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Abstract

Robin's criterion states that the Riemann hypothesis is true if and only if the inequality σ(n) < eγ ⋅ n ⋅ loglogn holds for all

natural numbers n > 5040, where σ(n) is the sum-of-divisors function of n, γ ≈ 0.57721 is the Euler-Mascheroni

constant and log is the natural logarithm. We require the properties of superabundant numbers, that is to say left to

right maxima of n ↦
σ(n)

n . Let Pn be equal to ∏q∣

Nr

6

qνq(n ) +2−1
qνq(n ) +2−q  for a superabundant number n > 5040, where νp(n) is the 

p-adic order of n, qk is the largest prime factor of n and Nr = ∏r
i=1qi is the largest primorial number of order r such that 

Nr

6 < q2
k. In this note, we prove that the Riemann hypothesis is true when Pn ≥ Q holds for all large enough

superabundant numbers n, where Q =

1.2⋅ (2−
1
8 ) ⋅ (3−

1
3 )

(2−

1
219

) ⋅ (3−

1
312

) ≈ 1.0000015809. In particular, the inequality Pn ≥ Q holds when 

∑q∣mσ(

m
qνq(n ) +1

) ⪆ σ(m) ⋅ logQ also holds such that m = ∏q∣Nr
qνq (n)+1 since σ(…) is multiplicative.
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1. Introduction

The hypothesis was proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to the Hilbert's eighth

problem on David Hilbert's list of twenty-three unsolved problems. As usual σ(n) is the sum-of-divisors function of n
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∑
d∣nd,

where d ∣ n means the integer d divides n. Define f(n) as 

σ(n)
n . We say that Robin(n) holds provided that

f(n) < eγ ⋅ loglogn,

where γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural logarithm. The Ramanujan's Theorem states

that if the Riemann hypothesis is true, then the previous inequality holds for large enough n [1]. Next, we have the Robin's

Theorem:

Proposition 1. Robin(n) holds for all natural numbers n > 5040 if and only if the Riemann hypothesis is true [[2], Theorem 1

pp. 188].

In 1997, Ramanujan's old notes were published where it was defined the generalized highly composite numbers, which

include the superabundant and colossally abundant numbers [1]. Let q1 = 2, q2 = 3, …, qk denote the first k consecutive

primes, then an integer of the form ∏k
i=1qai

i  with a1 ≥ a2 ≥ … ≥ ak ≥ 1 is called a Hardy-Ramanujan integer [[3], pp. 367]. A

natural number n is called superabundant precisely when, for all natural numbers m < n

f(m) < f(n).

We know the following properties for the superabundant numbers:

Proposition 2. If n is superabundant, then n is a Hardy-Ramanujan integer [[4], Theorem 1 pp. 450] .

Proposition 3. [[4], Theorem 7 pp. 454] . Let n be a superabundant number such that p is the largest prime factor of n, then

p ∼ logn,   (n → ∞).

Proposition 4. [[4], Theorem 9 pp. 454] . The number of superabundant numbers less than x exceeds

c ⋅ logx ⋅ loglogx
(logloglogx)2 .

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)
n1+ϵ

≥

σ(m)
m1+ϵ

  for  (m > 1).

There is a close relation between the superabundant and colossally abundant numbers

Proposition 5. Every colossally abundant number is superabundant [[4], pp. 455].

Several analogues of the Riemann hypothesis have already been proved. Many authors expect (or at least hope) that it is

true. However, there are some implications in case of the Riemann hypothesis might be false.

Proposition 6. If the Riemann hypothesis is false, then there are infinitely many colossally abundant numbers n > 5040

Qeios, CC-BY 4.0   ·   Article, July 20, 2023

Qeios ID: 53MTR9.2   ·   https://doi.org/10.32388/53MTR9.2 2/8



 such that Robin(n) fails (i.e. Robin(n) does not hold) [[2], Proposition pp. 204] .

The following is a key Corollary.

Corollary 1. If the Riemann hypothesis is false, then there are infinitely many superabundant numbers n such that 

Robin(n) fails.

Proof. This is a direct consequence of Propositions 1,5 and 6. ◻

In number theory, the p-adic order of an integer n is the exponent of the highest power of the prime number p that divides 

n. It is denoted νp(n). Equivalently, νp(n) is the exponent to which p appears in the prime factorization of n.

Proposition 7. Robin(n) holds for all natural numbers n > 5040 such that ν2(n) ≤ 19 and ν3(n) ≤ 12 [[5], Theorem 1 pp. 2,

Theorem 2 pp. 2].

Proposition 8. [[4], Theorem 5 pp. 452] . Let n be a superabundant number such that νq(n) = t, p is the largest prime factor of n

, 2 ≤ q ≤ p and q < (logp)α, where α is a constant, then

log

qt+2 − 1
qt+2 − q <

logq
p ⋅ logp ⋅ 1 + O

(loglogp)2

logp ⋅ logq .

This is the main insight.

Lemma 1. Let n be a large enough superabundant number such that p > 3 is the largest prime factor of n, then

p < 2ν2 (n)−19

and

p < 3ν3 (n)−12.

Let Pn be equal to ∏q∣

Nr

6

qνq(n ) +2−1
qνq(n ) +2−q  for a superabundant number n > 5040, where qk is the largest prime factor of n and 

Nr = ∏r
i=1qi is the largest primorial number of order r such that 

Nr

6 < q2
k. Putting all together yields the main theorem:

Theorem 1. The Riemann hypothesis is true when Pn ≥ Q holds for all large enough superabundant numbers n, where 

Q =

1.2⋅ (2−
1
8 ) ⋅ (3−

1
3 )

(2−

1
219

) ⋅ (3−

1
312

) ≈ 1.0000015809. In particular, the inequality Pn ≥ Q holds when ∑q∣mσ(

m
qνq(n ) +1

) ⪆ σ(m) ⋅ logQ also

holds such that m = ∏q∣Nr
qνq (n)+1 since σ(…) is multiplicative.

2. Proof of the Lemma 1

( ( ))
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Proof. Let q ∈ {2, 3} and νq(n) = t. For every large enough superabundant number n, there is a constant α such that 

q < (logp)α. For example, we can take α = 2.5 since (logp)2.5 ≥ (log5)2.5 > 3. We will use the following inequality

u
u + 1 < log(1 + u),   (u > 0).

From the previous inequality, we notice that

log

qt+2 − 1
qt+2 − q = log 1 +

q − 1
qt+2 − q

>

q−1
qt+2−q

q−1
qt+2−q + 1

=

q − 1

(qt+2 − q) ⋅ (

q−1
qt+2−q + 1)

=

q − 1
(q − 1) + (qt+2 − q)

=

q − 1
qt+2 − 1

>

1
3 ⋅ qt+1

.

Hence, there is a constant C > 0 such that

qt > C ⋅

p ⋅ logp
logq

by Proposition 8. Putting c =

C
logq , then we obtain that

c ⋅ p ⋅ logp < qt,

where c is a positive constant. We deduce that

c ⋅ logp > 312

by Proposition 3 for large enough n. Therefore, the proof is done. ◻

3. Proof of the Theorem 1

Proof. There are infinitely many superabundant numbers by Proposition 4. Let n > 5040 be a large enough superabundant

number. Let ∏k
i=1qai

i  be the representation of this superabundant number n as the product of the first k consecutive

( )
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primes q1 < … < qk with the natural numbers a1 ≥ a2 ≥ … ≥ ak ≥ 1 as exponents, since n must be a Hardy-Ramanujan

integer by Proposition 2. Let Pn be equal to ∏q∣

Nr

6

qνq(n ) +2−1
qνq(n ) +2−q  for n > 5040, where Nr = ∏r

i=1qi is the largest primorial

number of order r such that 

Nr

6 < q2
k. Suppose that Robin(n) fails and Pn ≥ Q, where Q =

1.2⋅ (2−
1
8 ) ⋅ (3−

1
3 )

(2−

1
219

) ⋅ (3−

1
312

) ≈ 1.0000015809.

So,

f(n) ≥ eγ ⋅ loglogn.

We know that

f(n) = f(2ν2 (n) ⋅ 3ν3 (n)) ⋅ f(

n
2ν2 (n) ⋅ 3ν3 (n)

)

< 3 ⋅ f(

n
2ν2 (n) ⋅ 3ν3 (n)

)

= f(23 ⋅ 3 ⋅ 5) ⋅ f(

n
2ν2 (n) ⋅ 3ν3 (n)

)

≤ f

219 ⋅ 312 ⋅ n ⋅
Nr

6

2ν2 (n) ⋅ 3ν3 (n)

= f

n ⋅
Nr

6

2ν2 (n)−19 ⋅ 3ν3 (n)−12

since Pn ≥ Q, 

qi

qi−1
>

qai+1
i −1

qai
i ⋅ (qi−1)

= f(qai
i ) and f(…) is multiplicative, where 

f(23 ⋅ 3 ⋅ 5) = 3 = 2 ⋅
3
2 > f(2ν2 (n)) ⋅ f(3ν3 (n)) = f(2ν2 (n) ⋅ 3ν3 (n)). This is true because of

f(23 ⋅ 3 ⋅ 5) ⋅ f(

n
2ν2 (n) ⋅ 3ν3 (n)

) ≤ f

219 ⋅ 312 ⋅ n ⋅
Nr

6

2ν2 (n) ⋅ 3ν3 (n)

is equivalent to say that

( )
( )

( )
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f(23 ⋅ 3 ⋅ 5)
f(219 ⋅ 312) ≤

∏
q∣

Nr

6

f(qνq (n)+1)
f(qνq (n)) .

Certainly, we know that

f(23 ⋅ 3 ⋅ 5)
f(219 ⋅ 312) = Q

and

∏
q∣

Nr

6

f(qνq (n)+1)
f(qνq (n)) =

∏
q∣

Nr

6

qνq (n)+2 − 1
qνq (n)+2 − q = Pn.

Consequently, that is true under the supposition that Pn ≥ Q. We have

f

n ⋅
Nr

6

2ν2 (n)−19 ⋅ 3ν3 (n)−12
< eγ ⋅ loglog

n ⋅
Nr

6

2ν2 (n)−19 ⋅ 3ν3 (n)−12

by Proposition 7. Therefore, we obtain that

eγ ⋅ loglog

n ⋅
Nr

6

2ν2 (n)−19 ⋅ 3ν3 (n)−12
> eγ ⋅ loglogn

which is the same as

n ⋅ q2
k

2ν2 (n)−19 ⋅ 3ν3 (n)−12
>

n ⋅
Nr

6

2ν2 (n)−19 ⋅ 3ν3 (n)−12
> n

using the inequality 

Nr

6 < q2
k. However, we know that

2ν2 (n)−19 > qk

and

3ν3 (n)−12 > qk

( ) ( )

( )

( ) ( )
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by Lemma 1, due to n is large enough. So, we can see that necessarily,

n ⋅ q2
k

2ν2 (n)−19 ⋅ 3ν3 (n)−12
< n.

In this way, we obtain a contradiction under the assumption that Robin(n) fails and Pn ≥ Q, where 

Q =

1.2⋅ (2−
1
8 ) ⋅ (3−

1
3 )

(2−

1
219

) ⋅ (3−

1
312

) ≈ 1.0000015809. To sum up, the study of this arbitrary large enough superabundant number n

 reveals that Robin(n) holds whenever Pn ≥ Q. Accordingly, Robin(n) holds for all large enough superabundant numbers n

 when Pn ≥ Q holds. This contradicts the fact that there are infinitely many superabundant numbers n, such that Robin(n)

 fails when the Riemann hypothesis is false according to Corollary 1. By reductio ad absurdum, we prove that the

Riemann hypothesis is true when Pn ≥ Q holds for all large enough superabundant numbers n. From the proof of the

Lemma 1, we show that log

qνq(n ) +2−1
qνq(n ) +2−q >

q−1
qνq(n ) +2−1 , where we know that 

q−1
qνq(n ) +2−1 =

1
σ(qνq(n ) +1 ) . Thus, the inequality Pn ≥ Q

 holds when ∑q∣

Nr

6 σ(

n ′

qνq(n ) +1
) ≥ σ(n ′) ⋅ logQ also holds such that n ′ = ∏q∣

Nr

6 qνq (n)+1 since σ(…) is multiplicative. However,

the inequality

∑
q∣

Nr

6
σ(

n ′

qνq (n)+1
) ≥ σ(n ′) ⋅ logQ

is the same as

∑
q∣

Nr

6
σ(

m
qνq (n)+1

) ≥ σ(m) ⋅ logQ

after multiplying both sides by σ(2ν2 (n)+1 ⋅ 3ν3 (n)+1) such that m = n ′ ⋅ 2ν2 (n)+1 ⋅ 3ν3 (n)+1. That would be the same as

∑
q∣mσ(

m
qνq (n)+1

) ≥ σ(m) ⋅ logQ +

σ(m)
σ(2ν2 (n)+1) +

σ(m)
σ(3ν3 (n)+1)

= σ(m) ⋅ logQ +

1
σ(2ν2 (n)+1) +

1
σ(3ν3 (n)+1)

⪆ σ(m) ⋅ logQ

and thus, the proof is done. ◻
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