (No of True Positives) / (No of True Positives + No of False Negatives) (3)

F1-Score = 2 * (Precision * Recall) / (Precision + Recall) (4)

For ef�cient classi�cation results, precision and recall should always be high. In the present study, 3400

images from the ADNI dataset are split into groups based on the stages of Alzheimer’s. For evaluation, the

whole data is divided into training, testing, and validation (500, 90, 90 images from each class). The

performance analysis comparison of the applied models is shown in Figure 9.
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Figure 9. Comparative performance analysis generated by pre-trained deep learning models on the dataset

6. Conclusion and Future Scope

This study examined pre-trained strategies for predicting the phase of Alzheimer’s disease. The highest

accuracy achieved by the Model is 97.23 percent. The proposed Model operates on ADNI data using Keras

API, where the MRI image is divided into �ve categories: EMCI, MCI, LMCI, and AD. The analysis has

addressed under�tting and over�tting issues, their solutions, and the impact of Model adjustments on

our application’s performance. In this research, three advanced networks, VGG16, DenseNet121, and

ResNet50, were used, and the results were compared. The suggested model signi�cantly outperformed

the others. In future studies, we will investigate applying the same Model to other disorders using the

same data modality. The primary priority will be the enhancement of classi�cation results during

training and testing of the data.
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