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Abstract

Robin’s criterion states that the Riemann hypothesis is true if and
only if the inequality σ(n) < eγ ·n·log log n holds for all natural numbers
n > 5040, where σ(n) is the sum-of-divisors function of n, γ ≈ 0.57721
is the Euler-Mascheroni constant and log is the natural logarithm. We
require the properties of superabundant numbers, that is to say left to

right maxima of n 7→ σ(n)
n . Let Pn be equal to

∏
q|Nr

6

qνq(n)+2−1

qνq(n)+2−q
for a

superabundant number n > 5040, where νp(n) is the p-adic order of n,
qk is the largest prime factor of n and Nr =

∏r
i=1 qi is the largest pri-

morial number of order r such that Nr

6 < q2k. In this note, we prove that
the Riemann hypothesis is true when Pn ≥ Q holds for all large enough

superabundant numbers n, whereQ =
1.2·(2− 1

8 )·(3−
1
3 )

(2− 1
219

)·(3− 1
312

)
≈ 1.0000015809.

We know that
∏

q|Nr
6
(qνq(n)+2 − 1) ≥ Q ·

∏
q|Nr

6
(qνq(n)+2 − q) trivially

holds for large enough superabundant numbers n and thus, the Rie-
mann hypothesis is true.
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1 Introduction

The hypothesis was proposed by Bernhard Riemann (1859). The Riemann
hypothesis belongs to the Hilbert’s eighth problem on David Hilbert’s list
of twenty-three unsolved problems. As usual σ(n) is the sum-of-divisors
function of n ∑

d|n

d,

where d | n means the integer d divides n. Define f(n) as σ(n)
n . We say that

Robin(n) holds provided that

f(n) < eγ · log log n,
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where γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural
logarithm. The Ramanujan’s Theorem states that if the Riemann hypothesis
is true, then the previous inequality holds for large enough n [4]. Next, we
have the Robin’s Theorem:

Proposition 1.1. Robin(n) holds for all natural numbers n > 5040 if and
only if the Riemann hypothesis is true [5, Theorem 1 pp. 188].

In 1997, Ramanujan’s old notes were published where it was defined the
generalized highly composite numbers, which include the superabundant
and colossally abundant numbers [4]. Let q1 = 2, q2 = 3, . . . , qk denote
the first k consecutive primes, then an integer of the form

∏k
i=1 q

ai
i with

a1 ≥ a2 ≥ . . . ≥ ak ≥ 1 is called a Hardy-Ramanujan integer [2, pp. 367].
A natural number n is called superabundant precisely when, for all natural
numbers m < n

f(m) < f(n).

We know the following properties for the superabundant numbers:

Proposition 1.2. If n is superabundant, then n is a Hardy-Ramanujan
integer [1, Theorem 1 pp. 450].

Proposition 1.3. [1, Theorem 7 pp. 454]. Let n be a superabundant num-
ber such that p is the largest prime factor of n, then

p ∼ log n, (n → ∞).

Proposition 1.4. [1, Theorem 9 pp. 454]. The number of superabundant
numbers less than x exceeds

c · log x · log log x
(log log log x)2

.

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)

n1+ϵ
≥ σ(m)

m1+ϵ
for (m > 1).

There is a close relation between the superabundant and colossally abundant
numbers.

Proposition 1.5. Every colossally abundant number is superabundant [1,
pp. 455].

Several analogues of the Riemann hypothesis have already been proved.
Many authors expect (or at least hope) that it is true. However, there are
some implications in case of the Riemann hypothesis might be false.

Proposition 1.6. If the Riemann hypothesis is false, then there are in-
finitely many colossally abundant numbers n > 5040 such that Robin(n)
fails (i.e. Robin(n) does not hold) [5, Proposition pp. 204].
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The following is a key Corollary.

Corollary 1.7. If the Riemann hypothesis is false, then there are infinitely
many superabundant numbers n such that Robin(n) fails.

Proof. This is a direct consequence of Propositions 1.1, 1.5 and 1.6.

In number theory, the p-adic order of an integer n is the exponent of
the highest power of the prime number p that divides n. It is denoted
νp(n). Equivalently, νp(n) is the exponent to which p appears in the prime
factorization of n.

Proposition 1.8. Robin(n) holds for all natural numbers n > 5040 such
that ν2(n) ≤ 19 and ν3(n) ≤ 12 [3, Theorem 1 pp. 2, Theorem 2 pp. 2].

Proposition 1.9. [1, Theorem 5 pp. 452]. Let n be a superabundant num-
ber such that νq(n) = t, p is the largest prime factor of n, 2 ≤ q ≤ p and
q < (log p)α, where α is a constant, then

log
qt+2 − 1

qt+2 − q
<

log q

p · log p
·
(
1 +O

(
(log log p)2

log p · log q

))
.

This is the main insight.

Lemma 1.10. Let n be a large enough superabundant number such that
p > 3 is the largest prime factor of n, then

p < 2ν2(n)−19

and
p < 3ν3(n)−12.

Let Pn be equal to
∏

q|Nr
6

qνq(n)+2−1

qνq(n)+2−q
for a superabundant number n >

5040, where qk is the largest prime factor of n and Nr =
∏r

i=1 qi is the
largest primorial number of order r such that Nr

6 < q2k. Putting all together
yields the main theorem:

Theorem 1.11. The Riemann hypothesis is true when Pn ≥ Q holds for

all large enough superabundant numbers n, where Q =
1.2·(2− 1

8
)·(3− 1

3
)

(2− 1
219

)·(3− 1
312

)
≈

1.0000015809. In addition, the inequality Pn ≥ Q trivially holds for large
enough superabundant numbers n and therefore, the Riemann hypothesis is
true.
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2 Proof of the Lemma 1.10

Proof. Let q ∈ {2, 3} and νq(n) = t. For every large enough superabundant
number n, there is a constant α such that q < (log p)α. For example, we
can take α = 2.5 since (log p)2.5 ≥ (log 5)2.5 > 3. We will use the following
inequality

u

u+ 1
< log(1 + u), (u > 0).

From the previous inequality, we notice that

log
qt+2 − 1

qt+2 − q
= log

(
1 +

q − 1

qt+2 − q

)
>

q−1
qt+2−q
q−1

qt+2−q
+ 1

=
q − 1

(qt+2 − q) · ( q−1
qt+2−q

+ 1)

=
q − 1

(q − 1) + (qt+2 − q)

=
q − 1

qt+2 − 1

>
1

3 · qt+1
.

Hence, there is a constant C > 0 such that

qt > C · p · log p
log q

by Proposition 1.9. Putting c = C
log q , then we obtain that

c · p · log p < qt,

where c is a positive constant. We deduce that

c · log p > 312

by Proposition 1.3 for large enough n. Therefore, the proof is done.

3 Proof of the Theorem 1.11

Proof. There are infinitely many superabundant numbers by Proposition
1.4. Let n > 5040 be a large enough superabundant number. Let

∏k
i=1 q

ai
i

be the representation of this superabundant number n as the product of the
first k consecutive primes q1 < . . . < qk with the natural numbers a1 ≥ a2 ≥
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. . . ≥ ak ≥ 1 as exponents, since n must be a Hardy-Ramanujan integer by

Proposition 1.2. Let Pn be equal to
∏

q|Nr
6

qνq(n)+2−1

qνq(n)+2−q
for n > 5040, where

Nr =
∏r

i=1 qi is the largest primorial number of order r such that Nr
6 < q2k.

Suppose that Robin(n) fails and Pn ≥ Q, where Q =
1.2·(2− 1

8
)·(3− 1

3
)

(2− 1
219

)·(3− 1
312

)
≈

1.0000015809. So,
f(n) ≥ eγ · log log n.

We know that

f(n) = f(2ν2(n) · 3ν3(n)) · f( n

2ν2(n) · 3ν3(n)
)

< 3 · f( n

2ν2(n) · 3ν3(n)
)

= f(23 · 3 · 5) · f( n

2ν2(n) · 3ν3(n)
)

≤ f

(
219 · 312 · n · Nr

6

2ν2(n) · 3ν3(n)

)

= f

(
n · Nr

6

2ν2(n)−19 · 3ν3(n)−12

)

since Pn ≥ Q, qi
qi−1 >

q
ai+1
i −1

q
ai
i ·(qi−1)

= f(qaii ) and f(. . .) is multiplicative, where

f(23 · 3 · 5) = 3 = 2 · 32 > f(2ν2(n)) · f(3ν3(n)) = f(2ν2(n) · 3ν3(n)). This is true
because of

f(23 · 3 · 5) · f( n

2ν2(n) · 3ν3(n)
) ≤ f

(
219 · 312 · n · Nr

6

2ν2(n) · 3ν3(n)

)

is equivalent to say that

f(23 · 3 · 5)
f(219 · 312)

≤
∏
q|Nr

6

f(qνq(n)+1)

f(qνq(n))
.

Certainly, we know that
f(23 · 3 · 5)
f(219 · 312)

= Q

and ∏
q|Nr

6

f(qνq(n)+1)

f(qνq(n))
=
∏
q|Nr

6

qνq(n)+2 − 1

qνq(n)+2 − q
= Pn.

Consequently, that is true under the supposition that Pn ≥ Q. We have

f

(
n · Nr

6

2ν2(n)−19 · 3ν3(n)−12

)
< eγ · log log

(
n · Nr

6

2ν2(n)−19 · 3ν3(n)−12

)
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by Proposition 1.8. Therefore, we obtain that

eγ · log log

(
n · Nr

6

2ν2(n)−19 · 3ν3(n)−12

)
> eγ · log logn

which is the same as(
n · q2k

2ν2(n)−19 · 3ν3(n)−12

)
>

(
n · Nr

6

2ν2(n)−19 · 3ν3(n)−12

)
> n

using the inequality Nr
6 < q2k. However, we know that

2ν2(n)−19 > qk

and
3ν3(n)−12 > qk

by Lemma 1.10, due to n is large enough. So, we can see that necessarily,(
n · q2k

2ν2(n)−19 · 3ν3(n)−12

)
< n.

In this way, we obtain a contradiction under the assumption that Robin(n)

fails and Pn ≥ Q, whereQ =
1.2·(2− 1

8
)·(3− 1

3
)

(2− 1
219

)·(3− 1
312

)
≈ 1.0000015809. To sum up, the

study of this arbitrary large enough superabundant number n reveals that
Robin(n) holds whenever Pn ≥ Q. Accordingly, Robin(n) holds for all large
enough superabundant numbers n when Pn ≥ Q holds. This contradicts
the fact that there are infinitely many superabundant numbers n, such that
Robin(n) fails when the Riemann hypothesis is false according to Corollary
1.7. By reductio ad absurdum, we prove that the Riemann hypothesis is
true when Pn ≥ Q holds for all large enough superabundant numbers n. We
know that ∏

q|Nr
6

(qνq(n)+2 − 1) ≥ Q ·
∏
q|Nr

6

(qνq(n)+2 − q)

trivially holds for large enough superabundant numbers n since the left
hand side increases rapidly much more than the right hand side as long as
the superabundant numbers n get larger and larger in the inequality. In this
way, we show the Riemann hypothesis is true.

Acknowledgments

The author thanks Emmanuel (CEO of NataSquad) for the financial sup-
port.

6



References

[1] Leonidas Alaoglu and Paul Erdős. On Highly Composite and Sim-
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