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The origins of resting-state functional MRI (rsfMRI) signal �uctuations remain debated. Recent

evidence shows coupling between global cortical rsfMRI signals and cerebrospinal �uid in�ow in the

fourth ventricle, increasing during sleep and decreasing with Alzheimer’s disease (AD) progression,

potentially re�ecting brain clearance mechanisms. However, the existence of more complex brain-

ventricle coupling modes and their relationship to cognitive decline remains unexplored.

Analyzing 599 minimally-preprocessed rsfMRI scans from 163 elderly participants across the AD

spectrum, we identi�ed distinct brain-ventricle coupling modes that di�erentiate across groups and

correlate with cognitive scores. Beyond the known anti-phase coupling between global brain signals

and ventricles —more frequent in cognitively normal controls— we discovered additional modes

where speci�c brain areas temporarily align with ventricle signals. At the cortical level, these modes

form canonical resting-state networks, such as the Default Mode Network, which occurs less in AD

or the Frontoparietal Network, which correlates positively with memory scores.

The direct link between ventricle and brain signals challenges the common practice of removing CSF

components from rsfMRI analyses and questions the origin of cortical signal �uctuations forming

functional networks, which may re�ect region-speci�c �uid in�ow patterns. These �ndings provide

new insights into the relationship between brain clearance mechanisms and network dysfunction in

neurodegenerative diseases.
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1. Introduction

The neurodegeneration leading to Alzheimer’s disease (AD) is preceded by chemical alterations

detectable with high speci�city in cerebrospinal �uid and blood plasma long before the �rst

symptoms of cognitive decline[1][2][3]. The accumulation of toxic proteins such as amyloid-β (Aβ) and

tau[4][5]  has been linked with disruptions in clearance pathways, involving the �ow of the

cerebrospinal �uid (CSF) into the interstitial space and out of the brain[6][7][8][9]. Studies using

functional magnetic resonance imaging (fMRI) have shown that the in�ow of CSF in the 4th ventricle

is negatively correlated with the average fMRI signal in gray matter[10]. Although this brain-ventricle

coupling is particularly strong during deep sleep, it is also detected during wakefulness with resting-

state fMRI, and was recently found to be decreased with the progression of AD in fMRI data from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)[9][11].

The pulsations associated with glymphatic dynamics occur at ultra-slow frequencies falling in the

range typically associated with resting-state brain activity, i.e., below 0.1 Hz[12], although the link

between glymphatic dynamics and resting state activity - thought to indirectly re�ect neuronal

activity - remains underexplored. While recent studies in rodents provide evidence that

optogenetically-induced neuronal activity drives self-propagating waves of cerebrospinal �uid across

the brain parenchyma[13], it is unclear how these waves organize at the macroscale across the brain

and their relation with long range correlations - or functional connectivity - detected with fMRI[14][15]

[16]. Even if correlated Blood-Oxygenation-Level-Dependent (BOLD) responses in distant brain

regions are triggered by simultaneous increases in the metabolic demand of neurons, how neural

activity organizes speci�c phase relationships across the brain, particularly during rest, is an ongoing

subject of debate[17][18][19].

Most resting-state fMRI (rsfMRI) research focuses on signal �uctuations detected in cortical and

subcortical gray matter alone, reporting consistent modes of functional connectivity that appear

altered in distinct neurological disorders and psychiatric syndromes[20][21][22]. rsfMRI studies have

shown that AD and mild cognitive impairment (MCI) are associated with decreased connectivity

within the default mode network (DMN)—a network primarily composed of the dorsal medial
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prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), the precuneus and the angular

gyrus[23][24][25][26]. This decreased connectivity is particularly prominent between the posterior

(precuneus and PCC) and anterior regions, such as the ACC and mPFC[26][27][28][29]. Other studies

have also suggested the involvement of subcortical structures in the DMN, such as the amygdala,

anterior and mediodorsal thalamus, basal forebrain, nucleus accumbens, medial septal nucleus,

ventral tegmental area, dorsal raphe nucleus, dopaminergic nuclei, caudate nucleus, hypothalamus,

and cerebellum[30]. Some of these subcortical structures, including the basal forebrain, brainstem,

amygdala, and thalamus, are not directly part of the DMN but have been found to actively modulate its

activity and interplay with other networks[31][32][33]. Many of these regions are impaired in AD and

show reduced functional connectivity (FC) with the DMN, such as the hippocampus[34][35][36],

amygdala, thalamus, and cerebellar areas, which show reduced FC with DMN regions[37][38][39]. A

meta-analysis by Seoane et al.[30] revealed, in particular, a cluster covering the mediodorsal nucleus,

and a medial and posterior thalamic cluster covering the pulvinar complex. However, the contribution

of subcortical regions to the DMN is not yet fully understood[30], as some studies highlight the

importance of Crus I/II and lobule IX[40][41][42], while others focus on vermis X, lobule VIIIB, or the

dentate gyrus nucleus[40][42][43], and still others on the basal forebrain, caudate nucleus, nucleus

accumbens, and ventral tegmental area[44][45]. Although these studies focused on fMRI signals from

gray matter areas alone, all these subcortical anatomical structures are closely located around brain

ventricles where it is di�cult to dissociate the BOLD signal from additional non-neuronal

physiological components.

Alterations in resting-state fMRI are not limited to the DMN alone. AD patients also exhibit abnormal

connectivity in the Salience Network (SAL)[27][46], which is thought to play a central role in switching

between the DMN and the Central Executive Network (CEN)[47]. Although physiological structural and

functional impairments of the SAL are commonly observed in aging[48], the AD brain shows even

further reduced gray matter volume in several SAL regions, such as the dorsal ACC and mPFC, bilateral

frontoinsular cortices, and the dorsolateral prefrontal cortex. This reduction is thought to contribute

to a failure in e�ciently switching between the DMN and the CEN, which is also impaired in AD[49][50]

[51]. Only recently, the relation with CSF signals in the ventricles was explored. Han and

colleagues[11] reported that the anti-correlation between the average cortical fMR signal and the 4th

ventricle (termed “global BOLD-CSF coupling”) diminished signi�cantly with AD progression, and
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related with β-amyloid accumulation in the DMN[9]. This result aligns with previous �ndings showing

that global synchronization of gray matter fMRI signals was associated with better cognitive

performance in healthy elders, although the relation with ventricle signals was not explored[52].

In this study, we analyze the brain activity from ADNI2[53]  repository containing 599 rsfMRI

recordings from clinically-evaluated elderly individuals, categorized across the AD spectrum as early

Mild Cognitive Impairment (EMCI), late Mild Cognitive Impairment (LMCI), and AD, together with

healthy cognitively normal (CN) controls. These participants were also evaluated in relation to risk

factors that are believed to impact the progression of the disease[54]: years of education, social

isolation (assessed taking into account marital status and retirement status), hearing impairment,

age, sex as well as cognitive functioning (for the domains of memory, executive functions,

visuospatial abilities and language). Avoiding any assumption regarding the origin of the �uctuations

in fMRI signals, the raw data was only minimally preprocessed, without removing physiological

components. Given that the focus of this paper was to explore coupling modes in fMRI signal

�uctuations, irrespective of the mechanisms driving such �uctuations - which can not be adequately

determined in this dataset -, we avoid using the term BOLD-CSF coupling, as currently done in the

�eld, opting to use the term ‘brain-ventricle’ coupling, given that the only di�erentiating factor

between the fMRI signals is their anatomical location.

Taken overall, exploring the relationship between the dynamics captured with fMRI in brain ventricles

and resting-state activity captured in gray matter, also with fMRI, may reveal new insights into the

origin of ultra-slow oscillatory modes detected in the resting state, pointing to a role in preventing

neurodegeneration and supporting healthy cognitive function.

2. Results

2.1. Occupancy of phase coupling modes changes with AD progression

Our analysis - oblivious of fMRI signal origin or anatomical location - revealed a set of phase coupling

modes in fMRI signals that occurred recurrently over time and across scans, irrespective of the

participants’ condition. We explored the repertoire of modes obtained when clustering the data into a

varying number of clusters K and report in Figure 1 the modes obtained for K=4 clusters, which is

representative of the results obtained across the entire range of K explored (the impact of varying

from K will be described below).
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Figure 1. Phase coupling modes detected in all fMRI scans with K=4 and corresponding occupancy across

conditions. Phase coupling patterns were computed between v=1821 1cm brain voxels (covering both gray

matter, white matter and ventricles) for each instant of time for all the s=599 scans, irrespective of the

participant’s condition. The resulting 81707 phase coupling patterns (obtained as the leading eigenvectors

of the cosine of phase di�erences at each time point) were clustered into K=4 clusters. (a-d) Each of the 4

cluster centroids corresponds to a recurrent mode of phase coupling detected in the data, where voxels

colored with the same color vary in phase, and voxels in di�erent colors vary in anti-phase. Each coupling

mode is shown in sagittal (top), axial (middle), and coronal (bottom) equidistant slices. (a’-d’) The

proportion of time points during which a mode is detected, or Occupancy, was calculated for each scan and

compared across conditions. Error bars report the mean ± the standard error of the mean (SEM) across

scans in each condition. Statistical signi�cance was determined using unpaired t-tests with 10000

permutations. Considering multiple testing, red indicates pperm<0.05, which can be a false positive; green

corresponds to pperm<0.05/4 to consider the K=4 modes compared, and blue corresponds to

pperm<0.00015 correcting by all comparisons across the full repertoire of modes obtained with K from 2 to

20, indicating a strong chance of a true positive. (a’’-d’’) The phase coupling modes are rendered in 3D,
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showing in magenta the smaller subset of regions shifting by more than 90° from the rest of the brain

(green)

Visualizing the phase coupling modes obtained for K=4 in sagittal, axial and coronal slices (Figure 1 a-

d) reveals distinct patterns of fMRI signal phase relationships across the entire brain, involving brain

structures extending beyond gray matter, and with clear anti-phase relationship to the ventricles. The

modes are characterized by the way the phase of the fMRI signals is organized, such that all the voxels

colored in green covary together in phase (i.e., with a phase shift <90° with respect to the mean phase

orientation, while the voxels colored in magenta vary in anti-phase (i.e., with a phase shift >90°) with

respect to the mean of voxels colored in green.

The occupancy of each mode - i.e., the proportion of time instants in which a mode is detected during a

scan - was calculated for each scan, and compared across conditions. The 4 coupling modes detected

with K=4 varied signi�cantly in occupancy across the progression of AD and a summary of the

statistical analysis is reported in Figure 1 a’-d’.

The �rst phase coupling mode (Figure 1a) was detected around 61.7% of the time in fMRI scans in CN

(± 1.4%, mean ± standard error of the mean, SEM), and occurred signi�cantly less in all other 3

conditions, namely EMCI (55.6% ±1.3, pperm=0.0010), LMCI (54.4% ±1.4, pperm=0.00012), and AD

(54.7% ± 2.01, pperm=0.0020). Both EMCI, LMCI and AD exhibited similar occupancy of this mode,

pperm>0.25). This mode corresponds to an activity pattern where the fMRI signals in voxels colored in

magenta - revealing the 2 lateral ventricles and the 3rd and 4rth ventricles - vary with a phase shift

larger than 90° with respect to the rest of the brain.

The second coupling mode (Figure 1b) was found to decrease its occupancy only in AD, being detected

9.85 ± 0.67 of the time in fMRI scans from AD patients, while it occurred 14.1% ± 0.7 in CN, 14.5% ± 0.7

in EMCI, and 15.3% ± 0.8 in LMCI (pperm=0.000069 CN vs AD; pperm=0.00001 EMCI vs AD;

pperm=0.00000011 LMCI vs AD). In this mode, the voxels shifting in phase with respect to the rest of

the brain (colored in magenta) extend beyond the ventricles, revealing large brain areas where the

signals shift out of phase from the global fMRI signal (these brain areas are characterized in more

detail in the following sections).

The two other phase coupling modes obtained with K=4 were found to increase their occurrence over

the progression of AD. Mode 3 (Figure 1c), detected around 13.9% ± 0.8 of the time in CN, was found to
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increase to 15.8% ± 0.8 in EMCI (pperm=0.046 CN vs EMCI), to 16.3% ± 0.8 in LMCI (pperm= 0.02 CN vs

LMCI) and to 19.7% ± 1.2 in AD patients (pperm=0.000039 CN vs AD, pperm=0.0045 EMCI to AD and

pperm=0.012 LMCI to AD). Similarly to the other coupling modes, no di�erences were detected between

EMCI and LMCI (pperm>0.05).

The 4th coupling mode (Figure 1d) occurs around 15.7% ± 1.05 of the time in AD while only 10.2% ±

0.59 in CN, di�ering with pperm=0.000000013, the most signi�cant di�erence detected in this study.

Notably, this mode already di�ers between CN and EMCI (14.0% ± 0.63, pperm=0.0000093) and LMCI

with a similar occurrence of and 13.9% ± 0.73, signi�cantly di�ering from CN with and pperm=0.00012

respectively, indicating that it becomes altered in the �rst stages of the disease. Similarly to mode 2,

the patterns of phase coupling observed in modes 3 and 4 reveal distinct brain areas whose signals

shift out of phase from the global brain signal (green) and align with the activity inside the ventricles

(magenta).

2.2. Consistent phase shifted signals between brain and ventricles

We extended our analysis to the entire repertoire of phase coupling modes obtained when varying the

number of clusters K between K=2 to K=20, given that the process of determining the optimal number

of clusters in k-means clustering is inherently subjective, and di�erent evaluation metrics like

silhouette scores and Dunn’s index may suggest optimal values that might not capture the most

meaningful grouping for distinguishing across conditions. Despite the apparent complexity of

patterns detected, they all share one particular property: the ventricles are consistently found within

the group of voxels whose signals evolve in opposite direction from the majority of voxels in the brain

(rendered in magenta in Figure 2). Moreover, for all partitions into K clusters, the most frequently

detected cluster (c=1, �rst column in Figure 2) corresponds to the same mode of phase coupling where

the fMRI signals in the ventricles are shifted out of phase from the rest of the brain. In agreement with

previous studies, this ‘global brain vs. ventricles’ mode (Mode 1) was found to decrease in AD, but this

change becomes less signi�cant as the number of clusters increases and more complex brain-

ventricle coupling modes are included in the partition.
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Figure 2. Consistent Modes of Phase Coupling occurring di�erently in AD. Pyramid showing all the phase

coupling modes detected when varying the number of clusters (K) from 2 to 20, sorted from left to right

according to their average occupancy0, and highlighting the ones that occurred di�erently in AD vs CN.

Each mode is represented by the corresponding cluster centroid (c) shown in a transparent brain viewed

from the side, rendering in magenta all voxels whose fMRI signals are phase-shifted by more than 90°

relative to the rest of the brain. The number of asterisks on top of the modes represent the number of

decimal cases in p-values from permutation tests between occurrence in AD vs CN, with colors indicating

the level of statistical signi�cance: red for pperm< 0.05; green for pperm< 0.05/K accounting for K

independent comparisons; and blue for pperm<0.05/∑(k=2:k=25)=0.00015, correcting for both

independent and dependent comparisons across the full set of modes compared. Overall, our statistical

analysis revealed two modes occurring less in AD compared to CN (modes 1 and 2, indicated by yellow and

red shades), and two other modes with higher occupancy in AD compared to CN (modes 3 and 4, indicated

by blue and green shades). The empty black boxes indicate an additional mode of phase coupling decreased

in AD detected for K≥ 17.

Across the entire repertoire of 209 clusters obtained with K from 2 to 20, a substantial portion of these

(∼25%) was found to di�er signi�cantly in occupancy between CN and AD (surviving conservative
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corrections for multiple comparisons and with medium-to-large e�ect sizes, see Supplementary

Figure S1). Given that some of the clusters detected across K share strong spatial similarities, we

compared the cluster centroids di�erentiating between CN and AD and grouped them into 5 modes of

phase coupling according to their spatial similarity (Pearson’s r>0.85, Supplementary Figure S9). The

�rst 4 modes, highlighted with di�erent color shades in Figure 2, correspond to the modes detected

with K=4 reported in Figure 1. Apart from these 4 modes of phase coupling, a 5th mode, detected for

K≥17 (highlighted with a black box), was found to decrease signi�cantly in AD (this mode will be

explored in more detail in section 2.4. Brain-Ventricle coupling modes reveal Resting-state Networks).

Although the most signi�cant di�erences in this study were detected between the CN and AD groups,

our results also revealed signi�cant di�erences across the di�erent stages of cognitive decline (CN,

EMCI, LMCI, AD). In the transition from CN to EMCI, the most signi�cant di�erence is an increase in

the occupancy of the Phase Coupling Mode 4, (with pperm = 0.000009 for K=4, C=4) and a decrease in

the occupancy of the Phase Coupling Mode 1, (pperm = 0.00019 for K=20, C=2). As shown in

Supplementary Figures S1 to S8, the pair of conditions showing less between-group di�erences in

mode occurrence were EMCI and with LMCI, and statistical di�erences were detected only when

increasing the number of clusters to K=12, C=2 (cfr. Supplementary Figure S6), where one speci�c

coupling mode decreases signi�cantly from EMCI to LMCI, with pperm=0.0035. However, this

di�erence only survives Bonferroni correction at that speci�c clustering partition, becoming less

signi�cant for larger numbers of clusters (e.g., K =18, C=2; K=19, C=2; K=20, C=2). Between LMCI to

AD, the main di�erence is a decrease in Phase Coupling Mode 2 (most signi�cant for K=4, C=2, with

pperm= 0.0000001), and a decrease in Mode 5 detected for �ner grained partitions (most signi�cant

for K=17, C=6, pperm= 0.0000015). This reveals that di�erent conditions may re�ect changes in

di�erent patterns, which are optimally detected at di�erent levels of granularity, justifying the

extended analysis across a broad range of K.

2.3. Brain activity as a temporal sequence of phase coupling modes

Each fMRI volume recorded at each instant of time (with Time of Repetition, TR=3 seconds) is

assigned to one mode, such that brain activity over an entire scan can be represented as a temporal

sequence of modes. Figure 3a shows the fMRI signals over time, with colored shades indicating the

cluster assignment at each instant of time obtained with K=4 for a scan from a control participant. As

can be seen, modes 1 and 2 are more frequently detected than modes 3 and 4 during this scan.
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Figure 3. Occurrence of phase coupling modes over time. a. The fMRI signals recorded in 135 instants of

time, with a TR of 3 seconds, are plotted for the entire scan duration from a CN participant (preprocessed

signals with mean removed). The colored shades indicate the mode of phase coupling dominating in each

instant of time. b. Snapshots of fMRI volumes (showing equidistant axial slices from top to bottom)

obtained in time points assigned to Mode 2 (corresponding to the red arrow locations in panel a). c.

qeios.com doi.org/10.32388/5FR501 10

https://www.qeios.com/
https://doi.org/10.32388/5FR501


Snapshots of time points assigned to Mode 1. d. T1-weighted MPRAGE from the same subject normalized

to MNI space showing the same axial slices shown in panels b. and c.

As illustrated in Figure 3b, an occurrence of mode 2 corresponds to the periods of time when the fMRI

signals in speci�c voxels either co-increase above the mean (e.g. at t = 4, 41, 77, 104 and 117) or co-

decrease below the mean (t = 19, 50, 87, 100), while the fMRI signals in the other voxels vary in the

opposite direction. Although the instantaneous snapshots of fMRI signals are very noisy, the pattern

associated with Mode 2 is clearly visible, particularly around axial slice sl=54. In Figure 3c, we show

the fMRI signals during two occurrences of Mode 1, one at t = 35 when the brain signals are globally

above the mean (red) and another at t = 73 when the brain signals are globally below the mean (blue).

Although the ventricles are not clearly visible, a close inspection to slices sl=26 to sl=50 shows fMRI

signals with opposite sign in voxels overlapping with ventricle locations in the standard MNI brain

template shown in Figure 3d.

Given that the k-means clustering employs a winner-take-all approach, each time point is assigned to

a single cluster. However, this does not exclude the possibility that multiple coupling modes co-occur

in the brain simultaneously, explaining the complexity of patterns observed at the instantaneous level

(e.g. in Figure 3b, at time t=50, Mode 2 is visible in slice 50 while a di�erent mode of coupling is visible

in slice 30).

2.4. Brain-Ventricle coupling modes reveal Resting-state Networks

The brain areas shifting in phase by more than 90° relative to the rest of the brain form a functional

network with temporally correlated activity. To investigate how the modes of phase coupling relate

with canonical resting-state networks, we computed the overlap between the set of voxels shifting in

phase located in the cortex alone and the seven resting-state networks from a widely used

template[55], de�ned on the same cortical voxels. In Figure 4, we color the modes of phase coupling

exhibiting a strong overlap (Pearson’s correlation >0.35) with the 7 resting state networks used as

reference.
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Figure 4. Modes of phase coupling overlap with resting state networks. Pyramid showing all the phase

coupling modes detected with K from 2 to 20, highlighting in di�erent colors all voxels whose fMRI signals

are phase-shifted by more than 90° relative to the rest of the brain. The colors correspond to the resting-

state networks from the template de�ned in[55]: red for the Default Mode Network (DMN), purple for the

visual network, blue for the somatomotor network, green for the dorsal attention network, light purple for

the ventral attention network, light green for the limbic network, and yellow for the frontoparietal

network (FPN). Networks in gray do not correlate with any of the reference networks. The colored shades

(yellow for mode 1, red for mode 2, purple for mode 3, and green for mode 4) illustrate the variations of

these modes as the number of clusters increases.

Our analysis reveals that several of the phase coupling modes detected, when considering the cortical

voxels alone, share spatial similarities with known resting-state networks. For instance, Mode 2 is

found to overlap strongly with the DMN (red, r=0.60, shown in detail in Figure 5 top left). This mode

overlapping with the DMN is consistently detected for K ranging from 4 to 20. Notably, starting from

K=17, the clustering divides the DMN into two di�erent clusters (K17, C4 and C11; K18, C4 and C11; K19,

C4 and C9; K20, C4 and C10) and a new cluster appears, showing strong overlap with the lateral

Fronto-Parietal Network (red, r=0.60, Figure 5 bottom right).
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Figure 5. Regions of resting state networks align in phase with fMRI signals in the ventricles. The phase

coupling modes detected in the entire brain (considering all voxels within an MNI brain mask, irrespective

of their anatomical location) reveal modes of phase coupling between cortical voxels and ventricular
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voxels. The colored overlays on brain models indicate speci�c RSNs: visual (purple), somatomotor (blue),

dorsal attention (green), ventral attention (light purple), limbic (light green), frontoparietal (orange), and

default mode (red). The correlation bar plots show the spatial overlap of each mode with classical RSNs,

while the occupancy bar plots represent the frequency of each mode across conditions. Statistical

signi�cance was assessed using unpaired t-tests with 10,000 permutation tests, considering multiple

comparisons. Red lines indicate pperm < 0.05, which may represent false positives due to multiple testing.

Green corresponds to pperm < 0.05/20, and blue corresponds to pperm < 0.00015, adjusting for all

comparisons across the full range of modes with K values from 2 to 20, indicating a high likelihood of a

true positive.

Other modes were found to overlap with the di�erent RSNs used as reference. Although Mode 3

exhibits some overlap with the visual network, given that some voxels are in the Occipital cortex, the

correlation is lower because some voxels are in the frontal cortex (r=0.45, Figure 5 top middle). As K

increases to K=6, we detect a mode overlapping more closely with the visual network (r=0.67, Figure 5

bottom middle), although this mode did not di�er in occupancy between any of the 4 conditions.

Another mode detected with K=6 and not showing any signi�cant di�erence between conditions

overlaps with the Somatomotor network (r=0.57, Figure 5 bottom left).

Overlapping the cluster centroids with the AAL2 parcellation into 120 anatomical cortical and

subcortical gray matter areas, reveals that the voxels aligning in phase with the ventricle signals in

Mode 2 correspond to brain areas known to belong to the DMN, with most voxels in the Medial Frontal

Superior cortex, the Medial Orbitofrontal cortex, the Angular gyrus, the Anterior and Posterior

Cingulate cortex, and even some voxels in Inferior and Middle Temporal Cortex (all including left and

right parcels). A complete list of AAL2 brain areas for each mode can be found on Supplementary

Figure S10.

In Mode 3, most voxels are located in the occipital cortex (including the inferior, middle, and superior

regions), the cerebellum, and the frontal cortex (including the superior, middle, and inferior regions).

Additional voxels are found in the middle and inferior temporal gyri and the lateral occipitotemporal

gyrus, covering the lingual and fusiform gyri and the calcarine �ssure.

In Mode 4, most voxels aligning in phase with the ventricles are distributed in temporal regions (such

as the superior and middle temporal pole, middle and inferior temporal gyrus, and fusiform gyrus)

and parietal areas (including the superior parietal gyrus, inferior parietal lobule, angular gyrus, and
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precuneus). The cerebellum also contains a signi�cant number of voxels, spanning several lobules, as

well as Cerebellar Crus, and segments of the cerebellar Vermis. Additional voxels are present in frontal

regions, including the superior, middle, and inferior frontal gyri, the anterior, medial, and posterior

orbital cortex, and the gyrus rectus.

2.5. Comparisons with scores

We examined how the occupancy of the 4 functional coupling modes detected with K=4 correlated

with the di�erent ADNI cognitive composite cognitive scores as well as age and years of scholar

education. The Pearson’s correlation coe�cients (r) and their associated p-values are reported in

Table 1.

Table 1. Correlations between phase-coupling mode occupancy and 10 scores. Each variable’s correlation

with each mode is presented as a Pearson correlation coe�cient r alongside its associated p-value.

Asterisks indicate the level of statistical signi�cance, with * for p<0.05, ** for p<0.05/4, *** for

p<0.05/4/6 (Bonferroni-corrected).

While the occupancy of Mode 1 did not show any relations surviving corrections for multiple

comparisons, the occupancy of coupling Mode 2, which signi�cantly overlaps with the DMN at the

cortical level, was found to correlate positively with all four cognitive scores for Memory, Executive

Function, Language and Visuospatial abilities, while negatively correlating with Age. Conversely,
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Modes 3 and 4 did not show any relation with Age, but correlated negatively with Memory and

Executive function. Mode 4 also correlated negatively with Language scores.

Other binary metrics were compared, such as Marital Status, Retirement Status, Hearing Impairment

and Sex (table 2). We found a strong relationship between all Mode Occupancy and Sex

(pperm=0.00000016, pperm=0.00000014, pperm=0.0095 and pperm=0.00000013 respectively for Mode

1, 2, 3 and 4), and a signi�cant relationship between Mode 1 and Marital Status (pperm=0.0086).

Table 2. Mean occupancy (Pearson correlation coe�cient r) and standard error of the mean (STD), and

associated p-values from 10000 permutations of each binary metric: marital status (M= married, NM =

unmarried), retirement status (W= working, NW = not working), hearing impairment (NH = normal

hearing; HI = hearing impaired) and sex (M= male, F = Female), across the four coupling modes. Asterisks

indicate the level of statistical signi�cance, with * for p<0.05, and ** for p<0.05/4/4.

Extending the analysis beyond the selected partition into K=4 to the entire range of modes, reveals

interesting relationships, surviving the most stringent correction for multiple testing, setting a

signi�cance threshold of p=0.05/209/10=0.000024, given that 10 scores were compared for 209

modes (cyan line in Figure 6). This extended yet stringent analysis revealed that the Memory

Composite score correlates positively (r=0.21, p= 0.0000089) with the occurrence of the coupling
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mode obtained for K=19, c=8 which overlaps, at the cortical level, with the latero-Frontoparietal

network, usually referred to in the literature as the Executive Control Network. Another cluster

obtained for K=11, c=11, which corresponds to Coupling Mode 4, is the one that most strongly

correlates (negatively) with the Executive Function (r=-0.199, p=0.000024) composite score.

Figure 6. Statistical comparisons between mode occupancy and continuous variables. Pearson’s

correlation was computed between the occupancy of each mode obtained for the entire range of K explored

and the four ADNI composite cognitive scores as well as age and years of scholar education. top panel: p-

values are reported for the 6 di�erent variables considered where colors indicate the level of statistical

signi�cance, with red representing pperm < 0.05, green pperm < 0.05/K and blue representing the most

stringent FWER correction with pperm < 0.000024 accounting for all the comparisons made with the 10

continuous and binary scores. bottom panel: the cluster centroids (or modes) obtained for K=19, C=8;

K=11, C11; K=13, C=13; K=17, C=2, showing for each mode (left) a magenta patch representing all the voxels

shifting by more than 90° with respect to the main orientation of fMRI signals and (right) a patch

containing only the cortical voxels and colored according to the RSN to which they overlap the most.
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Our results also reveal that the set of asymmetric coupling modes detected rarely, yet consistently for

K≥12, occur more often in participants with low Visuospatial abilities (r=-0.299, p=0.00000047 for

K=13, c=13), also correlating negatively - although less signi�cantly - with Language, Executive

Function, Memory and years of scholar education. Although no cluster was found to correlate

signi�cantly with the Language composite score.

Finally, a mode of coupling where the left and right Insula align in phase with the signals in the

ventricles was found to correlate positively with age, detected consistently for K=10, 13-20, being

most signi�cant for K=17, c=2 (r=0.226, p-value=0.0000000232).

3. Discussion

This study provides novel insights into brain coupling dynamics by analyzing fMRI signals without

distinguishing between ventricular and cortical sources. Our approach reveals new perspectives on

neural connectivity and o�ers a unique lens through which to examine brain function. For the �rst

time, we present an analysis that bridges the gap between resting state dynamics and glymphatic

pulsations, converging two distinct �elds in neuroimaging research. While we observed highly

signi�cant alterations across AD progression, it is important to note that our �ndings are based on an

existing open-source database with inherent limitations. As such, the precise origin of the signals, the

mechanisms organizing them across space, and their speci�c role in brain function remain to be fully

elucidated. Nevertheless, this work lays the ground for a more comprehensive understanding of brain

dynamics that encompasses both neural and non-neural components of brain physiology.

Our innovative analysis approach identi�ed four main modes of brain-ventricle coupling that change

signi�cantly with AD progression. Two of these phase coupling modes decreased from CN to AD

(modes 1 and 2), while two others (modes 3 and 4) increased from CN to AD.

Notably, Phase coupling mode 1 exhibits phase synchronization across nearly the entire brain,

consistently with Han et al.[11], who explored the coupling between the global brain signal and CSF

�uid. In their study, the authors used a subset of the ADNI 2 dataset, focusing on subjects who had

both rsfMRI and PET measurements, as well as Mini-Mental State Examination (MMSE) scores. Our

study replicates their �ndings with a larger sample size (due to less stringent inclusion criteria) and,

consequently, greater statistical power.
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While the �rst coupling mode has already been subject of studies, the other three coupling modes have

a more complex con�guration. To our knowledge, the relationship between brain-ventricle coupling

at rest and RSNs has not yet been fully clari�ed. Despite the accumulating evidence demonstrating

their relation with healthy and pathological brain function, the physiological nature of ‘intrinsic

connectivity networks (ICNs)’, ‘resting-state networks (RSNs)’ or ‘functional gradients’ has not been

fully disambiguated[16][56]. While there have been attempts to propose that RSNs are associated with

physiological components of the brain, the �eld of fMRI research generally assumes that the fMRI

signals in the gray matter areas, once adequately preprocessed to remove physiological components,

are associated with the BOLD signal, directly associated with neurovascular coupling. Here, we do not

directly exclude this hypothesis, but avoid using the term BOLD to refer to fMRI signals from gray

matter, because we believe further studies are needed to determine whether resting-state signal

�uctuations are strictly BOLD-related or have a more direct relationship with the fMRI signals in the

ventricles, potentially linked with CSF in�ow/out�ow into the brain. Given the limitations of the

current dataset, our focus was on exploring the existence of coupling modes between distinct brain

structures extending beyond gray matter alone and the conventional BOLD paradigm, to better

understand the dynamical alterations in brain activity accompanying the progression of cognitive

decline.

3.1. Phase coupling di�erences across conditions

Four modes show signi�cant di�erences across the transition from CN to AD (Figure 7). Notably, the

transition from CN to EMCI is characterized by an increase in the limbic network (corresponding to

Coupling Phase Mode 3) and a decrease in Coupling Phase Mode 1, where the activity in the two lateral

ventricles and the fourth ventricle exhibits a phase shift greater than 90° relative to the rest of the

brain.

qeios.com doi.org/10.32388/5FR501 19

https://www.qeios.com/
https://doi.org/10.32388/5FR501


Figure 7. Functional coupling modes associated with transitions between AD progression stages. In the

transition from CN to EMCI, two modes signi�cantly di�er: the phase coupling mode that overlaps with

the limbic network, which corresponds to the Phase Coupling Mode 4, higher in EMCI than CN, and a

network that corresponds to the Phase Coupling Mode 1, higher in CN than EMCI. In the transition between

EMCI to LMCI a statistical di�erence was found in the Phase Coupling Mode 1. In the transition between

LMCI to AD other two networks are involved: the DMN, corresponding to the Phase Coupling Mode 2, and

the frontoparietal network, both higher in LMCI than AD. The color patches indicate all voxels whose fMRI

signals are phase-shifted by more than 90° relative to the rest of the brain. The colors correspond to the

classic “Yeo” networks[55]: red for the DMN, light green for the limbic network, and yellow for the

frontoparietal network. Voxels in gray represent regions that do not overlap with any of the previously

mentioned networks.

Previous research has already attempted to explore the transition from CN individuals to EMCI from

the perspective of RSNs. For instance, McKenna et al.[57]  used a subset of the ADNI dataset and

incorporated the presence of the Apolipoprotein E allele e4 (APOE e4) as a covariate. Consistent with

our �ndings, their study revealed disrupted connectivity in EMCI, particularly in key regions such as

the cingulate cortex and its connections with anterior and posterior MPFC. Moreover, they observed
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that this functional connectivity disruption is strongly linked to levels of the APOE e4 protein in CSF

samples[57]. Although there are di�erences in the methodologies between our study and theirs, it is

plausible that the results we have obtained could be associated with this genetic factor. However, a

comprehensive understanding of the role of genetics in the observed functional coupling alterations

requires further investigation.

Since we detected signi�cant alterations in functional coupling already at the EMCI stage, we cannot

exclude the possibility that these changes may occur even before the biochemical alterations become

evident. It remains unclear whether the biochemical alterations precede the disruptions in brain-

ventricle coupling, or if the latter occur at earlier stages. Further research is needed to clarify the

sequence of these events and whether the observed functional connectivity changes might serve as an

early indicator of AD progression, possibly even before the biochemical markers are detectable.

The transition between LMCI and AD is characterized by a fall in the occurrence of the DMN

(corresponding to the Coupling Phase Mode 4) and of the frontoparietal network (FPN).

Interestingly, the frontoparietal network, which is signi�cantly reduced in AD, shows a progressive

decrease from EMCI to LMCI and from LMCI to AD, with the signi�cance increasing in the latter

comparison. However, it appears with higher occurrence in the EMCI group compared to CN

(Supplementary �gure S3). The p-value does not survive any of our corrections for multiple

comparisons, suggesting that this �nding could likely be a false positive, potentially due to outliers in

the EMCI group.

Other attempts to assess functional brain connectivity alterations in di�erent stages of

neurodegeneration have been made, though with certain limitations, such as using a small subsample

of the ADNI2 database, which reduces the statistical power of the study[58]. In their study, they did not

�nd signi�cant di�erences in the DMN, except in the EMCI group. In contrast, our study identi�ed

di�erences in the DMN when comparing CN vs. AD, EMCI vs. AD, and LMCI vs. AD (see Supplementary

Figures S5, S7, S8).

Interestingly, regions within DMN are among the �rst areas where Aβ deposition begins, occurring

years before a formal AD diagnosis. In particular, it was seen that global glymphatic function—

measured by the coupling between global brain activity and the CSF �ow—has a strong association

with various Aβ and tau markers at the early stages of AD pathology. This suggests that resting-state

global brain activity may in�uence Aβ accumulation in the initial stages of the pathology, likely
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through its e�ect on glymphatic clearance. The spatial di�erentiation of this activity further

highlights how certain brain regions may be more vulnerable due to impaired glymphatic function[9].

Coupling Phase Mode 1, which decreases in AD compared to CN, reveals that the so-called “global

signal” is phase-shifted by more than 90° relative to the signal from the ventricles. While the

prevalence of the global signal was previously reported to relate with better cognitive

performance[52], our study is among the few that considered the ventricular voxels in the analysis.

Other abnormal connectivity changes have also been reported in AD. For instance, previous studies

have suggested disrupted functional integration within the cerebellum, DMN, FPN, visual network,

and sensorimotor network (SMN) in AD patients compared to controls[59]. Additionally, functional

connectivity in the FPN has been found to be signi�cantly reduced in AD compared to controls[50],

aligning with our �ndings. Notably, some studies consider the FPN as a synonym for the Central

Executive Network (CEN), while other studies consider the CEN as a part of the FPN but yet a di�erent

network. To date, there is no consensus on a uni�ed network taxonomy: some nomenclatures are

based on anatomical terminology (e.g., “frontoparietal”, “occipital”), while others refer to network

functionality (e.g., “central executive”, “salience”)[56].

In our study, notably, as the number of clusters increases, the “classical” RSNs begin to split into

distinct components (e.g., the DMN in K = 17, C = 4, and K = 17, C = 11; see Figure 4). Uddin et al.

[56] found that, with �ne ICA parcellations and an increasing number of clusters, the DMN begins to

divide into subsystems: frontal, ventral prefrontal, anterior and medial temporal lobe regions, which

further split into additional components as the clustering increases. These �ndings provide insights

into the complexity of the brain’s hierarchical organization, which remains an area of speculation.

Di�erent methodologies yield varying results, de�nitions, parcellations, and nomenclatures,

contributing to the challenge of consistently replicating the exact results across studies.

All the phase coupling modes we identi�ed included the ventricles, which exhibited a shift from the

rest of the brain. We cannot determine whether it is neuronal activity that alters ventricular activity

or, conversely, if ventricular pulsations are a�ecting neuronal activity. Given that the CSF also

propagates through the brain parenchyma, our �ndings do not exclude the possibility that the

ultraslow signals detected in gray matter with fMRI share the same biophysical origin as the signals

observed in the ventricles.
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Regardless of the direction of in�uence, the di�erences we found in the coupling modes are clear and

exhibit strong statistical power. Therefore, it is crucial for future research to investigate the origin of

this altered signal, as it may contribute to the altered functional connectivity patterns observed in

dementia, which may not necessarily originate from neuronal processes.

One important implication of this study is that it challenges the standard preprocessing applied to

fMRI data to remove CSF components, and could open up the possibility to re-analyse fMRI datasets.

This type of analysis can be applied to virtually all previously recorded ‘whole-brain’ fMRI scans, but

from which the physiological signals have been removed as sources of noise. This allows revisiting old

data using a novel analysis framework that could potentially reveal important insights into di�erent

neurological disorders and psychiatric syndromes in which the ventricles are altered.

3.2. Limitations

One limitation of this study is the inability to correlate neuroimaging measures with beta-amyloid

and tau levels, without sacri�cing statistical power due to a lack of available data for all the subjects in

the ADNI2 database that we used for the study. The assessments of these measures often preceded the

rs-fMRI scans by many years, making direct comparisons unreliable.

Another limitation of the study is given by the relatively poor temporal resolution of the fMRI scans.

The TR was 3 seconds, which means that we had a “snapshot” of the brain activities every three

seconds. As a result, we cannot rule out the possibility that more rapid �uctuations in brain signals

occurred between each snapshot, as suggested by recent research[10][12][14][60][61]. To address this,

future studies should consider the use of faster acquisition sequences in fMRI to better detect

temporal changes between brain states. A full understanding of these dynamics would require higher

temporal resolution, as studies in rats have shown that modes analogous to RSNs are associated with

oscillatory stationary waves[14]. This study found that FC modes exhibit an oscillatory dynamic,

meaning they switch between positive and negative representations of a pattern—essentially

operating in a “push-pull” manner with sustained periodicity, where the timing between positive and

negative phases remains constant. This aligns with the emerging wave �eld theory that RSNs

represent intrinsic resonant modes shaped by brain geometry[62], where these �uctuations appear to

contribute to regulating arousal levels[15].

Although our current fMRI methodology lacks the temporal resolution to directly capture these

temporal behaviors, the fact that we detected oscillatory brain-ventricle coupling dynamics suggests
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that ventricles may play a critical role in maintaining these oscillatory mechanisms. Moreover, studies

in rodents have already been shown a direct link between neuronal activity and CSF clearance[13]. Our

study demonstrates that neurons act as the primary organizers in the process of brain clearance, a

discovery that introduces a new theoretical framework for understanding the role of macroscopic

brain waves. Moreover, our �ndings open up new avenues for investigating how ventricles contribute

to the broader oscillatory dynamics of the brain, potentially serving as a stabilizing element within

these oscillatory patterns.

Another limitation of the study must also consider the impact of brain atrophy that occurs naturally

with aging, as many morphological and volumetric changes in the brain are well documented (cfr.

[63]  for a review). As such, although the MNI template is widely used in studies involving elderly

populations, its origin from the brains of young adults may lead to discrepancies in aligning and

interpreting brain structures during spatial normalization.

In our sample, the CN are slightly older than the AD patients, which is noteworthy because cognitive

decline typically increases with age. If the AD group had been older than the CN group, we could have

attributed the di�erences in RSNs to age-related decline. However, since the AD patients in our study

are younger yet still exhibit impaired RSN function, this suggests that the observed network

impairments are more likely related to the pathological progression of AD rather than simply to aging.

More importantly, it is now recognized that the clinical and biological presentations of AD do not

always coincide. For instance, pathological changes can occur without any clinical manifestation of

dementia or MCI[64][65]. For this reason, the International Working Group for New Research Criteria

for the Diagnosis of AD, in 2007, proposed new diagnostic criteria, allowing for a diagnosis of AD

based on both biological and clinical evidence[66][67]. However, the ADNI 2 inclusion criteria consider

only clinical evidence, without accounting for biological markers (for a detailed overview, refer to the

ADNI2 procedure manual). Therefore, future studies should use a dataset that includes biological

classi�cations for CN/MCI/AD.

Moreover, the ADNI dataset did not employ speci�c tools to assess social isolation nor, in general,

cognitive reserve. Further analyses utilizing more speci�c measures such as the UCLA Loneliness

questionnaire or the Cognitive Reserve Index questionnaire (CRIq) could improve the comprehension

of the resting state networks associated with these risk factors.
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4. Methods

4.1. Study population

The study included 163 unique subjects (32 AD patients, 53 EMCI, 40 LMCI and 38 healthy controls,

referred to as “cognitively normal”, CN) from the North American multicenter Alzheimer’s Disease

Neuroimaging Initiative (ADNI; www.loni.ucla.edu/ADNI). ADNI inclusion and exclusion criteria are

detailed at http://www.adni-info.org procedures manual. For our study, we included all the subjects

from the ADNI2 phase who had both structural and resting-state functional magnetic resonance

imaging (rsfMRI) scans. Demographics of the subjects can be found on Table 3.
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Table 3. Baseline characteristics of 163 unique subjects from ADNI used in this study. p-values are

derived from 2-sample t-tests for continuous measures, and Fisher’s exact test for categorical measures.

Statistically signi�cant di�erences (p < 0.05) in each comparison were marked using a bold format. AD =

Alzheimer disease participants; ADNI = Alzheimer’s Disease Neuroimaging Initiative; CN = cognitively

normal; DI = divorced; EMCI, early mild cognitive impairment; HI = hearing impairment; LMCI = late mild

cognitive impairment; M/F = male/female; MA = married; NH = normal hearing; NM = non married; NR =

not retired from work; R = retired from work; SD = standard deviation; W = widowed.

Each subject had an fMRI scan and behavioral data collected at the baseline visit, and then most of

them had follow-up scans and behavioral measurements at 3 months, 6 months, 1 year and 2 years

after the baseline visit, resulting in a total of 599 scans.

5.2. Years of education and social isolation

The progression into dementia is related to speci�c risk factors, amounting to 12 according to the

latest work by the Lancet Commission: lower education, hearing loss, traumatic brain injury,

hypertension, alcohol abuse, obesity, smoking, depression, social isolation, physical inactivity,

diabetes and air pollution[54]. Among these factors, lower education is the one that most relates to the

onset of dementia, with a relative risk of 1.6% and a prevalence of 40%[54]. On the other hand, social

isolation, while alone seems to account for 1.6% of relative risk and 28.1% prevalence, in older adults

seems to be correlated with diminished quality of life, reduced life satisfaction, and heightened

susceptibility to depression[68], which accounts for 1.9% of relative risk. Moreover, social isolation is

also ampli�ed by hearing impairment[69], which accounts for 1.9% of relative risk factors with a

prevalence of 31.7%, up to approximately 60% in individuals aged 65 and above[70].

We extracted the years of education from the ADNI database for determining how this risk factor

would impact functional connectivity metrics. This variable is often used as a proxy for cognitive

reserve in the literature[71].

Since the ADNI database does not include speci�c tests to measure social isolation, we score to marital

status, retirement status, presence of hearing impairment,. Speci�cally, information on marital and
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employment status was extracted from the ADNI Subject Demographics table (speci�cally, the

PTMARRY and PTNOTRT columns). The values for hearing impairment were obtained by comparing

reports in the Neurological Exam, Physical Exam, and Recent Medical History Details Log tables, as

done by Llano et al.[72].

Retirement status (PTWORK) was assessed, assigning a score of 1 to retired individuals and 0 to those

who are still employed. Second, marital status (PTMARRY) was considered, with a score of 1 given to

individuals who are unmarried, divorced, or widowed, and a score of 0 to those who are married.

Finally, hearing ability was included in the scale, where a score of 1 represents hearing loss and 0

represents normal hearing ability.

1. Is the subject unmarried/divorced/widowed? Yes (1), No (0)

2. Is the subject retired from work? Yes (1), No (0)

3. Does the subject experience hearing loss? Yes (1), No (0)

5.3. Phenotypic Harmonization Consortium cognitive scores

To examine relations between mode occupancy and cognitive performance, we used the ADNI

cognitive composite scores, which integrate multiple neuropsychological tests including the Mini

Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Alzheimer’s Disease

Assessment Scale – Cognitive Subscale (ADAS-Cog) into four cognitive domains:

Memory (ADNI-Mem): This composite score incorporates the Rey Auditory Verbal Learning Test

(RAVLT), ADAS-Cog Word Recall, Delayed Word Recall, Orientation, and Word Recognition, Logical

Memory (immediate and delayed) from the Wechsler Memory Scale-Revised (WMS-R), relevant

MMSE items (immediate recall, delayed recall, orientation), and MoCA delayed recall and

registration scores[73].

Executive Function (ADNI-EF): This composite includes the Clock Drawing Test (CDT) command

scores, Trail Making Test (TMT), Wechsler Adult Intelligence Scale-Revised (WAIS-R) Digit Span

(Forward and Backward) and Digit Symbol tasks, ADAS-Cog number cancellation, MMSE backward

spelling, and relevant MoCA executive function items[74].

Visuospatial Function (ADNI-VS): This composite incorporates CDT copy tasks, ADAS-Cog

Constructional Praxis, and MMSE drawing tasks[74].
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Language (ADNI-Lan): This composite includes Category Fluency (Animals/Vegetables), Boston

Naming Test (BNT), and language-related items from the MoCA, MMSE, and ADAS-Cog[74].

These composites were psychometrically optimized to maximize measurement precision while

minimizing �oor and ceiling e�ects. Higher scores indicate better cognitive performance across all

domains. These 4 composite scores were obtained at most but not all fMRI sessions, resulting in 447

fMRI scans with associated Memory score, 443 scans with Executive Function score, 465 scans with

Language score and 273 scans with Visuospatial score.

5.4. MRI acquisition parameters

All MRI data from the ADNI study were acquired using 3 Tesla MR scanners at various participating

sites, following the standardized ADNI2 protocol. The scanners used were from recent models

produced by General Electric (GE, Chicago, United States), Philips Medical Systems (Philips,

Amsterdam, Netherlands), and Siemens Medical Solutions (Siemens, Erlangen, Germany) (full

acquisition details can be found at http://adni.loni.usc.edu/methods/documents/mri-protocols/).

rsfMRI volumes were collected with an echo-planar image (EPI) sequence (�ip angle = 80°, spatial

resolution = 3 × 3 × 3 mm3, slice thickness = 3.3 mm; with TR/TE (repetition time / echo time) =

3000/30 ms. Each fMRI scan lasted 7 minutes. In addition we used an MPRAGE sequence TR/TE =

2300/3.1 ms, which was used for anatomical segmentation and template normalization.

5.5. fMRI preprocessing

The fMRI data preprocessing was conducted using CONN’s default pipeline for volume-based analyses

with direct normalization to MNI-space[75]. This pipeline encompasses �ve main steps:

1. Functional realignment and unwarping: Using SPM12’s realign & unwarp procedure[76], all

volumes were coregistered to the �rst (reference) volume using b-spline interpolation. This step

also compensates for susceptibility distortion-by-motion interactions by computing

deformation �eld derivatives relative to head movement.

2. Slice-timing correction: The functional data underwent temporal alignment using SPM12 with

sinc-interpolation.

3. Quality control: The pipeline identi�ed outliers by detecting global fMRI signal changes

exceeding 5 standard deviations and framewise displacement greater than 0.9mm.
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4. Spatial normalization: Both functional (rsfMRI) and structural (T1-weighted MPRAGE) images

were normalized to MNI space using SPM12’s uni�ed segmentation and normalization

algorithm[77]. This direct normalization process used a 180x216x180mm bounding box, with

2mm and 1mm isotropic voxels for functional and anatomical data respectively, implemented

with 4th order spline interpolation.

5. Spatial smoothing: The �nal step applied an 8mm FWHM Gaussian kernel to the functional data

to minimize inter-subject variability in functional and gyral anatomy.

The �rst 5 volumes in each rsfMRI scan were discarded to eliminate nonsteady-state e�ects that occur

while the signal reaches equilibrium at the start of each functional run. The voxel time-series were

then bandpass �ltered between 0.01-0.1 Hz to isolate the low-frequency �uctuations which have been

shown to correlate over long distances, while removing components from cardiac and respiratory

cycles (>0.1 Hz) and scanner drift (<0.01 Hz)[78][79].

5.6. fMRI data analysis

Given the particular goal of this study to analyze fMRI signals from the brain, irrespective of their

anatomical location, instead of averaging the fMRI signals into Regions-of-Interest (ROI) de�ned

from a parcellation template, we opted instead to perform the analysis considering each cubic voxel

inside the MNI brain mask of as a ROI. We considered the MNI template with 1 cubic centimeter voxels,

which contains N=1821 voxels covering the entire brain. The fMRI volumes from each subject - already

aligned in MNI space - were then downsampled from 2mm[3]  to 10mm[3] using linear interpolation,

and the N=1821 voxels inside the MNI brain mask were treated as brain parcels. This downsampling is

acceptable given that i) the signals were spatially smoothed with a gaussian kernel of 8mm in

preprocessing steps and ii) the high variability between subjects is reduced with larger voxels.

To investigate the existence of recurrent phase-coupling modes, and whether their occurrence varied

with AD progression, we applied the Leading Eigenvector Dynamics Analysis (LEiDA)

methodology[52]. Following the LEiDA algorithm, the Hilbert transform was applied to the 1xT time

series in each of the N=1821 voxel time series to extract the fMRI signal phase θ in each voxel. For each

time instant (between t=2 and t=T-1), we compute the 1xN leading eigenvector of the N × N matrix of

phase coherence (obtained using cos(θ(n, t) − θ(p, t), with n and p corresponding to all the N=1821

voxels). A total of 81707 ‘instantaneous’ leading eigenvectors was obtained from all the 599 scans,
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each representing how the fMRI signals in all the N voxels are organized in terms of phase

relationship at each instant of time.

These leading eigenvectors, which represent snapshots of phase relationships observed across scans

at all time points, were then categorized into K clusters through k-means clustering, using the cosine

distance to evaluate the cluster-to-centroid distance. Given the unpredictability of the precise number

of functional coupling modes, K was varied from 2 to 20, and the results were analyzed across the

explored partition range, ensuring result stability with 500 replicates of k-means[52][80].

The clustering assigns a single cluster/mode to each time point by selecting the closest centroid at

each time point. Using these cluster time courses, we calculated the Occupancy of each mode in each

scan, which is the number of time points assigned to a given state divided by the total number of time

points (TRs) in each scan. The occupancies of each mode were calculated for each scan across di�erent

partition models, with k ranging from 2 to 20[52].

5.7. Statistical analyses

To detect functional states whose probability of occurrence di�ers signi�cantly among groups, we

used a permutation-based paired t-test. This non-parametric test uses permutations of group labels

to estimate the null distribution, which is computed independently for each experimental condition. A

t-test is conducted for each of the 10,000 permutations to compare populations, resulting in a p-value

for each comparison.

We evaluated the statistical signi�cance of our results considering the FWER by plotting the p-values

against various signi�cance thresholds. Speci�cally, we used the standard threshold of α1 = 0.05

(shown in red), the Bonferroni corrected threshold α2 = 0.05/k (shown in green) to correct for the

number of independent hypotheses tested in each partition model (with α2 decreasing as k increases),

and α3 = 0.05/∑(k=2:k=25)=0,00015, which conservatively adjusts for all comparisons, whether

dependent or independent.

Given that multiple modes were compared, which increases the chances of false positives, we consider

only the modes whose di�erence between groups survives correction for multiple comparisons.

To detect functional states whose probability of occurrence correlates with the di�erent scores of

years of education and social isolation, we computed Pearson’s correlation between the probability of

occurrence in every scan with the corresponding score.
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5.8. Visualization of cluster centroids

The cluster centroids are 1xN vectors, where each of the N=1821 elements corresponds to a cubic

centimeter voxel in the brain. The cluster centroids obtained in 10mm[3] were resized to 2mm[3] using

a linear interpolation for better visualization. Using concepts from analytic geometry, the values in

each vector element refer to the projection (i.e., cosine of the phase) of each voxel into the leading

eigenvector, which de�nes the main orientation of all signal phases. The sign of the vector elements

depends on whether the phase di�erence (to the leading eigenvector) is smaller or larger than 90°. As

such, grouping all the voxels according to their sign in the cluster centroid, reveals two communities,

where the smallest community reveals the brain areas varying in anti-phase with the rest of the brain.

5.9. Overlap with RSNs

The overlap with seven reference intrinsic connectivity networks (ICNs)[55]  was then calculated for

each of the cluster centroids obtained. Given that the template of 7 ICNs is available in 2mm[3] MNI

space, the cluster centroids obtained in 10mm[3]  were resized to 2mm[3]  and the overlap was

calculated by computing the Pearson correlation between the binary masks of each network

(considering only cortical voxels) with the corresponding binary mask of the cluster centroids (setting

1 to all the voxels with positive value in the leading eigenvector and 0 otherwise). The cluster centroids

were colored with the original paper’s color scheme[55].
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