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Text-to-image generation of Stable Di�usion models has achieved notable success due to its

remarkable generation ability. However, the repetitive denoising process is computationally

intensive during inference, which renders Di�usion models less suitable for real-world applications

that require low latency and scalability. Recent studies have employed post-training quantization

(PTQ) and quantization-aware training (QAT) methods to compress Di�usion models. Nevertheless,

prior research has often neglected to examine the consistency between results generated by

quantized models and those from �oating-point models. This consistency is crucial in �elds such as

content creation, design, and edge deployment, as it can signi�cantly enhance both e�ciency and

system stability for practitioners. To ensure that quantized models generate high-quality and

consistent images, we propose an e�cient quantization framework for Stable Di�usion models. Our

approach features a Serial-to-Parallel calibration pipeline that addresses the consistency of both the

calibration and inference processes, as well as ensuring training stability. Based on this pipeline, we

further introduce a mix-precision quantization strategy, multi-timestep activation quantization,

and time information precalculation techniques to ensure high-�delity generation in comparison to

�oating-point models.

Through extensive experiments with Stable Di�usion v1-4, v2-1, and XL 1.0, we have demonstrated

that our method outperforms the current state-of-the-art techniques when tested on prompts from

the COCO validation dataset and the Stable-Di�usion-Prompts dataset. Under W4A8 quantization

settings, our approach enhances both distribution similarity and visual similarity by 45% 60%.
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1. Introduction

Di�usion models have yielded remarkable achievements and demonstrated exceptional performance

across various generative tasks,[1][2][3][4][5][6]  particularly in the realm of text-to-image

generation[1][3][4]. Nonetheless, these models often entail signi�cant computational expenses,

primarily due to two factors. Firstly, within a Di�usion model, a UNet[7][8]  carries out a time-

consuming iterative sampling process to progressively denoise a random latent variable. Secondly, the

pursuit of superior image quality and higher resolutions has resulted in larger model sizes,

necessitating extensive time and memory resources. These challenges render Di�usion models (e.g.,

Stable Di�usion[3] and Stable Di�usion XL[9]) computationally demanding and di�cult to deploy in

real-world applications requiring low latency and scalability.

Recently, many researchers have investigated quantization strategies for compressing Di�usion

models[10][11][12][13][14][15], predominantly utilizing Post-Training Quantization (PTQ)[16][17]. PTQ

does not require retraining or �ne-tuning the network and therefore is more attractive than

Quantization-Aware Training (QAT)[18]  for large models. However, PTQ methods experience

substantial performance degradation at 4 bits and below. Furthermore, the quantization of large text-

to-image models, such as Stable Di�usion XL 1.0, can still require 1 day.

Meanwhile, another issue is that most existing research primarily concentrates on optimizing

quantized models for high-quality image generation, paying little attention to the consistency of

results produced by quantized and �oating-point models. In the context of content creation and

design, ensuring consistency in expected results is of paramount importance. It is imperative that

quantized models exhibit a high degree of similarity to the style and content of images generated by

�oating-point models. Otherwise, users will encounter signi�cant challenges in predicting and

controlling the �nal results, necessitating extensive debugging and modi�cation of cues, which will

inevitably impact their productivity and creative expression. Moreover, alterations in the style of

images generated by a quantized model will a�ect the performance of the downstream tasks[19]

[20] and the overall reliability of the system.

To address the aforementioned issues, we propose a novel Stable Di�usion quantization framework

that is speci�cally designed to achieve high �delity and e�ciency. We analyze the strengths and
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weaknesses of the existing pipeline for the joint optimization of the UNet. By leveraging their

advantages, we propose our Serial-to-Parallel pipeline, which ensures consistency in the generated

outputs while improving training stability. To further enhance �delity, several techniques are

introduced, including the preservation of temporal information, the utilization of multiple time-step

activation quantizers, and a Hessian-based mixed-precision strategy.

The quality of the generated results is evaluated in terms of both distributional and visual similarity.

In comparison to previous PTQ methods, our framework demonstrates superior generation

consistency in shorter training times across multiple Stable Di�usion models.

2. Related Work

2.1. Di�usion Model Acceleration

While Stable Di�usion models can generate high-quality samples, their slow generation speeds pose a

signi�cant challenge for large-scale applications. To tackle this problem, signi�cant e�orts have

focused on improving the e�ciency of the sampling process, which can be categorized into two

methods.

The �rst method involves designing advanced samplers for pre-trained models, such as analytical

trajectory estimation[21][22], implicit sampler[5][23][24][25], stochastic di�erential equations[6][26]

[27] and ordinary di�erential equations[28][29][30]. Although these methods can reduce the number of

sampling iterations required, the signi�cant parameter count and computational demands of Stable

Di�usion models limit their application on edge devices.

The second method involves retraining the model, such as di�usion scheme optimization[31][32][33]

[34], knowledge distillation[35][36], sample trajectory optimization[25][37], and noise scale

adjustment[38][39]. Though these techniques e�ectively speed up the sampling process, re-training a

Di�usion model is computationally intensive, especially for resource-constrained devices.

2.2. Di�usion Model quantization

Quantization is a widely used technique that aids in reducing memory usage and speeding up

computation. It is generally categorized into two types: QAT[40][41][42][43][44]  and PTQ[16][17][45][46]

[47]. E�cientDM[15] is representative of QAT work, it proposes a data-free distillation framework and
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applies a quantization-aware variant of the low-rank adapter. While QAT is time-consuming and

computationally heavy, recent studies focus on PTQ for Di�usion models, which does not require

�ne-tuning and only necessitates a small amount of unlabeled data for calibration. PTQ4DM[12] and

Q-di�usion[11] focus on sampling the noise of the �oating-point model across di�erent timesteps, Q-

di�usion further propose to split the activation of shortcut layers. PTQD[10]  disentangle the

quantization noise into its correlated and residual uncorrelated parts and correct them individually.

PCR[14]  progressively calibrates the activation quantizer considering the accumulated quantization

error across timesteps and selectively relaxing the bit-width for several of those timesteps. However,

these PTQ methods seldom consider the consistency of the generated output, and many of them are

not designed for new, large pre-trained text-to-image models, such as Stable Di�usion.

3. Preliminaries

3.1. Di�usion models

Di�usion models[2][5] gradually add Gaussian noise with a variance schedule     to real

image   for   times as sampling process, resulting in a sequence of noisy samples  .

In DDPMs[2], the sampling process is a Markov chain, which can be formulated as:

where  . Conversely, the denoising process removes noise from a sample from Gaussian

noise     to gradually generate high-�delity images. However, due to the unavailability of

the true reverse conditional distribution  , Di�usion models approximate it via variational

inference by learning a Gaussian distribution  , the    can

be derived by reparameterization trick as follows:

where   and   is a trainable model to predict noise. The variance   can be either

learned[39]  or �xed to a constant schedule[2]  . When it uses a constant schedule,    can be

expressed as:
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where  .

The formulas outlined in our research are based on the DDPM framework but can be easily adjusted for

other accelerated sampling techniques such as DDIM[5], PNDM[29], and Euler[48].

3.2. Model Quantization

Quantization[49] is a key technique in model compression. This method compresses neural networks

by reducing the number of bits used for model weights and activations. The quantization process can

be formulated as:

where   is the scaling factor,   is the zero-point, and   and   are the minimum and maximum

quantization values, respectively. Reversely, the dequantization process is formulated as:

We utilize uniform quantization in all our study experiments.

4. Method

As illustrated in Fig. 1, we present a novel quantization framework for large pre-trained text-to-

image di�usion models, including Stable Di�usion v1-4 and Stable Di�usion XL. We begin by

introducing a Serial-to-Parallel training pipeline that not only addresses the consistency between the

training and inference processes but also guarantees stability during training. Subsequently, several

techniques are integrated into the pipeline. Multi-timestep activation quantizer is set to separately

optimize the parameters associated with each timestep. Additionally, the time feature is precalculated

and the accurate projection information is saved for training and inference. Furthermore, we

implement a mixed-precision quantization strategy that assigns higher bit-width to sensitive layers

and lower bit-width to insensitive layers.

z ∼ N (0, I)

= clip(round( )+ z, , )wq
w

s
qmin qmax (4)

s z qmin qmax

= ( − z) × sŵ wq (5)
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Figure 1. Overview of our proposed quantization framework. (a) Dataset Generation: During the

inference of the �oating-point model, latent generated from various timesteps for each prompt are

randomly sampled. (b) Time information precalculation: The feature map of time projection layers is

precalculated for training and inference. Subsequently, the time embedding and projection layers are

removed from UNet. (c) Serial-to-Parallel training pipeline: A Hessian-based sensitive ranking is

assigned to each layer as well as di�erent bit-widths. At each iteration, latent from various timesteps

along with the corresponding prompts are selected from the dataset. The Loss function is calculated

between the output and the sensitive layers.

4.1. Serial-to-Parallel Training Pipeline

Previous works on jointly optimizing quantized models and distillation-based compression can be

roughly divided into two categories: (a) ’Serial’(e.g.[15]) and (b) ’Parallel’(e.g.[50][51]), as illustrated in

Fig. 2. The serial pipeline operates in a data-free manner,, requiring only a few prompts to generate

the latent of the �oating-point model. This latent is then used as input for the quantized model, which

is updated in a chronological sequence. In contrast, the parallel pipeline is more closely aligned with

the original Stable Di�usion training process. This approach relies on an image-text pair dataset,

where the image is processed through a Variational Autoencoder (VAE) to derive the initial latent. In
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each iteration, multiple timesteps are randomly sampled, and the latent is then augmented with

varying levels of Gaussian noise, as determined by the scheduler.

Figure 2. Comparision of ’Serial’ and ’Parallel’ training pipeline.

Both frameworks have their own advantages and disadvantages. As illustrated in Fig. 3, the theoretical

latent generated by adding Gaussian noise di�ers markedly from the actual latent range when

reasoning with the �oating-point model.

Consequently, it is more bene�cial to use the latent from the �oating-point model as input during the

distillation process. This approach enhances the consistency of the quantized model’s outputs in

comparison to those of the �oating-point model.

Figure 3. Di�erence in input latent range at each timestep with the same initial latent. (a) Gradually

adding Gaussian noise based on Eq. (1). (b) Step-by-step denoising during inference of �oating- point

Stable Di�usion v1-4.

( , t) ≠ ← N ( ; , I)μfp xt xt−1 xt αt
−−

√ xt−1 βt (6)
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Also, in Stable Di�usion models, where all timesteps share the same weight, it is more appropriate to

average the gradients across multiple timesteps rather than relying solely on their sequential order. As

demonstrated in Fig. 4, we have documented the changes in gradients for both serial and parallel

pipelines. It can be observed that the gradients remain relatively stable during parallel training,

whereas they exhibit periodic oscillations during serial training. Previous research[52][53]  have

indicated that Adam optimizer may sometimes sometimes underperform in the presence of periodic

oscillating gradients.

Figure 4. Box plot illustrating the gradient variations of the

’down_blocks.0.attentions.0.proj_in’ layer in the quantized Stable Di�usion v1-4

model during training.(a) represents the serial pipeline, and (b) represents the parallel

pipeline.

It can thus be concluded that the latent of the serial pipeline is more appropriate while the training

procedure of the parallel pipeline is more reasonable. Building on this analysis, we introduce our

method, termed ’Serial-to-Parallel’, which harnesses the strengths of both serial and parallel

pipelines. The advantages of di�erent pipelines are summarized in Table 1. Initially, the inference is

conducted with the �oating-point model, whereby the latent is randomly sampled from various

timesteps for each prompt. During the training process, at each iteration, the latent is sampled from

di�erent timesteps along with their corresponding prompts from the latent dataset. This strategy
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renders our framework data-free, relying solely on prompts, while simultaneously enhancing

generation consistency and ensuring training stability.

Pipeline Data-free Consistency Stability

Serial ✓ ✓ X

Parallel X X ✓

Ours ✓ ✓ ✓

Table 1. Comparison of our pipeline and previous pipeline.

4.2. Components For Higher Fidelity

Moreover, a variety of techniques are employed to guarantee the �delity of the generated results.

Accurate activation quantization

Previous studies on Di�usion models[12][11][54][55][56] have shown that the activation distribution at

di�erent timesteps varies greatly, posing a challenge for activation quantization. We adopt di�erent

activation quantization parameter sets for di�erent timesteps, which can be expressed as:

where   and   are the scaling factor and zero-point of activation quantization parameter for the  -th

layer at timestep  . The memory consumption of these parameters is negligible and does not in�uence

the inference speed. With regard to the inputs of di�erent time steps within the same batch, our

pipeline is capable of e�ciently optimizing the activation quantization parameters for these time

steps simultaneously.

Low memory time information precalculation

In a Stable Di�usion model, the time-step   is �rstly encoded by time-embedding layers, then passed

through time-projection layers in each Bottleneck block. The Time information    inserted into the

UNet is calculated as follows:
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We observe that the quantization of both the time embedding and time embedding projection layers of

the model has a signi�cant impact on the quality of the generated images. When the inference

con�guration is determined, the output of the time embedding module   is only related to timesteps,

and   is dependent only on  . Consequently,   is �nite and invariant. Therefore, we remove time-

embedding and time-projection from the model and save the  , which is directly input into the

Resnet blocks of the model. The memory usage and computational cost of   are much smaller than

the parameters of the time embedding module and the time embedding projection layers.

Mixed-Precision Quantization Strategy

Recent studies[55][50]  observe that compressing di�erent blocks in Di�usion models can lead to

di�erent image generation quality. However, quantizing a certain block, �ne-tuning, and then

evaluating the model, are computationally intensive and time-consuming. Moreover, the sensitivity

of each block is coarse-grained, which may lead to suboptimal compression. To address these issues,

we propose a mixed-precision quantization strategy to identify sensitive layers and assign di�erent

bit-width to di�erent layers based on their sensitivity.

Our objective is to evaluate the sensitivity   of each layer. We consider i-th layer (e.g. linear layer) of

the model with weight  , given dataset    comprising 

 samples.Speci�cally, to estimate  , the deviation in the loss function caused by    from original

value to zero can be formulated as :

where    is the Hessian matrix and    denotes the loss function. However, the formula cannot be

directly computed, since the computation of   on the model is impractical. By employing the Fisher

information matrix approximation[57], the computation of loss deviation can be rewritten as:

where the redundant term can be neglected. Finally, the mix-precision quantization is then conducted

based on the sensitivity ranking. We selected the top 5% of layers with the highest sensitivity as

sensitive layers, while the bottom 5% of layers are designated as insensitive layers. For A8

quantization, sensitive layers are set to A16, while insensitive layers are set to A4. For W4

et
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quantization, sensitive layers are set to W8. The detailed average bit-width will be displayed in the

experiment section.

4.3. Objective Function

We optimize quantized UNet   to mimic the output of the �oating-point UNet  . Given the latent 

  at timestep  , text embedding    from frozen text encoder, and

precalculated projection  , the output loss is de�ned as the mean squared error between the

quantized and �oating-point UNet outputs:

where   and   indicate the �oating-point UNet and the quantized UNet, respectively.

The loss function of the feature maps by the sensitive layers is added to ensure they receive more

attention:

where    and    indicate the �oating-point and quantized feature maps of the sensitive layer,

respectively.

The �nal loss function is: 

5. Experiments

5.1. Experimental Setup

Datasets. In this paper, we conduct experiments using two distinct datasets: COCO[58]  and Stable-

Di�usion-Prompts. We utilize prompts from the COCO training dataset to construct the latent dataset.

In terms of evaluation, the process is twofold. Following[14], �rstly 5,000 prompts are selected from

the COCO validation dataset, which has been extensively employed in previous studies. Secondly, an

additional 5,000 prompts from the Stable-Di�usion-Prompts dataset are used to assess the

generalization capabilities of our quantized model in di�erent prompt scenarios.

Metrics. We evaluate the generative results of the quantized model from the perspectives of

distributional similarity and visual similarity. For distributional similarity, we refer to the FID-to-

FP[14], which is the Fréchet Inception Distance between images generated by the quantized model and

ϵq ϵfp

{ . . . }xt1 xtn { . . . }t1 tn { . . . }p1 pn

ep

= E [∥ ( , , ) − ( , , ) ]Lout ϵfp x ...t1 tn p1...n ep ϵq x ...t1 tn p1...n ep ∥2
2 (11)

ϵfp ϵq

= E [∥ ( , , ) − ( , , ) ]Lsen f s
fp

x ...t1 tn p1...n ep f s
q x ...t1 tn p1...n ep ∥2

2 (12)

f s
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f s
q

L = +Lout Lsen
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�oating-point model. For visual similarity, we consider the commonly used metrics of SSIM[59],

LPIPS[60], and PSNR[61]. Additionally, we use CLIP score[62] to evaluate the matching degree between

images and prompts. The evaluation code is adopted from[63] and[64].

Baselines and implementation. We compare our proposed approach against advanced techniques: Q-

di�usion[11], PTQ4DM[12], and PCR[14]. Results are obtained from[14]  or reproduced. We employ the

Stable Di�usion v1-4 (resolution of 512x512), Stable Di�usion v2-1 (resolution of 512x512), and the

Stable Di�usion XL 1.0 (resolution of 768x768), both sourced from Hugging Face. We compare

exclusively with PCR[14] and align the quantization and generation settings with it. Except for special

declaration, the standard setup involves a 50-step PNDM sampling process for the Stable Di�usion

model and a 50-step Euler sampling process for the Stable Di�usion XL model, with both

con�gurations using a Classi�er-Free Guidance (CFG) scale of 7.5. All experiments are conducted

using a single NVIDIA A100.

5.2. Dataset Generation Analysis

First of all, we discussed the trade-o� of some crucial hyperparameters in the latent dataset

generation.

More prompts or more timesteps?

In the dataset generation process, we can randomly sample varying amounts of latent for each

prompt. For comparison, two datasets have been constructed. The �rst dataset comprises 4000

prompts, with 50 latent per prompt. The second consists of 20000 prompts, each prompt with just 1

latent. As demonstrated in Table 2, despite the �rst dataset having 10   more latent, it exhibits a

similar FID-to-FP. We can infer that a dataset with more prompts is more resistant to over�tting and

has a smaller size but with a longer generation time. Given the comparable outcomes of the two

strategies, users can select their sampling strategies based on their time requirements or storage

requirements.

×
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Methods Prompts Size Time FID-to-FP

50steps/prompt 4000 6G 1.8h 10.12

1steps/prompt 20000 0.6G 4h 10.14

Table 2. Comparison of di�erent sampling strategies for dataset generation.

Training hyperparameters

Since we only perform limited training iterations, the amount of prompts is crucial. A smaller dataset

requires less storage but can result in over�tting. In our experiments, the training iteration is �xed to

10000 and the batch size is �xed to 12 (resp. 4) for Stable Di�usion v1-4 and v2-1 (resp. Stable

Di�usion XL). Experiments are conducted on datasets of varying lengths for both sampling strategies.

As illustrated in Fig. 5, the challenge of over�tting is evident with smaller datasets. To avoid severe

over�tting, the default settings for Stable Di�usion v1-4 (resp. Stable Di�usion XL) are set at 6000

prompts (resp. 2000 prompts) with 50-step sampling and 40000 prompts (resp. 10000 prompts) with

1-step sampling. A summary of the training e�ciency comparison is provided in Table 3. It is evident

that our approach signi�cantly reduces training time compared to PTQ methods, especially for larger

models like Stable Di�usion XL.
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Methods
Time Cost

SD1.4 SDXL

PCR 13h 25h

Ours

Gen Data (Once for all)
(a) (b) (a) (b)

3h 7.5h 2.5h 5.5h

Train 4.5h 7.5h

Table 3. E�ciency comparison on Stable Di�usion v1-4 and Sta- ble Di�usion XL. (a) denotes

sampling 50 steps per prompt, and (b) denotes sampling 1 step per prompt

5.3. Main Results

For the following experiments, 1-step per prompt sampling strategy is selected. The quantization

results of Stable Di�usion v1-4 on the COCO and Stable-Di�usion-Prompts validation datasets are

presented in Table 4. For better comparison, we have additionally listed the results without mixed

precision. On the COCO dataset, our approach demonstrates a 40% reduction in FID-to-FP on W4A8

compared to PCR, highlighting the e�ectiveness of our proposed method. Furthermore, our approach

exhibits signi�cant improvements on the Stable-Di�usion-Prompts dataset, which illustrates the

generalizability of our approach across diverse prompt styles. Notably, our method still achieves

smaller FID-to-FP compared to PCR with smaller latent dataset, as shown in Fig. 5.

≈ ≈

≈ ≈

≈ ≈
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Figure 5. Comparison of Loss and FID-to-FP Curves under Di�erent Prompt Quantities.
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Table 4. 512   512 generation results on COCO and Stable-

Di�usion-Prompts for Stable Di�usion v1-4 and Stable Di�usion

v2-1.   means lower is better.   means higher is better.   denotes

reproduced results on our machine. * denotes mix-precision.

A visual comparison is provided in Fig. 6. Previous methods, when quantized to 4-bit, result in

noticeable style changes in the generated images compared to those produced by the �oating-point

model. Such changes include but are not limited to, alterations in scene layout and facial features, loss

of color and object, and the blending of multiple objects. In contrast, the images generated by our

method are consistently of high �delity.

×

↓ ↑ †
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Figure 6. Comparison of Loss and FID-to-FP Curves under Di�erent Prompt Quantities.

In the case of Stable Di�usion v2-1, due to the absence of results from PCR, we utilized its settings

from Stable Di�usion v1-4 to replicate outcomes. As illustrated in Table 4, our approach exhibits a

substantial superiority over PCR.

To further validate our method, we conduct experiments using Stable Di�usion XL to generate images

at a resolution of 768x768. The results, presented in Table 5, demonstrate superior performance on

both COCO and SD prompts. Moreover, as illustrated in Fig. 7, our method consistently produces high-

quality images that closely resemble those generated by �oating-point models. In comparison with

PCR[14], Our method achieves a signi�cant reduction in FID by up to 45%.

Figure 7. Stable Di�usion XL 768x768 image generation using COCO prompts and Stable-Di�usion-

Prompts.
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Table 5. 768 768 generation results on COCO and Stable-

Di�usion-Prompts validation datasets for Stable Di�usion XL. 

 means higher is better. * Denotes mix-precision.   means higher

is better.

In addition to the distribution similarity, the visual similarity results are summarized in Table 6. Our

method achieves signi�cantly better results in LPIPS, SSIM, and PSNR metrics, further demonstrating

that our approach can generate images that are highly consistent with those produced by the �oating-

point model.

×

↑ ↑
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Table 6. Visual comparison with PCR[14] under W4A8 quantiza-

tion setting. ↓ means lower is better, ↑ means higher is better. †

denotes reproduced results on our machine.

5.4. Ablation Study

An ablation study is conducted to analyze the impact of di�erent components. For clarity, we refer to

time-feature precalculation, multiple time-step activation, and mix-precision as ’Components’. The

serial-to-parallel pipeline modi�cation is denoted as ’pipeline’. The term ’Base’ refers to the original

serial pipeline as illustrated in Table 1.

The quantization results for Stable Di�usion v1-4, tested on COCO prompts using the W4A8

quantization setting, are detailed in Table 7. Each of the proposed components signi�cantly enhances

the �delity of the generated images. Notably, the Serial-to-Parallel pipeline exhibits the most
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pronounced e�ect, underscoring the essential role of multiple timesteps in achieving stable training.

Our method incorporates all these components e�ectively.

Method FID sFID LPIPS SSIM

FP32 0.00 0.00 0.00 1.00

Base 12.64 69.74 0.48 0.50

+ Components 11.48 68.81 0.45 0.52

+ Pipeline(Ours) 9.99 65.47 0.32 0.58

Table 7. Ablation results on the COCO validation prompts for Stable Di�usion v1-4 under W4A8

settings.

6. Conclusion

This research explores the application of quantization to Stable Di�usion models. In this paper, we

propose an e�cient quantization framework for Stable Di�usion models aiming for high generation

consistency. We introduce a Serial-to-Parallel pipeline which not only considers the consistency of

the training process and the inference process but also ensures the training stability. With the aid of

multi-timestep activation quantization, time information precalculation, and mix-precision

quantization strategy, high-�delity generation is guaranteed. Extensive experiments demonstrate

that our method generates high-�delity �gures within a shorter time and outperforms state-of-the-

art techniques.

Supplementary Material

7. Moule Sensitivity Details

We demonstrate the module sensitivity for Stable-di�usion-v1.4 and Stable-di�usion-XL-v1.0. The

results are shown in Fig. 8 and Fig. 9.

↓ ↓ ↓ ↑
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Figure 8. Layer sensitivity for Stable di�usion v1.4

Figure 9. Layer sensitivity for Stable di�usion XL

Moreover, we also list the 5% most sensitive layers and 5% insensitive layers in both models. As

mentioned in the paper, For A8 quantization, sensitive layers are set to A16, while insensitive layers

are set to A4. For W4 quantization, sensitive layers are set to W8.

7.1. Stable Di�usion v1-4

Sensitive layers

up_blocks.3.attentions.2.proj_in
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up_blocks.3.attentions.1.proj_in

up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_out.0

up_blocks.3.resnets.2.conv_shortcut

up_blocks.3.attentions.2.proj_out

up_blocks.3.attentions.0.proj_in

up_blocks.3.attentions.1.proj_out

up_blocks.3.resnets.1.conv_shortcut

up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_v

up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_out.0

down_blocks.0.attentions.0.proj_in

up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_out.0

up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_v

Insensitive layers

down_blocks.3.resnets.0.conv2

mid_block.resnets.1.conv2

mid_block.resnets.0.conv2

mid_block.resnets.1.conv1

down_blocks.3.resnets.1.conv2

down_blocks.3.resnets.0.conv1

mid_block.attentions.0.transformer_blocks.0.attn2.to_k

mid_block.resnets.0.conv1

down_blocks.3.resnets.1.conv1

up_blocks.0.resnets.0.conv1

mid_block.attentions.0.transformer_blocks.0.attn2.to_q

mid_block.attentions.0.transformer_blocks.0.attn1.to_q

mid_block.attentions.0.transformer_blocks.0.attn1.to_k
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7.2. Stable Di�usion XL

Sensitive layers

up_blocks.2.resnets.1.conv_shortcut

up_blocks.1.attentions.1.proj_in

up_blocks.1.attentions.0.proj_in

up_blocks.2.resnets.2.conv_shortcut

up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_out.0

up_blocks.1.attentions.2.proj_in

up_blocks.1.attentions.0.transformer_blocks.1.attn1.to_out.0

up_blocks.1.attentions.0.transformer_blocks.1.attn1.to_v

up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_v

up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_out.0

up_blocks.2.resnets.0.conv_shortcut

up_blocks.1.resnets.1.conv_shortcut

up_blocks.1.attentions.1.transformer_blocks.1.attn1.to_v

up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_v

down_blocks.1.resnets.0.conv_shortcut

up_blocks.1.resnets.2.conv_shortcut

up_blocks.1.attentions.0.proj_out

up_blocks.1.attentions.1.transformer_blocks.1.attn1.to_out.0

up_blocks.1.attentions.2.transformer_blocks.1.attn1.to_v

up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_out.0

up_blocks.1.attentions.1.proj_out

up_blocks.1.attentions.1.transformer_blocks.0.�.net.2

up_blocks.1.attentions.2.transformer_blocks.1.attn1.to_out.0

up_blocks.2.resnets.1.conv2

up_blocks.1.attentions.2.proj_out

up_blocks.2.resnets.0.conv2

up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_v

up_blocks.1.attentions.1.transformer_blocks.1.attn1.to_q
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down_blocks.0.resnets.0.conv2

up_blocks.1.attentions.0.transformer_blocks.0.�.net.2

up_blocks.1.attentions.1.transformer_blocks.1.attn1.to_k

up_blocks.1.resnets.0.conv_shortcut

up_blocks.2.resnets.1.conv1

down_blocks.1.attentions.0.proj_in

up_blocks.1.attentions.1.transformer_blocks.0.�.net.0.proj

up_blocks.1.attentions.1.transformer_blocks.1.�.net.0.proj

up_blocks.1.attentions.1.transformer_blocks.1.�.net.2

up_blocks.2.resnets.2.conv2

down_blocks.0.resnets.1.conv2

Insensitive layers

up_blocks.0.attentions.0.transformer_blocks.7.attn2.to_q

up_blocks.0.attentions.2.transformer_blocks.5.attn2.to_q

mid_block.attentions.0.transformer_blocks.4.attn2.to_k

mid_block.attentions.0.transformer_blocks.4.attn2.to_q

down_blocks.2.attentions.0.transformer_blocks.5.attn2.to_k

up_blocks.0.attentions.2.transformer_blocks.7.attn2.to_q

mid_block.attentions.0.transformer_blocks.5.attn2.to_k

down_blocks.2.attentions.1.transformer_blocks.9.attn2.to_k

mid_block.attentions.0.transformer_blocks.5.attn2.to_q

down_blocks.2.attentions.1.transformer_blocks.9.attn2.to_q

up_blocks.0.attentions.2.transformer_blocks.5.attn2.to_k

up_blocks.0.attentions.0.transformer_blocks.7.attn2.to_k

down_blocks.2.attentions.0.transformer_blocks.9.attn2.to_q

down_blocks.2.attentions.0.transformer_blocks.9.attn2.to_k

up_blocks.0.attentions.0.transformer_blocks.8.attn2.to_q

up_blocks.0.attentions.1.transformer_blocks.9.attn2.to_q

up_blocks.0.attentions.0.transformer_blocks.8.attn2.to_k

down_blocks.2.attentions.0.transformer_blocks.7.attn2.to_q
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down_blocks.2.attentions.0.transformer_blocks.7.attn2.to_k

up_blocks.0.attentions.1.transformer_blocks.9.attn2.to_k

down_blocks.2.attentions.0.transformer_blocks.8.attn2.to_k

up_blocks.0.attentions.2.transformer_blocks.7.attn2.to_k

up_blocks.0.attentions.2.transformer_blocks.8.attn2.to_q

mid_block.attentions.0.transformer_blocks.6.attn2.to_q

mid_block.attentions.0.transformer_blocks.6.attn2.to_k

up_blocks.0.attentions.2.transformer_blocks.8.attn2.to_k

up_blocks.0.attentions.1.transformer_blocks.8.attn2.to_q

down_blocks.2.attentions.0.transformer_blocks.8.attn2.to_q

down_blocks.2.attentions.0.transformer_blocks.6.attn2.to_k

up_blocks.0.attentions.1.transformer_blocks.8.attn2.to_k

mid_block.attentions.0.transformer_blocks.7.attn2.to_q

mid_block.attentions.0.transformer_blocks.7.attn2.to_k

down_blocks.2.attentions.0.transformer_blocks.6.attn2.to_q

up_blocks.0.attentions.2.transformer_blocks.6.attn2.to_q

up_blocks.0.attentions.2.transformer_blocks.6.attn2.to_k

up_blocks.0.attentions.0.transformer_blocks.9.attn2.to_q

up_blocks.0.attentions.0.transformer_blocks.9.attn2.to_k

up_blocks.0.attentions.2.transformer_blocks.9.attn2.to_k

up_blocks.0.attentions.2.transformer_blocks.9.attn2.to_q

8. Pipeline Details

The latent dataset creation process is described by Algorithm 1.
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9. Comparison On Other FID Metrics

We supplement the spatial Fréchet Inception Distance (sFID) results which better capture the spatial

relationships. Moreover, we provide the FID-to-FP scores based on the CLIP feature extractor (using

clip_vit_b_32 model). Results are shown in Table 8.

Methods FID-to-FP sFID-to-FP FID-to-FP(clip)

PCR 16.3 /14.2 72.7 2.57

Ours 10.0 65.4 0.85

Table 8. Comparison on 50 steps PNDM, W4A8, SD v1-4, coco prompt.   denotes reproduced results on

our machine.

↓ ↓ ↓

† † †

†
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10. Experiments With Fewer Sampling Steps

We validate our approach with fewer sampling steps. For Stable Di�usion v1-4, we consider PNDM

scheduler with 25 steps and UNIPCM schduler with 10 steps. While for Stable Di�usion XL v1.0, we

employ Euler scheduler with 30 steps. Results summarized in Table 9, Table 10, and Table 11

demonstrate that our method still generates high-consistency images under fewer steps.

Method FID-to-FP LPIPS SSIM PSNR

PCR 20.45 0.53 0.45 13.7

Ours 14.45 0.39 0.54 15.3

Table 9. Comparison on 25 steps PNDM, W4A8, SD v1-4, coco prompt.   denotes reproduced results on

our machine.

Method FID-to-FP FID-to-FP(clip) CLIP scpre

PCR 8.98 3.30 26.41

Ours 8.22 0.62 26.44

Table 10. Comparison on 10 steps UNIPCM, W4A8, SD v1-4, coco prompt.

Method FID-to-FP LPIPS SSIM  CLIPscore

Ours 7.33 0.27 0.73 +0.01

Table 11. Results on 30 steps Euler, W4A8, SD XL, coco prompt.

↓ ↓ ↑ ↑

† † † †

†

↓ ↓ ↑

↓ ↓ ↑ Δ ↑

qeios.com doi.org/10.32388/5B8TBL 27

https://www.qeios.com/
https://doi.org/10.32388/5B8TBL


11. More Visualized Results

We provide more visualized results in Fig. 10 and Fig. 11.

Figure 10. Stable Di�usion v1-4 512x512 generation using DDIM scheduler, 50 steps.

Figure 11. Comparison between the �oating-point model and quantized models, using PNDM schduler,

25 steps.

Notes

Shuaiting Li and Juncan Deng: Work done during an internship at vivo Mobile Communication.
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