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The first step in investigating fractional difference maps, which do not have periodic points except
fixed points, is to find asymptotically periodic points and bifurcation points and draw asymptotic
bifurcation diagrams. Recently derived equations that allow calculations of asymptotically periodic
and bifurcation points contain coefficients defined as slowly converging infinite sums. In this paper
we derive analytic expressions for coefficients of the equations that allow calculations of

asymptotically periodic and bifurcation points in fractional difference maps.
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1. Introduction

Fractional difference maps are maps with power-law-like memory. They are used to model biological
(see, e.g. 1121y and socio-economic (see, e.g., [31[41) systems, memristors (see, e.g., L5-1), in image and
signal encryption (see, e.g. L6171y to control systems (see, e.g., (81091 etc.

It is known that continuous and discrete fractional systems may not have periodic solutions except
fixed points (see, for example, [101(11]y ' A1l bifurcation diagrams based on the finite time calculations
on single trajectories are only approximations depending on the initial conditions and the number of
iterations. But the asymptotically periodic solutions of fractional difference equations do exist, and
the equations for finding these points in generalized fractional maps were derived in [121[131114] These
equations contain coefficients which are slowly converging series. The numerical evaluation of these
series, in the case fractional and fractional difference maps, requires calculations of finite sums of

tens of thousands of terms and calculations of the Riemann ¢-function. It is also known, from the

stability analysis of the discrete fractional systems (see 23l), that, in the case of fractional difference
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maps, the corresponding series may be summable (see, e.g., [26111711181(191) The equations that define

bifurcation points of fractional difference maps [22] also depend on the same coefficients (sums).

In the following sections, after preliminaries in Section 2, we derive the analytic expressions for the
coefficients (sums) of the equations defining periodic points in the case of fractional difference maps

in Section 3. The concluding remarks are presented in Section 4.

2. Preliminaries

For 0 < a < 1, the generalized universal a.-family of maps is defined as (see [12][13]y.

Ty =T — iGO(mk)Ua(n — k), (1)
k=0

where G°(z) = h®Gk(z)/T(a), xo is the initial condition, A is the time step of the map, « is the order
of the map, Gk (z) is a nonlinear function depending on the parameter K, U,(n) = 0 for n < 0, and

Ua(n) € D°(N;). The space D'(N; ) is defined as (see [131)

Di(Ny) = {f CSCA(R) > N, YN, YDA = €, C € m} , 2)
k=1

=1
where A is a forward difference operator defined as
Af(n) = f(n+1) = f(n). 3)

In the case Caputo fractional difference maps, which are defined as solutions of the Caputo h-

difference equationmﬂﬁ]ﬁi1
OAg’*w(t) = —Gg(z(t+ (o — 1)h)), (4)
where ¢t € (hN),,, with the initial conditions
(0AFz)(0) =k, k=0,1,...,m—1, m = [a], (5)
the kernel U, (n) is the falling factorial function:
Uas(n) = (n+a—2)Y U, (1) = (a—1)@Y =D(a). (6)
The definition of the falling factorial ¢(®) is

T(t+1)

t(a)i—’
Ft+1—a)

t#-1,-2,-3.... (7)

The falling factorial is asymptotically a power function:
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I(t+1
1imL=1,aeR.
t=oo T'(t + 1 — o)t

The h-falling factorial té") is defined as

h h

I(r+1-a

r'(t+1 (a)
4@ _ha(h—)) _ha(i) LA T S

(9)

Majority of the introduced, investigated, and used in applications maps are Caputo fractional

difference maps.

The following equations define period-l points in generalized fractional maps of the orders

0<a< 102l
m—1
Zlimm+1 — LTlimm = Sl,lG'0 (mlim,m) + Z Sj+1,lGO (mlim,mfj)
=1
-1
+Zsj+1,lG0(-’Elim,mfj+l)v 0<m< l7
j=m
l
ZGO (mlim,j) = Ov
=1
where
00
Sitrg = Y [Uallk+j) = Ua(lk+j+1)], 0 < j < L.
k=0

It is easy to see that

l
Y Sj=0.
j=1

In the case of p-dimensional maps (1 < ¢ < p) (see [141])

n—1
Tin = Tip — ZG?(m,k,wz,k, vy Zpk)Ug (0 — E),
=0

the periodic points are defined as solutions of the system of (I — 1) x p equations:

m—1

_ 0
Tilm+l — Tilm = S5 j+11G (T 0m—j s T2 0 m—js -y Tplm—j)

J=0

-1

0
+ § Si7j+1,lGi (:El,l,m—j+l7 L2l m—j+ls-- - mp,l,m—j-&-l)’
Jj=m

O<m<l,0<i<p
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and additional p equations

l
D Gy wasgs- - Tpry) =0, 0 <i < p. (16)
j=1

Bifurcation points in the maps of the order 0 < o < 1 are defined by the Theorem 1 from [201:

Theorem 2.1. The T = 2*! — T = 2" bifurcation points, 2"~ values of yu-1,;;; with 0 < < 2*"! and
the value of the nonlinear parameter Ky.-1,,¢, of a fractional generalization of a nonlinear one-dimensional

map x,+1 = Fk (z,) written as the Volterra difference equations of convolution type

Tn = Lo — ZGO(mk)Ua(n - k)a (17)

where G°(z) = h®*Gk (z)/T(a), xo is the initial condition, h is the time step of the map, « is the order of

the map, Gk (z) = z — Fx(z),Uy(n) = 0forn < 0,U,(n) € }D)O(Nl), and

D'(Ni) = {f: ZAif(k)’ >N,
k=1
VN,NeN,iwﬂf(kn:C,Ce&}, (18)
k=1

are defined by the system of 2"~ + 1 equations

_ 0
Lon—1pifm+1 — Lon-lpifm = 51,2"*1G (m2"*1bif,m)

m—1

0
+D 85150 1G (@ 1pigm )

+ Z Sj+1,2n71 G° ($2"’1bif,mfj+2"*1)7 (19)

0<m< 2"t

2n—1

> G (g 15,) =0, (20)

j=1
det(A) =0, (21)
where

Sivre =Y _[Uallk+ j) = Ua(lk + j+1)],
k=0

0<j5<l!l, Siy=S8iu, 1€, (22)
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and the elements of the 2"~ -dimensional matrix A are
dG°(x) i+2n-1-1
Aij = —— i Smejrign+06i5,  (23)

Fon—1bifj

0<i,j<27 L,

3. Sums S, ; for [-cycles of fractional difference maps

The definition of S,; from 2l for fractional difference maps may be rewritten using the following

chain of transformations:

00 © [T(lk+p+a—2)
ol = lk a—3)e ) — (Ik a—2)@1)
Spi ;[( tpta-—3) (Ik+p+ )] = z;[ =
Tlk+p+a-1) © I‘lk+p+a—2)__ N . T'(lk+p+a—2)
T(ik +p) } 2; T(ik+p) I ); T(a— )I(lk + p)
N (lk+p+a—3) Ny l-«
—r(a)kz_%( AN BSOS S pe(, o) e

Using absolute convergence of series and the following identity (see [241)

ST RS RS

where w = ¢27/5 | for the even and odd periods we obtain

0 —a INE 2n—1 o ) o -
Sp,?n = I‘(a)(—l)i’ E ( 1 ) — L(fl),ﬁ E e*’tﬂ'](p* )/n(l + e'm]/n)
=0

2nj+p—1 2n =
T n—1
_ (Ol) p 21 @y ( —imj(p—1)/n z7r](1 a)/(2n) (2COS(7I'_]'/(2TL)))17&
2n =
+ei7rj(p71)/n e*iﬂj(lfa)/(Zn) (2 COS(?’[’j/(2n)))17Q):|
()27 = , l-a .
-— (-1)P|1+2 Z(COS(?T]/(QTL))) cos(mji(2p+ a —3)/(2n)) |, (26)
=1

N J 1-a
Sp,2n+1 = F(Oé)(—].) J:ZO(_]') ((2n+1)j+p— 1)

~ D(a)(~1) {g (2(2n fl;jip _ 1) - ]2 (2(2n+11);ip+ 2n>}

I'() dntl  imj(p-1) imj . dntl  imj(pi2n)
= — (-1 e ol (14e2nt1 ) ¢ — e 2+l (1
o ( e
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_imj_ [‘(a) 2n _imj(p-1) _ imj(pt2n)
+e2ntl 10‘} = — * (-1 { (e M+l — e 2n+l ) 1
) 2(2n + 1) ( ) JZ:{ (

irj imj(p—1) imj(p+2n) __inj
e 2nt+1 )l—a + (e 2n+l  — e 2n+l ) (]_ + e 2nt1 )1—(1}

I‘(a) 2n 7Tj -« jﬂ' _ imj(2p+2n—2+a)
—1)P3 2cos ——= sin— | e 2(2n+1)
o o) (S

T oamt1

= 2(2n+1
imj(2p+2n—2+a) 22—111‘\ a 2n . l1-a .
—e 2(2n+1) — #(_1)19 Z (COS L) sin E
2n+1 = 2(2n+1) 2
Cmi(2p+2n -2+ )
X sin
2(2n+1)
22T (a S (27 4+ 1)\ ,
— A(_UP (COSL) (—1y
2n +1 g 2(2n +1)

Cm(2j+1)(2p+2n -2+ )
X sin (27)
2(2n + 1)

Although in[24l Eq. (25) is proven for integer values of v € Ny, it is valid for any real values 0 < v < 1.

The calculated values of S 4 obtained when we used Eq. (26) for @ = 0.5, a = 0.99, and o = 0.999 are
the same as the corresponding values obtained using the expression which allows a fast calculation of
the series using tens of thousands of operations (see Eq. (35) in@l): 1.029970, 0.2571808, and

0.2507111.

4. Conclusion

In this paper we derived the analytic expressions for the coefficients of the equations that define
periodic points in fractional difference maps of the orders 0 < a < 1 (Egs. (26) and (27)). To draw
asymptotic bifurcation diagrams of fractional difference maps, researchers should solve
Egs. (10) and (11) in the case of maps of the orders 0 < a < 1, or Egs. (15) and (16) in the case of
multidimensional fractional maps. Calculations of coefficients (sums) S,,; of these equations should
be a part of the corresponding numerical algorithms. Using analytic expressions derived in this paper
instead of adding tens of thousands of terms based on Eq. (35) from22] will make calculations of the
coefficients thousands of times faster but will not change the time of the calculations of the periodic
and bifurcation points. It took a couple of months to calculate data for the bifurcation diagram Fig. 1
and Table 1 from{29l The most time-consuming task was to solve systems of large numbers of
algebraic equations and analyze their solutions. Using Egs. (26) and (27) will not significantly change

the situation.
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Based on the results of numerical simulations, in22l the authors made a conjecture that the
Feigenbaum number § [25] exists in fractional difference maps and has the same value as in regular

maps. Theorem 1 from{22] defining bifurcation points with analytic values of S,,; obtained in this

paper could be used to prove this conjecture.
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