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Abstract

New genomic technologies allow the apportionment of individuals’ genotyped DNA into admixture proportions traceable

to historically isolated biogeographic ancestry (BGA) groups such as African, European, and Amerindian. These BGA

admixture proportions have proven valuable in a wide range of recent epidemiological research. This paper performs a

meta-analysis of epidemiological studies and finds that they reveal consistent patterns of correlation between BGA

admixture proportions and socio-economic status (SES). Given this finding, the absence of BGA admixture proportions

data from almost all extant economic analysis of individuals’ susceptibility to high/low socioeconomic status is indirect

evidence for an omitted-variable bias in such analysis. Economic models of SES which do not consider BGA as a

possible explanatory variable may be unreliable due to the potential confounding associated with this omitted variable.

I. Introduction

With the completion of the Human Genome Project and subsequent advances in genetic research it is now possible to

apportion individuals’ genetic ancestry into admixture proportions traceable to historically isolated biogeographic ancestry

(BGA) groups such as African, European, and Amerindian. These BGA admixture proportions are a powerful research tool

in epidemiology; in a regression model with a health trait as dependent variable and with admixture proportions as

explanatory variables, the coefficients on the admixture proportions provide a useful measure of BGA-related genetic

variation associated with the health trait. In addition to admixture proportions, it is important to include other health-

relevant explanatory variables such as socio-economic status (SES) in the admixture regression. Admixture regression

has been used to study alcohol dependence[1], obesity[2], height[3], asthma risk[4], cardiovascular disease[5], sleep

depth[6], cigarette smoking behavior[7], metabolomics[8], cancer[9], and diabetes[10].

Since BGA admixture proportions and SES are both important explanatory variables in epidemiological studies using

admixture regression, it is standard statistical practice in such studies to estimate the correlation between them, as a
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monitoring device on regression model misspecification or under-identification. These correlation estimates linking BGA

admixture proportions and SES are only a tangential concern within epidemiology but have considerable interest for other

research fields. As shown below, meta-analysis shows consistent patterns in these estimated BGA-SES correlations

across studies. These correlation patterns have particular relevance to economic models concerned with explaining SES

outcomes across individuals; BGA admixture proportions are a potential omitted variable in such models.

The indirect methodology adopted in this paper for measuring the correlation/association between BGA and SES from

epidemiological studies is not coincidental. Research using genotyped DNA is limited by data cost and availability, and

there is potential political backlash against findings linking BGA to any socially desirable trait such as intelligence or SES.

The epidemiological studies meta-analyzed in this paper show clear and consistent links between BGA and SES but do so

tangentially; they perform the analysis because measuring the linkages between explanatory variables is a standard

monitor on regression model reliability. These studies are protected from the usual backlash against politically sensitive

findings since their examination of the linkage between BGA and SES is only undertaken as a peripheral check on

regression model stability and reliability. Nonetheless, examining a broad swath of these studies, the meta-analytic results

are informative despite not being the empirical focus in any of the individual studies.

European BGA admixture proportions showed a positive correlation with SES indicators, r = .16 (95% confidence interval:

.13 to .19), whereas both Amerindian and African BGA admixture proportions were negatively correlated at r = -.11 (95%

confidence interval: -.15 to -.06) and r = -.13 (95% confidence interval: -.17 to -.09), respectively. The same pattern

emerges in examining the sign of the estimated association (correlation or other non-correlation statistics such as ANOVA

or odds ratios giving directional association) across study samples: 58 out of 68 (85%) of the European BGA-SES

estimated associations are positive, 2 of the 68 (3%) are negative, and in the remaining 8 of the 68 samples (12%) the

results are indeterminate with no clear direction across measures of association within the study. In the case of

Amerindian BGA-SES, 65 of the 76 samples (86%) show a negative association, 4 samples (5%) show a positive

association, and the remaining 7 cases (9%) are indeterminate. For African BGA-SES associations, 63 of the 77 samples

(82%) show negative estimated associations, 10 samples (13%) show a positive association, and the remaining 4

samples (5%) are indeterminate. In all three cases the signed proportions are highly statistically significant against the null

hypothesis of no underlying association. The correlation estimates on samples restricted to African-American SIRE and to

Hispanic-American SIRE show essentially the same patterns as unrestricted samples.

Analyzing SES has long been a major research topic in economics, yet the recent successful use of BGA admixture

proportions in epidemiology has not been paralleled in economic modeling. As an example, the highly regarded research

center Opportunity Insights at Harvard University has produced 27 research papers (as of October 2024) using vast

quantities of data from a wide range of sources to examine numerous aspects of SES and its dynamic cross-sectional

distribution in the US. Not one of the Opportunity Insights papers utilizes BGA admixture proportions data. Admittedly,

admixture proportions data is relatively cumbersome and expensive since it requires DNA sampling and genotyping, and it

is also politically sensitive since it touches upon group genetic variation and racial SES gaps. Nonetheless, given that the

recent epidemiology research literature indirectly shows clear and consistent patterns of linkage between SES and BGA

admixture proportions, this potentially powerful new data source deserves careful consideration, or a detailed explanation

Qeios, CC-BY 4.0   ·   Article, November 18, 2024

Qeios ID: 5OULH0.2   ·   https://doi.org/10.32388/5OULH0.2 2/21

https://opportunityinsights.org/paper/


for its exclusion in the study of SES by economists. There is a serious risk of confounding if the BGA-SES correlation is

omitted in economic analysis of SES.

II. Data

A. Study identification, screening, and selection

We created a database of all published epidemiological studies for which associations between continental-level

biogeographic ancestry and socioeconomic outcomes were reported, limited to those using sample data exclusively from

the Americas. Each of the studies included in the meta-analysis incorporate admixture proportions from at least two of the

three biogeographic groups African, Amerindian, or European, a socioeconomic status index or a component of such an

index, and some statistical measurement of the association between them.

First, we incorporated data from Kirkegaard et al.[11], who conducted a systematic review of the literature up to 2016 using

searches of the PubMed, BIOSIS, and Google Scholar databases. Second, we conducted new searches in PubMed,

BIOSIS, and Google Scholar for dissertations or articles written in English, Spanish, or Portuguese and published

between 2017 and 2023. We scanned all BIOSIS and PubMed abstracts and scanned the first 1,500 Google Scholar

abstracts (ranked by relevance). The searches we employed were:

1. PubMed: (admixture OR genetic ancestry OR genomic OR biogeographical) AND (socioeconomic OR education OR

income OR SES OR poverty) AND (African OR European OR Amerindian)

2. BIOSIS: (admixture OR genetic ancestry OR genomic OR biogeographical) AND (socioeconomic OR education OR

income OR SES OR poverty) AND (African OR European OR Amerindian)

3. Google Scholar: (admixture OR genetic ancestry) AND (socioeconomic OR education OR income OR SES OR

poverty) AND (African OR European OR Amerindian OR Native American)

Note, since Google Scholar yielded many more hits than PubMed or BIOSIS, we slightly altered the terms to provide a

more tailored search.

Two of the authors reviewed the paper abstracts for discussion of genetic ancestry in relation to socioeconomic status and

coded them accordingly. Codings were compared and discussed until consensus was reached, prior to reading the full

articles. We adopted the following criteria for inclusion in the meta-analysis:

1. Samples were from the Americas

2. Samples had an average admixture % of greater than 3.125% (or 1/32nd) for at least two of the following three BGAs:

European, African, and Amerindian.

3. Directions of associations between European, African, or Amerindian genetic ancestry and socio-economic status were

reported. Biogeographic ancestries with limited representation in the sample, such as East Asian, South Asian and

Oceanian BGA, are not usually included in these epidemiological studies (particularly for Latin American samples)
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since they would provide very little explanatory power and produce large estimation variances. Throughout this paper

we analyze the associations of SES only with the three dominant BGAs in the Americas: European, African, and

Amerindian.

4. We only included samples which calculated admixture proportions based exclusively on autosomal data, in order to

avoid a potential bias arising from sex-biased migration patterns which were prevalent in Latin America. Autosomal-

based admixture proportion estimates avoid this bias and are recommended for accurately apportioning genetic

variance between populations[12].

5. The reported information was gathered at the individual rather than the group level (e.g., not state-level admixture and

state-level social outcomes).

6. Samples did not contain redundant material. In cases of redundant or partially redundant samples, we selected those

with the largest sample sizes and most complete information.

7. The study was published after the year 2000.

When relevant data was available, we copied or computed Pearson correlation coefficients where possible. When

directions of association were reported but statistics sufficient to compute correlations were not, we emailed the

corresponding authors for data. Thirty-one research teams were contacted for the 2023 round of data collection, whereas

26 teams were contacted for the 2016 round. We additionally scanned papers for references reporting associations and

then examined these referenced papers. Three out of 31 research teams provided data in the 2023 round, whereas 11

out of 26 authors previously provided data in the 2016 round.

We located a total of 404 studies, including 154 studies from the 2023 search. Out of the 404, seventeen studies were

omitted because they had redundant samples. Of the 387 remaining, 299 did not report associations between BGA and

socioeconomic indexes. Additionally, there were two studies that identified an association but did not specify the direction

of the relationships. The remaining 86 studies provided information on the direction of the association, or such information

was given upon request by the authors. Of these, 58 studies included information on the estimated correlation (or related

statistics that could be converted into estimated correlation). Figure 1 displays a flowchart of the study selection process.

Full details on the studies and reasons for exclusions are reported in[13].

Qeios, CC-BY 4.0   ·   Article, November 18, 2024

Qeios ID: 5OULH0.2   ·   https://doi.org/10.32388/5OULH0.2 4/21



Figure 1. Flowchart of study inclusion 
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All studies included the number of observations. In a few instances, owing to missing data, the same sample had different

sample sizes for correlation of BGA with different socioeconomic outcomes. In these instances, we recorded the sample

sizes specific to the outcome. Additionally, some studies provided data for multiple overlapping samples (e.g., African-

American, Hispanic, and White Americans vs. a combined sample). In these cases, we retained specific ethnic groups

instead of combined multi-ethnic samples and we retained the ethnic category most consistent across all samples.

Furthermore, many types of socioeconomic outcomes were reported; we condensed these into two very broad groups:

ones including general SES or composites of multiple indicators such as education, income, and assets, and ones

including only individual SES indicators. Prior to conducting the meta-analyses we visually examined the data for outliers.

There was a very clear outlier. Specifically, Klimentidis et al.[14] reported a correlation of r = -.59 between European

ancestry and income for a sample of fifteen socially self-identifying Native Americans in the US, while also reporting a

correlation of r = .12 between European ancestry and parental education for the same sample. Given the small sample

size this estimate is not implausible due to sample variation; as such we retained the data point.

B. Derivation of correlations from equivalent reported statistics

As is commonplace in meta-analytic studies, not all the surveyed studies directly reported the statistic of interest (Pearson

correlation coefficient which we denote r) but often reported an equivalent statistic or set of statistics. In this subsection we

describe the simple methods we use to infer estimated correlations in this situation.

A total of 157 of the estimates were Pearson correlation coefficients. Spearman correlation coefficients based on

comparative rankings were reported for 10 cases, all of which had sample sizes greater than 90. Koricheva et al.[15] show

that when the sample size is greater than 90, Spearman correlation and Pearson correlation are approximately equal

under broad circumstances; for this reason, we treated the Spearman estimates as equivalent to r. In 32 cases, authors

reported the R-squared from the univariate linear regression of SES on BGA. The square root of the reported R-squared

multiplied by the reported sign of the relationship is the estimated correlation. In 13 cases, the authors report the

standardized regression coefficient β̂ from the univariate regression of SES on BGA, which we take as equivalent to the

Pearson correlation coefficient. In one case, the authors report the sign of the estimated correlation and its p-value. We

invert the p-value by assuming a normal distribution was used for the p-value computation. In 57 cases, correlations were

not reported but the authors provide k-by-j tables of data frequencies jointly sorted into admixture proportion and SES

quantiles. The k-by-j frequencies were converted into r using the formula detailed in Fagerland et al.[16].

C. Directions of association

Reported statistics sufficient to compute the directions of associations between BGA admixture proportions and SES were

reported more frequently than those required to compute correlations. An analysis of directions can provide insight into

whether results are consistent with a null hypothesis, which in this context posits that a given ancestry component will not

be positively or negatively associated with socioeconomic outcomes. Such a method for analyzing the directions of

associations has been utilized in previous meta-analyses, exemplified by the work of Van der Meer and Tolsma[17]. For
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each sample, associations were categorized as either negative, null, or positive, where ‘null’ indicates either no

association or in the case of multiple measured associations using the same sample no majority finding of either positive

or negative associations. This categorization did not take into account either the statistical significance or the strength of

the association.

III. Empirical Findings

A. Descriptive statistics of the study samples

Most of the papers analyzed were published in recent years, with the median publication year being 2015, spanning from

2002 to 2024. Only a subset of the independent samples reported associations for all three BGAs; moreover, only a

subset of samples with directions of associations also had correlations or equivalents. As a result, the number of samples

with associations for a particular BGA is less than the total number of samples and the number of samples with

correlations is less than that with directions of associations. Table 1 displays the number of samples by BGA and

association type.

Relationship type Observation count type Any BGA European BGA Amerindian BGA African BGA

Correlations or equivalents

Samples 88 55 59 57

Estimates 270 82 94 94

Individuals 127463 94768 69157 97493

Directional Associations

Samples 117 68 76 77

Estimates 372 105 119 148

Individuals 149764 100668 83287 116065

Table 1. Number of samples, estimates and individual observations by biogeographic ancestry (BGA) and by

relationship type

Note: ‘Any BGA’ refers to the total sample not disaggregated by BGA. The number of samples and individuals for Any

BGA is larger than that for an individual BGA but smaller than the sum of the three BGAs because individual samples

could contain data for one to three BGAs. “Estimates” refers to the number of estimates computed; this number is greater

than the number of samples since in some instances the same sample had multiple estimates.

 

For the 88 independent samples that had correlations or equivalents and the 117 independent samples that had

directions, there were, respectively, a total of 270 and 372 estimates of the association between BGA and outcomes,

since multiple estimates were frequently reported for the same samples. The discrepancy between the number of

independent samples and the number of estimates arose because some samples contained data for multiple BGAs

and/or multiple SES indicators. Sixty out of the 117 independent samples that provided directional data, and 52 out of the

88 independent samples that provided correlations, originated from the US alone or in combination with Puerto Rico. The
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remaining samples came from Latin America, including (with the number of associations): Brazil (12), Puerto Rico (8),

Chile (8), Mexico (8), Colombia (7), Peru (5), and Uruguay (2), and any other Latin American country (7).

Many of the studies in our database provide BGA-SES correlations estimated exclusively using individuals who have

chosen the self-identified race or ethnicity (SIRE) category African American, and other studies exclusively for the SIRE

category Hispanic. All the SIRE-restricted estimates came from US-only data. Table 2 shows the breakdown of correlation

estimates by the SIRE category restrictions.

Sample selection criteria European BGA-SES correlations Amerindian BGA-SES correlations African BGA-SES correlations

African-American only 16 4 29

Hispanic-American only 20 36 16

Non-exclusive 46 54 49

Table 2. Number of correlation estimates with self-identified race and ethnicity (SIRE) exclusion criteria in sampling and with

non-exclusive sampling

Note: The table shows the number of correlations from samples restricted to self-identified African-Americans (first row),

self-identified Hispanic-Americans (second row), and all other samples (third row). All the correlations in the first two rows

are from US-only samples.

 

The studies included a diverse array of SES indicator variables, which we grouped into 13 broader categories shown in

Table 3. These categories mostly included measures of personal education, income, or household assets. Moreover,

several studies included data on parental SES. Given that a large majority of children are biological children, their

admixture usually reflects the mean admixture of their parents. Thus, associations between child ancestry and parental

SES can be seen as reflecting those between parental ancestry and SES. Additionally, a sizable number of associations

were based on neighborhood socioeconomic status instead of individual SES.

Table 3. Number of correlation/association estimates for individual SES measures
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 Correlations or equivalents Directions of association

Biographic ancestry /SES
measure

European BGA Amerindian BGA African BGA European BGA Amerindian BGA African BGA

Education 33 41 34 40 47 47

Income 13 18 16 19 22 26

General SES w/Education 12 11 15 13 18 18

Neighborhood SES 8 6 10 12 9 24

Assets 8 9 8 8 9 13

Parental education 4 1 4 7 2 7

General SES, no Education 1 4 0 2 5 1

Occupation 0 0 0 1 3 3

Occupation & income 2 2 2 2 2 3

Health insurance 1 1 2 1 1 3

General SES w/Education 0 1 1 0 1 1

Parental income 0 0 2 0 0 2

Other SES 0 0 0 0 0 1

Total 82 94 94 105 119 148

Note: For each of the thirteen SES measures used across the collection of studies, the table shows the number of

correlation estimates and direction of association estimates that use that particular SES measure.

 

Table 4 provides some descriptive statistics of the estimated correlations and Figure 2 shows a histogram color-coded by

biogeographic ancestry. The estimated correlations were mostly in the range (-.25, .30) with a notable tilt by biogeographic

ancestry, European BGA with an average positive correlation and both Amerindian and African BGA with an average

negative correlation; this tilt will be explored more fully in the next subsection.

Biogeographic
Ancestry

Number of
Estimates

Mean Median Max Min Standard Deviation 10th centile 90th centile

European BGA 82 .15 .15 .50 -.59 .14 .03 .30

Amerindian BGA 94 -.11 -.10 .23 -.52 .12 -.25 .00

African BGA 94 -.12 -.12 .22 -.52 .11 -.24 .03

Table 4. Descriptive statistics for estimated correlations (not aggregated within samples)

Note: The table shows descriptive statistics for the full set of correlations. The statistics are not adjusted for the presence

of non-independent estimation error across correlations from the same sample.
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Figure 2. Histogram for the estimated correlations (prior to aggregation within samples)

B. Meta-analysis of correlations and directional associations between BGA and SES

We run the meta-analyses separately for each of the three ancestries. For a given BGA, let ri,   i = 1, …, M denote our

database of M correlation estimates linking the BGA admixture proportion and SES measure. We transform the estimated

correlations into Fisher’s Z-statistics: Zi =

1
2 ln

1+ ri
1− ri  to improve the small sample properties of our estimator. We use a

random effects model, treating the true Zi as random across studies and across multiple estimates within studies for those

studies which have multiple estimates. We use the correlated and hierarchical effects (CHE) model[18] to account for the

fact that estimation errors are correlated within studies with multiple estimates. Letting 
¯
Z denote the expected value of Zi

 for all i, the CHE model assumes:

Zi =
¯
Z + φi + ωj + εi

where φi is the estimate-specific random effect, ωj is the study-specific random effect associated with estimate i, and εi is

the sample estimation error for this correlation estimate. The index j = 1, …, K runs over the set of samples, some of which

have more than one estimate (by estimating the correlation between BGA and several SES measures on the same

sample). The CHE model makes the restrictive assumption that the correlation (ρ) between multiple estimation errors

within a common sample has a known constant value. We set this correlation to ρ = .4 (note that the correlation is only

used for determining point estimates, not for finding standard errors of these estimates; see below). The CHE model is

( )
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estimated by restricted maximum likelihood (REML) as recommended by Pustejovsky[19] and Harrer et al.[20]. See the

Technical Appendix for detailed discussion of the model. As a robustness check we also estimated the model using ρ = .8

and found similar results; these supplementary results are shown in Supplementary Materials B.

In order to improve the generality of the restrictive correlation structure of CHE, we enhance the CHE model with the

sandwich-estimator-based Robust Variance Estimation (RVE) developed by Pustejovsky and Tipton[18]. This CHE-RVE

model uses the simple correlation structure of CHE to solve the likelihood maximization problem, but then computes

consistent standard errors of the estimated parameters under much more general conditions on the dependency structure

of the within-study estimation errors. See the Technical Appendix or Pustejovsky and Tipton[18] for a discussion of the

CHE-RVE-REML estimation methodology.

The estimation results for each of the three BGAs are shown in Table 5, along with 95% confidence intervals for 
¯
Z.  In the

table we also invert 
¯
Z to re-state it in units of correlation, that is 

(exp
¯
Z−

1
2 −1)

(exp
¯
Z−

1
2 +1)

. The results in this table are strongly

supportive of a nonzero correlation between BGA and SES for each of the three BGAs. Forest plots and funnel graphs of

the data are provided in Supplementary Materials B.

Biogeographic
ancestry

Estimated 
¯
Z

95% confidence interval

for 
¯
Z

P-value for 
¯
Z = 0

Implied correlation

from 
¯
Z

95% confidence interval for implied
correlation

European BGA .161 [.129, .192] < .001 .160 [.128, .190]

Amerindian BGA -.107 [-.145, -.069] < .001 -.107 [-.144, -.069]

African BGA -.129 [-.161, -.097] < .001 -.128 [-.160, -.097]

Table 5. Estimated average correlations between socioeconomic status measures and biogeographic ancestries

Note: For each biogeographic ancestry group (European, Amerindian, and African) the correlated hierarchical errors

model with robust variance estimation is used to estimate the mean Fisher’s Z (mean transformed correlation) across all

correlation estimates. The table also shows the mean Fisher’s Z and its confidence interval reverse-transformed into

correlations.

 

The average correlation estimates in Table 5 are not large, but Kirkegaard[21] demonstrated that very small correlations

between BGA and SES can still reflect substantial ancestry effects. For instance, among Chileans, the correlation between

European BGA and SES was r = .13 (N = 1805), but the unstandardized regression slope from 0% to 100% European

ancestry was b = 0.88. Fuerst et al.[22] also observed this phenomenon. This occurs because restricted ancestry ranges

lead to attenuated correlations and because bivariate correlations treat BGA and SES associations without a reference

BGA category. Thus, our meta-analytic correlations between BGA and SES are consistent with substantial ancestry

( )
( )
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effects.

As a non-parametric alternative to the meta-analysis of correlations, and to increase the data coverage to include samples

where it was not possible to recover a correlation coefficient, we also examine directionally-assigned associations

between each BGA and SES. As noted above, the associations found in each sample have been categorized as negative,

positive or null. The null category covers all cases where either an individual sample had a measured association of zero

or where an individual sample had multiple measures of association and there were an equal number of positive and

negative directions (such as having two positive and two negative associations). To convert this trinomial count variable

into a binomial test, we use the cautious approach of assigning the null cases to whichever category (positive or negative)

has a lower sample proportion and then testing whether the other category has a sample binomial proportion significantly

greater than 0.5, thereby biasing the results against rejecting the null hypothesis of no association. This cautious

approach lowers the power to reject the null hypothesis but in practice has no impact since we are easily able to reject the

null for all three BGA categories.

The results of the association direction analyses are presented in Table 6. For European ancestry, approximately 85% of

associations were positive, contrasting with only 3% negative. Similarly, Amerindian ancestry showed 5% positive

associations and 86% negative associations, while African ancestry displayed 13% positive associations and 82%

negative associations. These highly significant binomial tests indicate deviations from the null hypothesis for all three

ancestries.

Biogeographic
ancestry

Number of individuals in
sample

Number of directional
associations

%
positive

%
negative

%
null

P-value from binomial test of no
association

European BGA 100668 68 85.3% 2.9% 18.8% 2.4×10−9

Amerindian BGA 83287 76 5.3% 85.5% 9.2% 1.8×10−08

African BGA 116065 77 13.0% 81.8% 5.2% 1.4×10−0

Table 6. Meta-analytic results for directions of associations between biogeographic ancestries and socioeconomic outcomes

Note: For each biogeographic ancestry group (European, Amerindian, and African) each sample is assigned an

association direction of positive, negative or null between that ancestry component and socioeconomic status measure(s).

The p-value tests whether the percent positive or negative (whichever is larger) is significantly greater than 50% using a

binomial test.

C. Moderator analysis with a mixed-effects model

In this subsection we re-estimate the CHE-RVE model of BGA-SES correlations allowing a conditional expected value 
¯
Z

 to depend upon a moderator. This is a mixed effects model; see Harrer et al.[20] or the Technical Appendix for details.

First, we use a moderator defining two regional categories: estimates from US data versus those using data from outside

the US. The rationale for this moderator is that populations in the US are often relatively recent migrants in the case of

Hispanics, or, in the case of White and African-Americans, they do not have as extensive and pervasive a history of
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exogamy as is found among many Latin American populations. These factors may affect the correlations between BGA

and socioeconomic outcomes. The countries for each sample were recorded. For a couple of samples, individuals came

from multiple Latin American countries. For one sample, they came from both the US and the territory of Puerto Rico. We

coded “region” as “US” if the sample was either from the US or from both the US and Puerto Rico. The samples were

coded as “not US” in all other cases. Since we have one sample from Trinidad & Tobago and one from Dominica, “not US”

is not identical to “Latin American”. The results for this analysis are shown in Table 7. There is little discernable difference

between the correlation estimates in the US versus non-US subsamples; the same highly significant pattern of positive

correlation for European BGA-SES and negative correlation for Amerindian and African BGA-SES remains unchanged in

all cases.

Moderator Estimated 
¯
Z

95% Confidence
Interval

P-value for 
¯
Z = 0

P-value for subgroup
equality

European BGA

US .155 [.109, .200] <.001
.647

Non-US .169 [.123, .214] <.001

Amerindian BGA

US -.086 [-.146, -.025] <.001
.278

Non-US -.126 [-.173, -.079] <.001

African BGA

US -.134 [-.174, -.093] <.001
.724

Non-US -.122 [-.181, -.062] <.001

Table 7. Subgroup analysis based on region (US versus non-US samples)

Note: For each of the three BGA groups (European, Amerindian, and African) the table shows the mean Fisher’s Z for US

and for non-US samples estimated using the correlated hierarchical errors model with robust variance estimation. The

final column gives a p-value for equality of the two conditional means.

 

Next, we consider whether the SES-BGA correlations might be mediated by Self-Identified Race or Ethnicity (SIRE). This

is because a large body of literature argues that social inequalities are primarily related to socially-defined race and not

ancestry (e.g., Adkins-Jackson et al.[23]). We use a trinomial moderator which isolates the three subgroups of estimates

shown in Table 2: those from samples restricted to African-Americans, those from samples restricted to Hispanic

Americans, and those from all other samples. The results are shown in Table 8. For both African and Hispanic Americans,

the associations between BGA and SES are not significantly different from the association in the Other group. Moreover,

the positive correlation between SES and European BGA and the negative correlation between SES and African BGA

remains significant for all the subgroups. For African-Americans, there is no significant correlation between SES and

Amerindian BGA. This is understandable because there is little variance in Amerindian admixture among African

Americans. As a result, few authors report associations with Amerindian BGA for this group and so data was available for
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only 4 samples. Further, range restriction in Amerindian admixture in this group attenuates correlations. Overall, the

results indicate that SES-BGA correlations can be found within SIRE groups.

Subgroup Estimated 
¯
Z

95% Confidence
Interval

P-value for 
¯
Z

P-value for subgroup
equality

European BGA

African-American (US) .132 [.071, .192] .002 .199

Hispanic-American (US) .167 [.071, .264] .006 .848

Non-exclusive .176 [.130, .222] < .001  

Amerindian BGA

African-American (US) -.052 [-.357, .254] .277 .253

Hispanic-American (US) -.088 [-.161, -.016] .021 .393

Non-exclusive -.123 [-.167, -.079] < .001  

African BGA

African-American (US) -.124 [-.163, -.084] <.001 .505

Hispanic-American (US) -.099 [-.197, -.001] .049 .336

Non-exclusive -.148 [-.212, -.083] < .001  

Table 8. Subgroup analysis based on Self-identified Race or Ethnicity (SIRE)

Note: For each of the three BGA groups (European, Amerindian, and African) the table shows the mean Fisher’s Z for

samples restricted to African-Americans, to Hispanic-Americans, and to all other (that is, non-exclusive) samples. The

model is estimated using the correlated hierarchical errors model with robust variance estimation. The final column gives

a p-value for equality of the restricted-samples conditional mean to the non-exclusive-samples conditional mean.

 

Next we test if the relationship between BGA and socioeconomic outcomes might vary depending on how well the SES

indicator measures relevant facets of SES. This is done because a large study reported that associations with genetic

ancestry were more pronounced on comprehensive measures of SES[24]. Therefore, we consider SES-indicator type

(SES index versus SES component) as a moderator variable. We recorded the SES type (e.g., income, education, health

insurance, neighborhood SES, general SES w/Education). An SES type was coded as general SES index if it was a

composite of multiple SES indicators (e.g., Hollingshead index). We recoded these categories as “general SES index” if

the outcome involved general SES (i.e., "General SES, no Education", "General SES w/Education", "Parental General

SES w/Education", or "Parental General SES, no Education"). The results are shown in Table 9. Based on the point

estimates, in two of the three cases the SES composites produce marginally stronger BGA-SES correlations than SES

indicators, but the difference is never statistically significant. In the case of African BGA, the point estimates are virtually

identical for composite versus indicator SES measures. Thus, we do not find significant evidence that composite

measures of SES are more strongly related to BGA relative to single indicators.
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Moderator Estimated 
¯
Z

95% Confidence
Interval

P-value for 
¯
Z = 0

P-value for subgroup
equality

European BGA

SES indicator .142 [.104, .181] < .001
.064

SES composite .230 [.141, .319] <. 001

Amerindian BGA

SES indicator -.090 [-.144, -.036] .002
.078

SES composite -.181 [-.249, -.112] < .001

African BGA

SES indicator -.129 [-.169, -.090] < .001
.976

SES composite -.128 [-.179, -.078] < .001

Table 9. Subgroup analysis based on socioeconomic status indicator type

Note: For each of the three BGA groups (European, Amerindian, and African) the table shows the mean Fisher’s Z for

single-component SES measures and for composite SES measures; the model is estimated using the correlated

hierarchical errors model with robust variance estimation. The final column gives a p-value for equality of the two

conditional means.

 

Finally, we examine whether there might be differences due to the geographic distribution of the sample (national or

international vs. local); 55% of the samples were local, meaning that individuals came from either the same city or the

same first-order administrative division within a country (e.g., state or province). Individuals in the remaining 45% of

samples came either from multiple administrative divisions within a country or multiple countries. Data was categorized as

local if it fell within a first-order administrative unit (FOAD) (e.g., US state or territory) within a medium size to large country

or it fell within a local region within a very small country (even if that region included multiple FOADs). There were only

three small-country cases: Dominica, Central Valley of Costa Rica and Northern Trinidad of Trinidad & Tobago. It made

little sense to treat Puerto Rico as local, but then Dominica as national/international, so we made these three exceptions

and treated these three small-country cases as local. The results are shown in Table 10. There is no significant evidence

of differences between these subsamples.

Table 10. Subgroup analysis based on geographical distribution of the sample (local versus multiple-

region samples)

Qeios, CC-BY 4.0   ·   Article, November 18, 2024

Qeios ID: 5OULH0.2   ·   https://doi.org/10.32388/5OULH0.2 15/21



Moderator Estimated 
¯
Z

95% Confidence
Interval

P-value for 
¯
Z = 0

P-value for subgroup
equality

European BGA

Local .197 [.149, .246] <.001

.265Multiple
region

.161 [.117, .205] <.001

Amerindian BGA

Local -.134 [-.176, -.091] <.001

.445Multiple
region

-.110 [-.156, -.065] <.001

African BGA

Local -.129 [-.176, -.082] <.001

.836Multiple
region

-.122 [-.173, -.072] <.001

Note: For each of the three BGA groups (European, Amerindian, and African) the table shows the mean Fisher’s Z for

local samples and for multiple-region samples; the model is estimated using the correlated hierarchical errors model with

robust variance estimation. The final column gives a p-value for equality of the two conditional means.

 

The results in the tables above show clearly that BGA proportions are statistically correlated with SES measures, but the

narrow scope of this study cannot differentiate between purely environmental and mixed genetic/environmental

explanations for these correlation patterns. There are strong indications, from recent research outside this study, that the

mixed genetic/environmental explanation is the more credible one. Individual intelligence scores are positively correlated

with SES measures, and there is a substantial body of recent research showing genetic causes of the link between BGA

and intelligence; see Connor and Fuerst[24]. An obvious inference is that the partially genetic causes of BGA-intelligence

correlations also (partially) account for these BGA-SES correlations. In any case, whether a purely environmental or

mixed genetic/environmental explanation is preferred, there is a potential omitted variable problem from ignoring BGA

when analyzing SES.

V. Summary

This paper performs a meta-analysis of estimated correlation coefficients linking African, Amerindian or European

biogeographic ancestry proportions to socioeconomic status. The estimated correlation coefficients collected in the meta-

analysis originate from epidemiological studies. Many epidemiological studies include both biogeographic ancestry

admixture proportions and socioeconomic status measures as explanatory variables in studying health traits, and it is

standard procedure to estimate the correlation coefficients between these key explanatory variables as a monitor on

statistical model under-identification or misspecification. None of the surveyed studies are directly concerned with

estimating this correlation but rather do so for statistical monitoring of model reliability while focused on some other topic.

By performing the same statistical quality control across diverse countries and samples, these epidemiological studies
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have inadvertently created a powerful body of evidence showing correlation between biogeographic ancestry and

socioeconomic status.

European BGA admixture proportion shows a significantly positive correlation with SES, whereas both Amerindian and

African BGA admixture proportions are significantly negatively correlated with SES. The same statistically significant

patterns emerge in the directionality of the BGA-SES associations: European BGA admixture proportion has a positive

association with SES whereas both Amerindian and African BGA admixture proportions have a negative association; all

three of these signed patterns of association are highly statistically significant.

The observed correlations are not explained by self-identified race or ethnicity (SIRE) since correlation estimates on

samples restricted to African-American SIRE and to Hispanic-American SIRE show essentially the same patterns as

unrestricted samples. Also, it is not explained by particularly American historical or institutional features since the pattern

of correlations is very similar in US samples and non-US samples.

The correlations between BGA admixture proportions and SES are a tangential concern in epidemiology but have core

relevance to the economic study of socioeconomic status. Since this meta-analysis clearly shows that BGA admixture

proportions have significant univariate correlation with SES, it is incumbent to consider BGA admixture proportions as a

candidate variable in economic analysis of SES. Obtaining this variable can be cumbersome and expensive since it

requires DNA sampling and genotyping, but its complete absence from extant results makes the existing economic

analysis of SES unreliable. There is a potential omitted-variable bias of notable concern.

Technical Appendix: Review of CHE-RVE-REML

The paper uses the R programming language, metaphor library, routine rma.mv to estimate the CHE-RVE-REML model

without moderators (Table 5) and with four moderators each used singly (Tables 7-10). This short appendix reviews this

methodology and gives some details of our implementation.

In our application the model starts with the meta-analytic database of estimated correlations, ri,  i = 1, …, M with numbers

of observations in the original source studies of Ni,  i = 1, …, M. As recommended by Harrer et al.[20] our meta-analysis of

estimated correlations uses as input the transformed values of the estimated correlations into Fisher's Z-statistics:

Zi =

1
2 ln

1+ ri
1− ri

which are treated as multivariate normal with known estimation variances.

The restricted maximum likelihood (REML) approach to meta-analytic model estimation is well-established as a favored

technique. For purposes of estimating the variance components it involves maximizing the likelihood on a reduced sample

after restriction of the original set of observations to contrasts: each observation is replaced with its original value minus a

fixed linear combination of the observations. This shrinks the number of linearly independent observations in the empirical

( )
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likelihood but improves the small-sample properties of the resulting variance estimates. The REML estimate of the

mean(s) uses the raw observations not the contrasts. In a simulation comparison of estimators for meta-analysis with

random effects models,Viechtbauer[25] concludes "the restricted maximum likelihood estimator strikes a good balance

between unbiasedness and efficiency and, therefore, could be generally recommended." Langan et al.[26] use simulation

methods to compare various estimators and recommend REML for estimating random effects models;

Pustejovsky[19] specifically recommends REML for estimation of the CHE-RVE model. We use REML as implemented in

the rma.mv routine via the option Method = REML.

The CHE-RVE model originates with Putejovsky and Tipton[18]; see Harrer et al.[20] for R implementation guidelines. The

CHE-RVE model is motivated by meta-analytic applications like ours which need to allow for non-independent sampling

errors in the database of study estimates. Many of the studies in our database include multiple estimates of BGA-SES

correlations for a given BGA. For the particular BGA being analyzed let j = 1, …, S denote the set of independent samples 

S ≤ M with the number of estimates in each sample Kj,  j = 1, …, S where Kj ≥ 1. In our meta-analytic database some of

the estimates come from samples with only one correlation estimate for that BGA whereas others have multiple estimates

using different SES measures; see Table 1 in the paper for M and S for each BGA.

The CHE-RVE model begins with a three-level model of the randomness in Zi:

Zi =
¯
Z + φi + ∑S

j=1Dijωj + εi i = 1, …, M

where 
¯
Z is the mean to be estimated, εi is the (level-1) estimation error of estimate i, φi is the (level-2) individual-estimate

level random effect, and ωj is the (level-3) sample-level random effect. The dummy variable Dij equals one if estimate i

comes from sample j and zero otherwise. The random effects φi, ωj are mutually independent for all i,j with φi ∼ N(o, σ2
φ), 

ωj ∼ N(o, σ2
ω) and independent of εi for all i,j. The known variance of εi,  σ2

εi is assumed to equal 

1
Ni−3

 for each i; Olkin and

Finn[27] show that this well approximates the true variance for reasonably large Ni.

The estimation errors are assumed independent if they come from different samples, but if εi,  εi∗come from the same

sample j then they are assumed to have fixed (known) correlation ρ. This simple structure imposed on the covariance

matrix of estimation errors allows Putejovsky and Tipton[18] to solve the REML problem elegantly. We impute the full

block-diagonal covariance matrix of εi,  i = 1, …, M from ρ and σ2
εi,  i = 1, …, M using the R routine

impute_covariance_matrix.

Putejovsky and Tipton[18] note that this simple correlation restriction on the covariances of the within-sample estimation

errors is necessary for their solution to the likelihood maximization problem but it is not necessary to impose this

assumption when computing the parameter estimation variances. They propose a Huber-White sandwich estimator for the

parameter estimation variances. In the "middle term" of the Huber-White sandwich estimator the covariance submatrix

within the same-sample diagonal blocks is proxied by the outer product of the demeaned observations; see Tipton and

Pustejovsky[28]. Outside these block diagonals the covariance matrix is set to zero. We implement this in R using vcov =
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"CR2" in metaphor with the clubsandwich library.

Tables 7-10 in the paper enhance the analysis done in Table 5 by including a moderator, giving a mixed effects model.

The variance parameters are assumed constant across the subgroups and only the means differ. Let Dm
i  denote a dummy

variable which is one if estimate i comes from the moderator subgroup and zero otherwise. The model becomes:

Zi =

¯
Z0(1 − Dm

i ) +

¯
Z1Dm

i + φ
i
+ ∑S

j=1Dijωj + εi i = 1, …, M

Except for the presence of two mean parameters 

¯
Z0,   

¯
Z1,  the modeling assumptions and estimation methodology are

unchanged. In Table 8 we also consider the case with three subgroups, replacing 

¯
Z0(1 − Dm

i ) +

¯
Z1Dm

i  with 
¯

Z0Dm0
i +

¯
Z1Dm1

i +

¯
Z2Dm2

i  with the three dummy variables defined in the obvious way.
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