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Abstract

   This paper (preprint) is the author’s analytical research of elastic and inelastic collisions (impacts) of

two bodies in a linear motion. An experiment (inelastic collision) described in the paper is designed to

understand how an additional mass can physically (not in physical formulas) make a final speed

increase of one of two colliding bodies. A first body (big block), which is linearly moving at some

constant speed, hits a second body (small block) which is motionless. Accelerations of and final speeds

of the blocks, and the impact time are measured. Then, some additional mass is assembled to the big

block so that a length of the big block can stay the same. Next, the big block (with an added mass) hits

the small block keeping the initial speeds of the blocks the same. Accelerations of and final speeds of

the blocks, and the impact time are measured. In according to the classical mechanics formulas, a final

speed of the small block gets higher if a total mass of the big block is increased, even though the initial

speeds of the blocks do not change. However, it is unclear how a mass, which is added to the big block,

may physically make an increase of the small block final speed if the initial speeds of and lengths of the

colliding blocks do not change. A speed of shock waves is the same in the two blocks if they are made of

the same material. Based on the physics of collision, if a length of the small block is less than a length of

the big block, then the small block must begin to move when its shock wave returns to the impact area

before a shock wave in the big block returns to the impact area. In other words, the small block must

begin to move at the same time in the collision with or without an added mass, so the initial speeds of

and lengths of the two blocks do not change. Therefore, the physical impact time must be the same for

the collision with or without an added mass. Hence, the blocks cannot squeeze each other faster or

longer during the physical impact when an added mass is assembled to the big block. In such conditions,

the final speed increase of the small block can physically happen in the way that the small block either

gets a higher acceleration or accelerates for a longer time after the physical impact between the blocks

(with an added mass) ends. The current physics does not explain how physically (not in the formulas) an

added mass can make the small block accelerate faster or longer after the physical impact (contact)

ends. Therefore, the current collision physics appears not to explain the collision process completely

when the small block final speed becomes higher despite the same impact time. The author assumes

that maybe the interactions between the particles in the experimental collision may be based on some
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sort of quantum entanglement, anisotropy, relativity, that is, without any fields, or the energy transfer

between fields happens via some sort of quantum entanglement anisotropically. Though, such an

assumption requires a supplementary experimental research.  

Introduction

 

   Elastic and inelastic collisions of two bodies (solid blocks) are analyzed in this paper. To better

understand what is going on during elastic and inelastic collisions, let’s first analyze an elastic collision of

two identical particles. 

   Assume there are two identical particles (charges) which have the same masses and fields (field lines are

depicted)  [1], see Figure #1. 

Assume that a particle p2 is not exerted by any forces before the collision and is motionless. A particle p1

reaches p2 at a uniform speed 1 meter per second. At some point, the field of p1 begins to compress the

field of p2 [2] so that the initial speeds of both particles begin to change: the p1 speed decreases and the

p2 speed increases. As a result, the fields of both particles are compressed at some distance x , see Figure

#2. 
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To sum up, the interactions of the particles happen by their fields. Notice that the centers of mass of the

particles are along one line.    

   Now, let’s consider a more complicated process when two different groups [3] of identical particles of

steel collide with one another along one axis (uniaxially [4]). The fields of all the particles are identical too.

Assume there are not any friction, air resistance, other forces exerted on the groups. The left group of the

particles is bigger than the right group of the particles. A length L1 of the left group is more than a

length L2 of the right group. The left group begins to move toward the right group at a uniform speed 1

meter per second at time t = 0 , see Figure #3. 
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When the collision (impact) starts, the fields of the left group surface particles begin to compress the fields

of the right group surface particles along one axis at the left group initial speed, see Figure #4. 
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Assume that the collision between the groups starts at time t1 . The shock wave propagates at the same

speed in both groups because they represent the same material (steel) [5]. The impact should end when

the shock waves return to the impact area [6, 7]. However, the shock wave reflected from the right end of

the right group returns to the impact area earlier than the reflected shock wave in the left group returns

from its left end because L2  is less than L1 . Hence, the impact should end when the shock wave in the

right group returns to the impact area. The groups both begin to deform at the impact area along one axis.

The deformation is assumed to be elastic, that is, the groups restore their initial shapes without strains

after the impact [5, 6, 7].  

   The linear momentum of any mass is defined by a mass m  multiplied by its velocity v  [8]: 

ρ = mv . (1)
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ρ = mv . (1)

Next, increase a width of the left group but keep the same length so that the centers of the mass of the

groups are in line, see Figure #5. 
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Therefore, a total mass of the left group becomes larger but a mass of the right group stays unchanged.

The left group hits the right group at the same initial speed. Likely the deformation in the collision (impact)

before increasing the left group, the deformation of the groups happens along one axis (uniaxially).

Because a total mass of the left group increases, a force exerted on each group becomes larger than that

force in the collision before increasing the left group. The force F  (magnitude of the force) is calculated

based on the following formula via impulse:  

F = (mgroupvgroup − mgroupigroup)/tcollision , (2)

where mgroup  is a total mass of one of the groups, vgroup  is a final speed (after collision) of a

group, igroup  is an initial speed (before collision) of a group, tcollision  is the collision time [9]. The same

force F  is exerted by the groups on each other in according to Newton’s third law [10]. The

deformation delta L of each group should be larger after increasing the left group because the force F

 becomes larger based on the following equation:

∆ L = (FL)/(AE) , (3)

where L  is a length of a group before the deformation, A is the collision contact area between the groups

(impact area), E  is Young’s modulus (elastic modulus) for steel. The equation (3) can be derived from the

formulas for epsilon (engineering strain), sigma (applied or engineering stress), and E (Young’s modulus or

elastic modulus) [11]. The length L of each group and the impact area A do not change in the collisions.

Notice that the deformation of the left group is always less than the deformation of the right group if L2  is

less than L1 based on the equation (3). It should be mentioned that the fields of the particles are

compressed during the process of the elastic deformation. When the pressure in the contact (impact) area

reduces to zero, all the fields of the particles restore their initial state.    

   The deformation of both groups gets larger because of the larger force F  based on the equation (3). If

the initial speeds of the groups do not not change, then the larger deformation can physically happen only

if the impact time gets longer. 

   If the impact time increases after the left group gets bigger, it induces the following point. When the

collision ends at some time t2 (before the left group being increased), the right group begins to move at

some speed v2 . Therefore, the right group gets enough kinetic energy to begin to move at t2 . After the

left group gets increased and if the impact time gets longer, then the right group should begin to move at

some time t2
'  . The latter is supposed to be longer than t2 . However, it is unclear why the right group

should not start to move at t2  if the right group gets enough kinetic energy to begin to move at a
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speed v2  at time t2 . Notice that the fields of the particles at the impact area compress each other at the

same speed in both collisions and a speed of the shock wave propagation does not change. Moreover, if a

length of the right group is less than a length of the left group, then the right group must begin its own

movement when the shock wave (in the right group) returns to the impact area. Hence, nothing prevents

the right group to begin to move at t2  in the collision with the enlarged left group.

   Next, let’s first analyze an elastic collision (ideal impact) of two masses that consist of the particles, of

course. Assume that there are two different masses (two solid blocks) that are made of steel. These blocks

freely move on wheels along a smooth straight metal floor or rails in vacuum (friction is negligible and no

air resistance). A big block (Block #1) is 50 kg and a small block (Block #2) is just 1 kg. These two blocks

collide with each other in an elastic collision (Situation #1), see Figure #6.  

Notice that the centers of mass of each block must be in line during the collision to avoid rotation and
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vibration. The big block initial speed (before the impact) is 1 meter per second. The small block initial

speed (before the impact) is zero. The elastic collision means that no any kinetic energy is lost, that is,

turns into heat, sound waves during the collision [12]. If the momentum of the small block is zero before

the impact, then the momentum of the big block before the impact must be equal to a sum of the

momenta of the two blocks after the impact. The appropriate formula defines the conservation of the linear

momentum when two different bodies (blocks) interact in the elastic collision, that is, when no any kinetic

energy is lost in the collision: 

m1i1 + m2i2 = m1v1 + m2v2 , (4)

where m1  is a mass of the big block (Block #1), i1  is the big block initial speed 1 meter per second

(before the impact), m2  is a mass of the small block (Block #2), i2  is the small block initial speed 0 meter

per second (before the impact), v1  is the big block final speed (after the impact), v2  is the small block

final speed (after the impact) [13].  

   If the small block initial speed i2  is zero, then the equation (4) becomes: 

m1i1 + m20 = m1v1 + m2v2 , (5)

hence: 

m1i1 = m1v1 + m2v2 . (6)

Therefore, the formula for the kinetic energy is [14]: 

(m1i21)/2 = (m1v2
1)/2 + (m2v2

2)/2, (7)

hence, the formulas for v1  and v2  are [15]: 

v1 = ((m1 − m2)/(m1 + m2))i1 , (8)

v2 = ((2m1)/(m1 + m2))i1 . (9)

Next, figure out the final speeds of the blocks (after the impact) if the big block initial speed is 1 meter per

second: 

v1 = ((50kg − 1kg)/(50kg + 1kg))1m/s ≈ 0.960784314m/s , (10)

v2 = 2((50kg)/(50kg + 1kg))1m/s ≈ 1.960784314m/s . (11)

Therefore, the final speed of the small block is almost 1.96 meters per second. This speed is almost two

times more than the big block final speed. 

    Next, consider Situation #2 when an additional mass 150 kilograms is assembled to the big block (Block

#1), see Figure #7. 
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The additional mass is tightly assembled to Block #1 so that its length L1 can stay the same. Now, Block

#1 has a total mass of 200 kilograms, but Block #2 has the same mass of 1 kilogram. The initial speed of

Block #1 does not change and is 1 meter per second. The initial speed of Block #2 is zero. Based on the

formulas (8) and (9), calculate both a final speed v1
'  of Block #1 (with the added mass) and a final speed
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v2'  of Block #2 after the impact with the additional mass:  

v
′

1 = ((200kg − 1kg)/(200kg + 1kg))1m/s ≈ 0.990049751m/s , (12)

v
′

2 = ((2 ∗ 200kg)/(200kg + 1kg))1m/s ≈ 1.990049751m/s . (13)

Compare the final speed of Block #2 before the additional mass is assembled to Block #1 with the final

speed of Block #2 after the additional mass is assembled to Block #1: 

1.990049751m/s > 1.960784314m/s , (14)

hence: 

1.990049751m/s − 1.960784314m/s = 0.029265437m/s . (15)

It is obvious that Block #2 increases its final speed by 0.029265437 m/s after the additional mass 150

kilograms is assembled to Block #1 based on the equation (13). It should be underscored that the initial

speed of Block #1 does not change. Notice that it does not matter to where the additional mass is

assembled based on the formulas (8) and (9). The additional mass may be tightly assembled wherever: on

the top or to the bottom, or behind Block #1, or other positioning. However, the additional mass must be

assembled so that the impact contact area can stay unchanged.  

   The final speed increase of Block #2 after adding the additional mass is explained by a larger force

exerted by Block #1 (with the additional mass) on Block #2 during the impact. This force may be

calculated via the impulse based on the formula (2): 

F = (m2v2 − m2i2)/telastic , (16)

where telastic  is the elastic impact time in seconds. Next, figure out a force F1,1,2  exerted by Block #1 on

Block #2 before assembling the additional mass and a force F2,1,2  exerted by Block #1 on Block #2 after

assembling the additional mass. First of all, calculate the force F1,1,2  : 

F1,1,2 = ((1kg1.960784314m/s) − (1kg0.0m/s))/telastic = (1.960784314kgm/s)/telastic , (17)

where telastic  is the impact time before assembling the additional mass. Second, calculate the

force F2,1,2  : 

F2,1,2 = ((1kg1.990049751m/s) − (1kg0.0m/s))/t ′

elastic = (1.990049751kgm/s)/t ′

elastic , (18)

where telastic
'  is the impact time after assembling the additional mass. 

   In according to Newton’s third law, F1,1,2  must be equal to a force F1,2,1  exerted by Block #2 on Block

#1 before assembling the additional mass, and F2,1,2  must be equal to a force F2,2,1  exerted by Block

#2 on Block #1 after assembling the additional mass. Next step, calculate F1,2,1  and F2,2,1 : 

F1,2,1 = ((50kg1m/s) − (50kg0.960784314m/s))/telastic = (1.9607843kgm/s)/telastic , (19)
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F2,2,1 = ((200kg1m/s) − (200kg0.990049751m/s))/t ′

elastic = (1.990049751kgm/s)/t ′

elastic . (20)

Let’s first compare F1,1,2  with F1,2,1  which are forces exerted by the blocks on each other in the collision

before the additional mass is assembled to Block #1: 

(1.960784314kgm/s)/telastic ≅ (1.9607843kgm/s)/telastic , (21)

then compare F2,1,2  with F2,2,1 which are forces exerted by the blocks on each other in the collision after

the additional mass is assembled to Block #1: 

(1.990049751kgm/s)/t ′

elastic ≅ (1.990049751kgm/s)/t ′

elastic . (22)

Notice that the difference between v1  and v2  or v1
'  and v2

'  is always 1 meter per second: 

1.960784314m/s − 0.960784314m/s = 1m/s , (23)

1.990049751m/s − 0.990049751m/s = 1m/s . (24)

It means that a distance between the blocks grows at the same rate that is 1 meter per second after the

elastic impact in both situations. That is, the blocks separate from each other at the same distance per a

unit of time in Situation #1 and Situation #2 after the blocks gain their final speeds. However, it is

necessary to analyze an inelastic collision of the blocks to estimate physical conditions properly.  

   Let’s consider a real experiment for Situation #1 and Situation #2 which are inelastic collisions

happening in the real world. A length of Block #2 must be less than a length of Block #1 for the

experimental goal. The blocks are made of good quality steel. The blocks must be without external and

internal defects. The deformations of the blocks are supposed to be elastic at the experimental speeds.

The elastic modulus E  for steel is 200 GPa [16]. The initial speed of Block #1 does not change and is 1

meter per second for Situation #1 and Situation #2. The initial speed of Block #2 is zero for Situation #1

and Situation #2. The blocks may be collided with each other in vacuum in both situations in order to

reduce air resistance. Practically, friction in the block wheels bearings, friction between the wheels and the

floor or rails may be insignificant for calculating the experimental results. To measure the impact time, the

blocks are connected to a timer. When the blocks contact each other during the impact, it closes the timer

circuit (steel is electrically conductive). When the blocks separate, the timer circuit is open again. Another

timer is used to measure a total time of the experiment. The first timer and the second timer must be

synchronized. To measure the final speeds and accelerations of the blocks, a video camera is used. Special

marks are painted on the blocks. There are many applications which may be used to calculate speeds of

bodies based on a video by using the marks. Though, the inelastic (permanent) deformation of the blocks

should not happen at low initial speeds of Block #1, the sizes of the blocks are checked after every impact

with an error at least + or - 0.01 millimeter.  

    During the inelastic collisions, some kinetic energy turns into the shock wave (elastic deformation) and

heat. It means that the equation (7) changes, that is, the kinetic energy of Block #1 before the impact of

the blocks should be more than the total kinetic energy of the blocks after the impact. Moreover, the final
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speeds of the blocks should change as well. The final speeds should become a bit slower than they are in

the elastic collisions. Hence, a final speed of Block #1 becomes v1s  and a final speed of Block #2

becomes v2s . Then, the kinetic energy inequality is: 

m1i21/2 > m1v2
1s/2 + m2v2

2s/2, (25)

therefore, the momentum of Block #1 before the impact should be more than a sum of the momenta of the

two blocks after the impact:  

m1i1 > m1v1s + m2v2s . (26)

Though, it is necessary to remember that a total momentum of the system is conserved. To calculate the

final speeds of the blocks in the inelastic collisions, the coefficient of restitution CR  is used [17, 18]: 

CR = (v2s − v1s)/(i1 − i2) . (27)

Therefore, a final speed of Block #1 is calculated based on this formula: 

v1s = (m1i1 + m2i2 + m2CR(i2 − i1))/(m1 + m2) , (28)

and a final speed of Block #2 after the inelastic collision is [18, 19]: 

v2s = (m1i1 + m2i2 + m1CR(i1 − i2))/(m1 + m2) . (29)

Consequently, if CR  is known before making the experiment (with and without the additional mass), the

final speeds of the blocks are defined based on the formulas (28) and (29). 

   Next, first analyze the inelastic collision in Situation #1 (without the additional mass). Block #1 (50kg)

collides with Block #2 (1kg). The impact starts at time t1  and ends at time t2  when Block #2 begins to

move at its final speed v2s  , see Figure #8. 

Qeios, CC-BY 4.0   ·   Article, May 28, 2021

Qeios ID: 4YA26T   ·   https://doi.org/10.32388/4YA26T 13/17



In other words, Block #2 gains its final speed when the physical contact (impact) between Block #2 and

Block #1 ends. During the impact, some of the initial kinetic energy (KE1) carried by Block #1 is

transferred into heat and shock waves. The shock waves propagate in the steel blocks at speed 5196 m/s

 [20]. The final speeds of Block #1 and Block #2 are v1s  and v2s  appropriately in according to the

formulas (28) and (29).  

    Finally, consider the inelastic collision in Situation #2 (with the additional mass). Block #1 (200kg)

collides with Block #2 (1kg). The lengths of and the initial speeds of the blocks do not change. The impact

starts at time t1  which is the same as that in Situation #1 and ends at time t2
'  which should be more

than t2 if the larger deformation happens. During the impact in Situation #2, some of the initial kinetic

energy (KE2) carried by the enlarged Block #1 is transferred into heat and shock waves. Notice that KE2 >

KE1 because the total mass of Block #1 becomes 200 kg but its initial speed 1 meter per second  is the
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same as that in Situation #1. The shock waves propagate in the steel blocks at speed 5196 m/s . The fields

of the particles of Block #1 start to compress the fields of the particles of Block #2 at the impact area at

the relative speed 1 meter per second at time t1 . Therefore, the transfer of the kinetic energy from Block

#1 to Block #2 runs in the same way as that in Situation #1. It means that Block #2 gains enough kinetic

energy via the shock wave to begin to move at speed v2s  at t2 . Block #2 must begin to move at its final

speed when its shock wave returns to the impact area at time t2 because a length of Block #2 and the

shock wave speed do not change. However, the impact (with the additional mass) should end at time t2
'  at

the final speeds of the blocks v1s
'  and v2s

'  appropriately if the larger deformation and the impact longer

time happen. 

 

Conclusion

 

   The force and the final speed of Block #2 increase if a total mass of Block #1 increases in according to

the formulas (2) and (29) appropriately. Based on the formulas (2) and (3), the elastic deformation should

be larger for the inelastic collision with the added mass (Situation #2) than that for the inelastic collision

without the added mass (Situation #1). It should be so because the force increases. If the initial speeds of

and lengths of the blocks do not change, then the only physical way how the larger deformation and the

higher final speed of Block #2 can happen is a longer time of the impact in Situation #2. However, it

contradicts the physics of collision because the shock wave in Block #2 returns to the impact area at the

same time in the inelastic collision with or without the additional mass. Block #2 must begin its own

motion at the same time in the inelastic collision with or without the added mass assembled to Block #1 if

a length of Block #2 is less than a length of Block #1. It should be again mentioned that the shock waves

in the blocks propagate at the same speed if the blocks are made of the same material. 

   If the final speed of Block #2 in the experimental situation #2 increases but the collision time does not

increase, it raises a question how physically the additional mass can make the final speed of Block #2

higher. The speed increase of Block #2 may be caused by the kinetic energy transfer. An only known

physical way which the initial kinetic energy of Block #1 can be transferred from Block #1 to Block #2 is

via the physical interactions of the fields of the particles in the impact area. However, the interactions of

the fields begin in the same conditions (initial speeds of the fields, shock wave speed in steel, lengths of

the blocks, impact area) in Situation #1 and Situation #2. Under such conditions, Block #2 should start to

move at speed v2s  at time t2  instead of v2s
'  at t2

'  in Situation #2. That is, Block #2 should begin to

move at its final speed when the shock wave returns to an impact area. This time should be time t2

 because the speed of the shock wave in Block #2 and a length of Block #2 do not change. The author

assumes that maybe the interactions between the particles of the two blocks could be based on some sort

of the quantum entanglement, that is, without any fields, or the kinetic energy transfer happens via some

sort of the quantum entanglement anisotropically. Though, such an assumption requires a supplementary

experimental research. 
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   To clearly observe whether or not the deformation happens to be larger after the additional mass is

assembled, Block #1 or Block #2, which is made of a material with a lower Young’s modulus E , can be

used for the experimental collisions. However, one of the blocks should be made of steel. In this way, the

deformation of another block should be observable. 
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