
1 
 

Correlations between Socioeconomic Status (SES) and Biogeographic 
Ancestries: Indirect Evidence of SES Model Misspecification 

Gregory Connor1, John G.R. Fuerst2 and Meng Hu1  

1 Independent researcher 

2 University of Maryland, Department of Biotechnology 

  

Abstract 

New genomic technologies allow the apportionment of individuals’ genotyped DNA into 
admixture proportions traceable to historically isolated biogeographic ancestry (BGA) groups such 
as African, European, and Amerindian. These BGA admixture proportions have proven valuable 
in a wide range of recent epidemiological research. This paper performs a meta-analysis of these 
epidemiological studies and finds that, as an ancillary result, these studies reveal consistent 
patterns of correlation between BGA admixture proportions and socio-economic status (SES). 
Given this finding, the absence of BGA admixture proportions data from almost all extant 
economic analysis of individuals’ susceptibility to high/low socioeconomic status is indirect 
evidence for a non-negligible omitted-variable bias in such analysis. Economic models of SES 
which do not consider BGA as a possible explanatory variable may be unreliable due to the 
potential confounding associated with this omitted variable.      

 

I. Introduction. 

With the completion of the Human Genome Project and subsequent advances in genetic 

research it is now possible to apportion individuals’ genetic ancestry into admixture proportions 

traceable to historically isolated biogeographic ancestry (BGA) groups such as African, 

European, and Amerindian. These BGA admixture proportions are a powerful research tool in 

epidemiology; in a regression model with a health trait as dependent variable and with admixture 

proportions as explanatory variables, the coefficients on the admixture proportions provide a 

useful measure of BGA-related genetic variation associated with the health trait. In addition to 

admixture proportions, it is important to include other health-relevant explanatory variables such 

as socio-economic status (SES) in the admixture regression. Admixture regression has been used 

to study alcohol dependence (Zuo et al., 2009), height (Becker et al., 2011), asthma risk (Flores 

et al., 2012), cardiovascular disease (Bidulescu et al., 2014), sleep depth (Halder et al., 2015), 
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cigarette smoking behavior (Choquet et al., 2021), metabolomics (Mehanna et al., 2022), cancer 

(Rhead et al., 2022), and diabetes (Parcha et al., 2023).   

Since BGA admixture proportions and SES are both important explanatory variables in 

epidemiological studies using admixture regression, it is standard statistical practice in such 

studies to estimate the correlation between them, as a monitoring device on regression model 

misspecification or under-identification. These correlation estimates linking BGA admixture 

proportions and SES are only a tangential concern within epidemiology but have considerable 

interest for other research fields. As shown below, meta-analysis shows consistent patterns in 

these estimated correlations across studies. These correlation patterns have particular relevance 

to economic models concerned with explaining SES outcomes across individuals; BGA 

admixture proportions are a potential omitted variable in such models.  

This paper empirically explores how BGA admixture proportions and SES are 

systematically related via a meta-analysis of extant epidemiological studies from the Americas 

which include estimates of BGA-SES associations. European BGA admixture proportions 

showed a positive correlation with SES indicators, r = .16 (95% confidence interval: .13 to .19), 

whereas both Amerindian and African BGA admixture proportions were negatively correlated at 

r = -.11 (95% confidence interval: -.15 to -.06) and r = -.13 (95% confidence interval: -.17 to -

.09), respectively. The same pattern emerges in examining the sign of the estimated association 

(correlation or other non-correlation statistics such as ANOVA or odds ratios giving directional 

association) across study samples: 58 out of 68 (85%) of the European BGA-SES estimated 

associations are positive, 2 of the 68 (3%) are negative, and in the remaining 8 of the 68 samples 

(12%) the results are indeterminate with no clear direction across measures of association within 

the study. In the case of Amerindian BGA-SES, 65 of the 76 samples (86%) show a negative 

association, 4 samples (5%) show a positive association, and the remaining 7 cases (9%) are 

indeterminate. For African BGA-SES associations, 63 of the 77 samples (82%) show negative 

estimated associations, 10 samples (13%) show a positive association, and the remaining 4 

samples (5%) are indeterminate. In all three cases the signed proportions are highly statistically 

significant against the null hypothesis of no underlying association. 

The indirect methodology adopted in this paper for measuring the correlation/association 

between BGA and SES from epidemiological studies is not coincidental. Research using 

genotyped DNA is limited by data cost and availability, and there is potential political backlash 
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against findings linking BGA to any socially desirable trait such as intelligence or SES. The 

epidemiological studies meta-analyzed in this paper show clear and consistent links between 

BGA and SES but do so tangentially; they perform the analysis because measuring the linkages 

between explanatory variables is a standard monitor on regression model reliability. These 

studies are protected from the usual backlash against politically sensitive findings since their 

examination of the linkage between BGA and SES is only undertaken as a peripheral check on 

regression model stability and reliability. Nonetheless, examining a broad swath of these studies, 

the meta-analytic results are clear and consistent despite not being the empirical focus in any of 

the individual studies.  

Analyzing SES has long been a major research topic in economics, yet the recent 

successful use of BGA admixture proportions in epidemiology has not been reflected in 

economic modeling. As an example, the highly regarded research center Opportunity Insights at 

Harvard University has produced 26 research papers (as of June 2024) using vast quantities of 

data from a wide range of sources to examine numerous aspects of SES and its dynamic cross-

sectional distribution in the US. Not one of the Opportunity Insights papers utilizes BGA 

admixture proportions data. Admittedly, admixture proportions data is relatively cumbersome 

and expensive since it requires DNA sampling and genotyping, and it is also politically sensitive 

since it touches upon group genetic variation and racial SES gaps. Nonetheless, given that the 

recent epidemiology research literature indirectly shows clear and consistent patterns of linkage 

between SES and BGA admixture proportions, this potentially powerful new data source 

deserves careful consideration, or a detailed explanation for its exclusion in the study of SES by 

economists. There is a serious risk of confounding if the BGA-SES correlation is omitted in 

economic analysis of SES.  

II. Data 

A. Study identification, screening, and selection 

We created a database of all published epidemiological studies for which associations between 

continental-level biogeographic ancestry and socioeconomic outcomes were reported, limited to 

those using sample data exclusively from the Americas. Each of the studies included in the meta-

analysis incorporate admixture proportions from at least two of the three biogeographic groups 

African, Amerindian, or European, a socioeconomic status index or a component of such an 

index, and some statistical measurement of the association between them.  

https://opportunityinsights.org/paper/
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First, we incorporated data from Kirkegaard et al. (2017), who conducted a systematic 

review of the literature up to 2016 using searches of the PubMed, BIOSIS, and Google Scholar 

databases. Second, we conducted new searches in PubMed, BIOSIS, and Google Scholar for 

dissertations or articles written in English, Spanish, or Portuguese and published between 2017 

and 2023. We scanned all BIOSIS and PubMed abstracts and scanned the first 1,500 Google 

Scholar abstracts (ranked by relevance). The searches we employed were: 

1. PubMed: (admixture OR genetic ancestry OR genomic OR biogeographical) AND 

(socioeconomic OR education OR income OR SES OR poverty) AND (African OR European 

OR Amerindian) 

2. BIOSIS: (admixture OR genetic ancestry OR genomic OR biogeographical) AND 

(socioeconomic OR education OR income OR SES OR poverty) AND (African OR European 

OR Amerindian) 

3. Google Scholar: (admixture OR genetic ancestry) AND (socioeconomic OR education 

OR income OR SES OR poverty) AND (African OR European OR Amerindian OR Native 

American) 

Note, since Google Scholar yielded many more hits than PubMed or BIOSIS, we slightly 

altered the terms to provide a more tailored search.  

Two of the authors reviewed the paper abstracts for discussion of genetic ancestry in 

relation to socioeconomic status and coded them accordingly. Codings were compared and 

discussed until consensus was reached, prior to reading the full articles. We adopted the 

following criteria for inclusion in the meta-analysis: 

 1) Samples were from the Americas  

2) Samples had an average admixture % of greater than 3.125% (or 1/32nd) for at least 

two of the following three BGAs: European, African, and Amerindian.  

3) Directions of associations between European, African, or Amerindian genetic ancestry 

and socio-economic status were reported.  

4) The reported information was gathered at the individual rather than the group level 

(e.g., not state-level admixture and state-level social outcomes).  

5) Samples did not contain redundant material. In cases of redundant or partially 

redundant samples, we selected those with the largest sample sizes and most complete 

information.  
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6) The study was published after the year 2000. 

When relevant data was available, we copied or computed Pearson correlation coefficients where 

possible. When directions of association were reported but statistics sufficient to compute 

correlations were not, we emailed the corresponding authors for data. Thirty-one research teams 

were contacted for the 2023 round of data collection, whereas 26 teams were contacted for the 

2016 round. We additionally scanned papers for references reporting associations and then 

examined these referenced papers. Three out of 31 research teams provided data in the 2023 

round, whereas 11 out of 26 authors previously provided data in the 2016 round. 

 We located a total of 404 studies, including 154 studies from the 2023 search. Out of the 

404, seventeen studies were omitted because they had redundant samples. Of the 387 remaining, 

299 did not report associations between BGA and socioeconomic indexes. Additionally, there 

were two studies that identified an association but did not specify the direction of the 

relationships. The remaining 86 studies provided information on the direction of the association, 

or such information was given upon request by the authors. Of these, 58 studies included 

information on the estimated correlation (or related statistics that could be converted into 

estimated correlation). Figure 1 displays a flowchart of the study selection process. Full details 

on the studies and reasons for exclusions are reported in Supplementary Materials A.  

https://osf.io/39hbd
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Figure 1: Flowchart of study inclusion 
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All studies included the number of observations. In a few instances, owing to missing 

data, the same sample had different sample sizes for correlation of BGA with different 

socioeconomic outcomes. In these instances, we recorded the sample sizes specific to the 

outcome. Additionally, some studies provided data for multiple overlapping samples (e.g., 

African-American, Hispanic, and White Americans vs. a combined sample). In these cases, we 

retained specific ethnic groups instead of combined multi-ethnic samples and we retained the 

ethnic category most consistent across all samples. Furthermore, many types of socioeconomic 

outcomes were reported; we condensed these into two very broad groups: ones including general 

SES or composites of multiple indicators such as education, income, and assets, and ones 

including only individual SES indicators. Prior to conducting the meta-analyses we visually 

examined the data for outliers. There was a very clear outlier. Specifically, Klimentidis et al. 

(2009) reported a correlation of r = -.59 between European ancestry and income for a sample of 

fifteen socially self-identifying Native Americans in the US, while also reporting a correlation of 

r = .12 between European ancestry and parental education for the same sample. Given the small 

sample size this estimate is not implausible due to sample variation; as such we retained the data 

point. 

B. Derivation of correlations from equivalent reported statistics 

As is commonplace in meta-analytic studies, not all the surveyed studies directly reported 

the statistic of interest (Pearson correlation coefficient which we denote r) but often reported an 

equivalent statistic or set of statistics. In this subsection we describe the simple methods we use 

to infer estimated correlations in this situation. 

A total of 157 of the estimates were Pearson correlation coefficients. Spearman 

correlation coefficients based on comparative rankings were reported for 10 cases, all of which 

had sample sizes greater than 90. Koricheva et al. (2013) show that when the sample size is 

greater than 90, Spearman correlation and Pearson correlation are approximately equal under 

broad circumstances; for this reason, we treated the Spearman estimates as equivalent to r. In 32 

cases, authors reported the R-squared from the univariate linear regression of SES on BGA. The 

square root of the reported R-squared multiplied by the reported sign of the relationship is the 

estimated correlation. In 13 cases, the authors report the standardized regression coefficient 𝛽"  

from the univariate regression of SES on BGA, which we take as equivalent to the Pearson 

correlation coefficient. In one case, the authors report the sign of the estimated correlation and its 
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p-value. We invert the p-value by assuming a normal distribution was used for the p-value 

computation. In 57 cases, correlations were not reported but the authors provide k-by-j tables of 

data frequencies jointly sorted into admixture proportion and SES quantiles. The k-by-j 

frequencies were converted into r using the formula detailed in Fagerland et al. (2017).  

C. Directions of association   

 Reported statistics sufficient to compute the directions of associations between BGA 

admixture proportions and SES were reported more frequently than those required to compute 

correlations. An analysis of directions can provide insight into whether results are consistent with 

a null hypothesis, which in this context posits that a given ancestry component will not be 

positively or negatively associated with socioeconomic outcomes. Such a method for analyzing 

the directions of associations has been utilized in previous meta-analyses, exemplified by the 

work of Van der Meer and Tolsma (2014). For each sample, associations were categorized as 

either negative, null, or positive, where ‘null’ indicates either no association or in the case of 

multiple measured associations using the same sample no majority finding of either positive or 

negative associations. This categorization did not take into account either the statistical 

significance or the strength of the association.  

III. Empirical Findings  

A. Descriptive statistics of the study samples 

Most of the papers analyzed were published in recent years, with the median publication 

year being 2015, spanning from 2002 to 2024. Only a subset of the independent samples reported 

associations for all three BGAs; moreover, only a subset of samples with directions of 

associations also had correlations or equivalents. As a result, the number of samples with 

associations for a particular BGA is less than the total number of samples and the number of 

samples with correlations is less than that with directions of associations. Table 1 displays the 

number of samples by BGA and association type. 
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Table 1. Number of samples, estimates and individual observations by 
biogeographic ancestry (BGA) and by relationship type  

 
Relationship 

type 
Observation 
count type 

Any BGA European BGA Amerindian BGA African BGA 

Correlations or 
equivalents 

Samples 88 55 59 57 
Estimates 270 82 94 94 

Individuals 127463 94768 69157 97493 
Directional 

Associations 
Samples 117 68 76 77 
Estimates 372 105 119 148 

Individuals 149764 100668 83287 116065 
Note: ‘Any BGA’ refers to the total sample not disaggregated by BGA. The number of samples and individuals for 
Any BGA is larger than that for an individual BGA but smaller than the sum of the three BGAs because individual 
samples could contain data for one to three BGAs. “Estimates” refers to the number of estimates computed; this 
number is greater than the number of samples since in some instances the same sample had multiple estimates. 
 

For the 88 independent samples that had correlations or equivalents and the 117 

independent samples that had directions, there were, respectively, a total of 270 and 372 

estimates of the association between BGA and outcomes, since multiple estimates were 

frequently reported for the same samples. The discrepancy between the number of independent 

samples and the number of estimates arose because some samples contained data for multiple 

BGAs and/or multiple SES indicators. Sixty out of the 117 independent samples that provided 

directional data, and 52 out of the 88 independent samples that provided correlations, originated 

from the US alone or in combination with Puerto Rico. The remaining samples came from Latin 

America, including (with the number of associations): Brazil (12), Puerto Rico (8), Chile (8), 

Mexico (8), Colombia (7), Peru (5), and Uruguay (2), and any other Latin American country (7).  

Many of the studies in our database provide BGA-SES correlations estimated exclusively 

using individuals who have chosen the self-identified race or ethnicity (SIRE) category African 

American, and other studies exclusively for the SIRE category Hispanic. All the SIRE-restricted 

estimates came from US-only data. Table 2 shows the breakdown of correlation estimates by the 

SIRE category restrictions. 
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Table 2. Number of correlation estimates with self-identified race and ethnicity 
(SIRE) exclusion criteria in sampling and with non-exclusive sampling  

 
Sample selection 

criteria 
European BGA-
SES correlations 

Amerindian 
BGA-SES 

correlations 

African BGA-
SES correlations 

African-American only 16 4 29 
Hispanic-American 

only 
20 36 16 

Non-exclusive 46 54 49 
Note: The table shows the number of correlations from samples restricted to self-identified African-Americans (first 
row), self-identified Hispanic-Americans (second row), and all other samples (third row). All the correlations in the 
first two rows are from US-only samples. 
 

The studies included a diverse array of SES indicator variables, which we grouped into 

broader categories. These categories mostly included measures of personal education, income, or 

household assets. Moreover, several studies included data on parental SES. Given that a large 

majority of children are biological children, their admixture usually reflects the mean admixture 

of their parents. Thus, associations between child ancestry and parental SES can be seen as 

reflecting those between parental ancestry and SES. Additionally, a sizable number of 

associations were based on neighborhood socioeconomic status instead of individual SES. 
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Table 3: Number of correlation/association estimates for individual SES component 
measures 

 
 Correlations or equivalents Directions of association 

Biographic ancestry 
/SES component 

European 
BGA 

Amerindian 
BGA 

African 
BGA 

European 
BGA 

Amerindian 
BGA 

African BGA 

Education 33 41 34 40 47 47 
Income 13 18 16 19 22 26 

General SES 
w/Education 

12 11 15 13 18 18 

Neighborhood SES 8 6 10 12 9 24 
Assets 8 9 8 8 9 13 

Parental education 4 1 4 7 2 7 
General SES, no 

Education 
1 4 0 2 5 1 

Occupation 0 0 0 1 3 3 
Occupation & income 2 2 2 2 2 3 

Health insurance 1 1 2 1 1 3 
General SES 
w/Education 

0 1 1 0 1 1 

Parental income 0 0 2 0 0 2 
Other SES 0 0 0 0 0 1 

Total 82 94 94 105 119 148 
Note: For each of the thirteen SES measures used across the collection of the studies, the table shows the number of 
correlation estimates and direction of association estimates that use that particular SES measure. 

The estimated correlations were mostly in the range (-.25, .30) with a notable tilt by 

biogeographic ancestry, this tilt will be explored more fully in the next subsection. Table 4 

provides some descriptive statistics and Figure 2 shows a histogram color-coded by 

biogeographic ancestry.  

Table 4. Descriptive statistics for estimated correlations (not aggregated within samples) 

Biogeographic 
Ancestry 

Number of 
Estimates Mean Median Max Min 

Standard 
Deviation 

10th 
centile 

90th 
centile 

European 
BGA 

82 .15 .15 .50 -.59 .14 .03 .30 

Amerindian 
BGA 

94 -.11 -.10 .23 -.52 .12 -.25 .00 

African BGA 94 -.12 -.12 .22 -.52 .11 -.24 .03 
Note: The table shows descriptive statistics for the full set of correlations. The statistics are not adjusted for the 
presence of non-independent estimation error across correlations from the same sample. 
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Figure 2. Histogram for the estimated correlations (prior to aggregation within samples) 

 

 

B. Meta-analysis of correlations and directional associations between BGA and SES  

 We run the meta-analyses separately for each of the three ancestries. For a given BGA, 

let 𝑟! , 𝑖 = 1,… ,𝑀	denote our database of M correlation estimates linking the BGA admixture 

proportion and SES measure. We transform the estimated correlations into Fisher’s Z-statistics: 

𝑍! =
"
#
ln ."$%!

"&%!
/ to improve the small sample properties of our estimator. We use a random 

effects model, treating the true 𝑍! as random across studies and across multiple estimates within 

studies for those studies which have multiple estimates. We use the correlated and hierarchical 

effects (CHE) model (Pustejovsky and Tipton, 2022) to account for the fact that estimation errors 

are correlated within studies with multiple estimates. Letting �̅� denote the expected value of 𝑍! 

for all i, the CHE model assumes: 

 𝑍! = �̅� + 𝜑! + 𝜔' + 𝜀! 

where 𝜑! is the estimate-specific random effect, 𝜔' is the study-specific random effect associated 

with estimate i, and 𝜀! is the sample estimation error for this correlation estimate. The index 𝑗 =

1,… , 𝐾 runs over the set of samples, some of which have more than one estimate (by estimating 

the correlation between BGA and several SES measures on the same sample). The CHE model 
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makes the restrictive assumption that the correlation (ρ) between multiple estimation errors 

within a common sample has a known constant value. We set this correlation to ρ = .4 (note that 

the correlation is only used for determining point estimates, not for finding standard errors of 

these estimates; see below). The CHE model is estimated by restricted maximum likelihood 

(REML) as recommended by Pustejovsky (2021) and Harrer et al. (2021). See the Technical 

Appendix for detailed discussion of the model. As a robustness check we also estimated the 

model using ρ = .8 and found similar results; these supplementary results are shown in 

Supplementary Materials B.   

In order to improve the generality of the restrictive correlation structure of CHE, we 

enhance the CHE model with the sandwich-estimator-based Robust Variance Estimation (RVE) 

developed by Pustejovsky and Tipton (2022).  This CHE-RVE model uses the simple correlation 

structure of CHE to solve the likelihood maximization problem, but then computes consistent 

standard errors of the estimated parameters under much more general conditions on the 

dependency structure of the within-study estimation errors. See the Technical Appendix or 

Pustejovsky and Tipton (2022) for a discussion of the CHE-RVE-REML estimation 

methodology.     

The estimation results for each of the three BGAs are shown in Table 5, along with 95% 

confidence intervals for �̅�. In the table we also invert �̅�		to re-state it in units of correlation, that 

is (exp .�̅� − "
#
/ − 1) (exp .�̅� − "

#
/ + 1)> . The results in this table are strongly supportive of a 

nonzero correlation between BGA and SES for each of the three BGAs. Forest plots and funnel 

graphs of the data are provided in Supplementary Materials B. 

https://osf.io/erdyj
https://osf.io/erdyj
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Table 5. Estimated average correlations between socioeconomic status measures and 
biogeographic ancestries 

 
Biogeographic 

ancestry 
Estimated �̅� 95% confidence 

interval for �̅� 
P-value for 
�̅� = 0 

Implied correlation 
from �̅� 

95% confidence 
interval for implied 

correlation 

European BGA .161 [.129, .192] < .001 .160 [.128, .190] 

Amerindian BGA -.107 [-.145, -.069] < .001 -.107 [-.144, -.069] 

African BGA -.129 [-.161, -.097] < .001 -.128 [-.160, -.097] 

Note: For each biogeographic ancestry group (European, Amerindian, and African) the correlated hierarchical errors 
model with robust variance estimation is used to estimate the mean Fisher’s Z (mean transformed correlation) across 
all correlation estimates. The table also shows the mean Fisher’s Z and its confidence interval reverse-transformed 
into correlations.   

The average correlation estimates in Table 5 are not large, but Kirkegaard (2022) 

demonstrated that very small correlations between BGA and SES can still reflect substantial 

ancestry effects. For instance, among Chileans, the correlation between European BGA and SES 

was r = .13 (N = 1805), but the unstandardized regression slope from 0% to 100% European 

ancestry was b = 0.88. Fuerst et al. (2024) also observed this phenomenon. This occurs because 

restricted ancestry ranges lead to attenuated correlations and because bivariate correlations treat 

BGA and SES associations without a reference BGA category. Thus, our meta-analytic 

correlations between BGA and SES are consistent with substantial ancestry effects.  

As a non-parametric alternative to the meta-analysis of correlations, and to increase the 

data coverage to include samples where it was not possible to recover a correlation coefficient, 

we also examine directionally-assigned associations between each BGA and SES. As noted 

above, the associations found in each sample have been categorized as negative, positive or null. 

The null category covers all cases where either an individual sample had a measured association 

of zero or where an individual sample had multiple measures of association and there were an 

equal number of positive and negative directions (such as having two positive and two negative 

associations). To convert this trinomial count variable into a binomial test, we use the cautious 

approach of assigning the null cases to whichever category (positive or negative) has a lower 

sample proportion and then testing whether the other category has a sample binomial proportion 

significantly greater than 0.5, thereby biasing the results against rejecting the null hypothesis of 

no association. This cautious approach lowers the power to reject the null hypothesis but in 

practice has no impact since we are easily able to reject the null for all three BGA categories. 
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The results of the association direction analyses are presented in Table 6. For European 

ancestry, approximately 85% of associations were positive, contrasting with only 3% negative. 

Similarly, Amerindian ancestry showed 5% positive associations and 86% negative associations, 

while African ancestry displayed 13% positive associations and 82% negative associations. 

These highly significant binomial tests indicate deviations from the null hypothesis for all three 

ancestries. 

Table 6. Meta-analytic results for directions of associations between biogeographic 
ancestries and socioeconomic outcomes  

Biogeographic 
ancestry 

Number of 
individuals 
in sample 

Number of 
directional 

associations 

% positive % negative % null P-value from 
binomial test of no 

association 

European 
BGA 

100668 68 85.3% 2.9% 18.8% 2.4×10−9 

Amerindian 
BGA 

83287 76 5.3% 85.5% 9.2% 1.8×10−08 

African BGA 116065 77 13.0% 81.8% 5.2% 1.4×10−0 

Note: For each biogeographic ancestry group (European, Amerindian, and African) each sample is assigned an association 
direction of positive, negative or null between that ancestry component and socioeconomic status measure(s). The p-value tests 
whether the percent positive or negative (whichever is larger) is significantly greater than 50% using a binomial test.  

C. Moderator analysis with a mixed-effects model  

In this subsection we re-estimate the CHE-RVE model of BGA-SES correlations 

allowing a conditional expected value �̅� to depend upon a moderator. This is a mixed effects 

model; see Harrer et al. (2021) or the Technical Appendix for details. First, we use a moderator 

defining two regional categories: estimates from US data versus those using data from outside 

the US. The rationale for this moderator is that populations in the US are often relatively recent 

migrants in the case of Hispanics, or, in the case of White and African-Americans, they do not 

have as extensive and pervasive a history of exogamy as is found among many Latin American 

populations. These factors may affect the correlations between BGA and socioeconomic 

outcomes. The countries for each sample were recorded. For a couple of samples, individuals 

came from multiple Latin American countries. For one sample, they came from both the US and 

the territory of Puerto Rico. We coded “region” as “US” if the sample was either from the US or 
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from both the US and Puerto Rico. The samples were coded as “not US” in all other cases. Since 

we have one sample from Trinidad & Tobago and one from Dominica, “not US” is not identical 

to “Latin American”.  The results for this analysis are shown in Table 7. There is little 

discernable difference between the correlation estimates in the US versus non-US subsamples; 

the same highly significant pattern of positive correlation for European BGA-SES and negative 

correlation for Amerindian and African BGA-SES remains unchanged in all cases. 

  

Table 7: Subgroup analysis based on region (US versus non-US samples) 
Moderator Estimated �̅� 95% Confidence Interval P-value for 

�̅� = 0 
P-value for 

subgroup equality 

European BGA 
US .155 [.109, .200] <.001 .647 

Non-US .169 [.123, .214] <.001 
Amerindian BGA 

US -.086 [-.146, -.025] <.001 .278 
Non-US -.126 [-.173, -.079] <.001 

African BGA 
US -.134 [-.174, -.093] <.001 .724 

Non-US -.122 [-.181, -.062] <.001 
Note: For each of the three BGA groups (European, Amerindian, and African) the table shows the mean Fisher’s Z 
for US and for non-US samples estimated using the correlated hierarchical errors model with robust variance 
estimation. The final column gives a p-value for equality of the two conditional means. 
   

Next, we consider whether the SES-BGA correlations might be mediated by Self-

Identified Race or Ethnicity (SIRE). This is because a large body of literature argues that social 

inequalities are primarily related to socially-defined race and not ancestry (e.g., Adkins-Jackson 

et al., 2022). We use a trinomial moderator which isolates the three subgroups of estimates 

shown in Table 2: those from samples restricted to African-Americans, those from samples 

restricted to Hispanic Americans, and those from all other samples. The results are shown in 

Table 8. For both African and Hispanic Americans, the associations between BGA and SES are 

not significantly different from the association in the Other group. Moreover, the positive 

correlation between SES and European BGA and the negative correlation between SES and 

African BGA remains significant for all the subgroups. For African-Americans, there is no 

significant correlation between SES and Amerindian BGA. This is understandable because there 

is little variance in Amerindian admixture among African Americans. As a result, few authors 

report associations with Amerindian BGA for this group and so data was available for only 4 



17 
 

samples. Further, range restriction in Amerindian admixture in this group attenuates correlations. 

Overall, the results indicate that SES-BGA correlations can be found within SIRE groups. 

Table 8: Subgroup analysis based on Self-identified Race or Ethnicity (SIRE) 
Subgroup Estimated �̅� 95% Confidence 

Interval 
P-value for �̅� P-value for 

subgroup equality  
European BGA 

African-American 
(US) 

.132 [.071, .192] .002 .199 

Hispanic-American 
(US) 

.167 [.071, .264] .006 .848 

Non-exclusive .176 [.130, .222] < .001  

Amerindian BGA 
African-American 

(US) 
-.052 [-.357, .254] .277 .253 

Hispanic-American 
(US) 

-.088 [-.161, -.016] .021 .393 

Non-exclusive -.123 [-.167, -.079] < .001  

African BGA 
African-American 

(US) 
-.124 [-.163, -.084] <.001 .505 

Hispanic-American 
(US) 

-.099 [-.197, -.001] .049 .336 

Non-exclusive -.148 [-.212, -.083] < .001  

Note: For each of the three BGA groups (European, Amerindian, and African) the table shows the mean Fisher’s Z 
for samples restricted to African-Americans, to Hispanic-Americans, and to all other (that is, non-exclusive) 
samples. The model is estimated using the correlated hierarchical errors model with robust variance estimation. The 
final column gives a p-value for equality of the restricted-samples conditional mean to the non-exclusive-samples 
conditional mean. 
 

Next we test if the relationship between BGA and socioeconomic outcomes might vary 

depending on how well the SES indicator measures relevant facets of SES. This is done because 

a large study reported that associations with genetic ancestry were more pronounced on 

comprehensive measures of SES (Fuerst et al., 2024). Therefore, we consider SES-indicator type 

(SES index versus SES component) as a moderator variable. We recorded the SES type (e.g., 

income, education, health insurance, neighborhood SES, general SES w/Education). An SES 

type was coded as general SES index if it was a composite of multiple SES indicators (e.g., 
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Hollingshead index). We recoded these categories as “general SES index” if the outcome 

involved general SES (i.e., "General SES, no Education", "General SES w/Education", "Parental 

General SES w/Education", or "Parental General SES, no Education"). The results are shown in 

Table 9. Based on the point estimates, in two of the three cases the SES composites produce 

marginally stronger BGA-SES correlations than SES indicators, but the difference is never 

statistically significant. In the case of African BGA, the point estimates are virtually identical for 

composite versus indicator SES measures. Thus, we do not find significant evidence that 

composite measures of SES are more strongly related to BGA relative to single indicators.  

Table 9: Subgroup analysis based on socioeconomic status indicator type 
 

Moderator Estimated �̅� 95% Confidence 
Interval 

P-value for �̅� 	= 0 P-value for 
subgroup equality 

European BGA 
SES indicator .142 [.104, .181] < .001 .064 

SES composite .230 [.141, .319] <. 001 

Amerindian BGA 
SES indicator -.090 [-.144, -.036] .002 .078 

SES composite -.181 [-.249, -.112] < .001 
African BGA 

SES indicator -.129 [-.169, -.090] < .001 .976 

SES composite -.128 [-.179, -.078] < .001 

Note: For each of the three BGA groups (European, Amerindian, and African) the table shows the mean Fisher’s Z 
for single-component SES measures and for composite SES measures; the model is estimated using the correlated 
hierarchical errors model with robust variance estimation. The final column gives a p-value for equality of the two 
conditional means. 
 

Finally, we examine whether there might be differences due to the geographic 

distribution of the sample (national or international vs. local); 55% of the samples were local, 

meaning that individuals came from either the same city or the same first-order administrative 

division within a country (e.g., state or province). Individuals in the remaining 45% of samples 

came either from multiple administrative divisions within a country or multiple countries. Data 

was categorized as local if it fell within a first-order administrative unit (FOAD) (e.g., US state 

or territory) within a medium size to large country or it fell within a local region within a very 

small country (even if that region included multiple FOADs). There were only three small-

country cases: Dominica, Central Valley of Costa Rica and Northern Trinidad of Trinidad & 
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Tobago. It made little sense to treat Puerto Rico as local, but then Dominica as 

national/international, so we made these three exceptions and treated these three small-country 

cases as local. The results are shown in Table 10. There is no significant evidence of differences 

between these subsamples. 

 

Table 10: Subgroup analysis based on geographical distribution of the sample (local 
versus multiple-region samples) 

 
Moderator Estimated �̅� 95% Confidence Interval P-value for �̅� 	= 0 P-value for subgroup 

equality 
European BGA 

Local .197 [.149, .246] <.001 .265 
Multiple region .161 [.117, .205] <.001 

Amerindian BGA 
Local -.134 [-.176, -.091] <.001 .445 

Multiple region -.110 [-.156, -.065] <.001 
African BGA 

Local -.129 [-.176, -.082] <.001 .836 
Multiple region -.122 [-.173, -.072] <.001 

Note: For each of the three BGA groups (European, Amerindian, and African) the table shows the mean Fisher’s Z 
for local samples and for multiple-region samples; the model is estimated using the correlated hierarchical errors 
model with robust variance estimation. The final column gives a p-value for equality of the two conditional means. 
 

V. Summary 

This paper performs a meta-analysis of estimated correlation coefficients linking African, 

Amerindian or European biogeographic ancestry to socioeconomic status. The estimated 

correlation coefficients collected in the meta-analysis originate from epidemiological studies. 

Many epidemiological studies include both biogeographic ancestry admixture proportions and 

socioeconomic status measures as explanatory variables in studying health traits, and it is 

standard procedure to estimate the correlation coefficients between these key explanatory 

variables as a monitor on statistical model under-identification or misspecification. None of the 

surveyed studies are directly concerned with estimating this correlation but rather do so for 

statistical monitoring of model reliability while focused on some other topic. By performing the 

same statistical quality control across diverse countries and samples, these epidemiological 

studies have inadvertently created a powerful body of evidence showing correlation between 

biogeographic ancestry and socioeconomic status.   
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European BGA admixture proportion shows a significantly positive correlation with SES, 

whereas both Amerindian and African BGA admixture proportions are significantly negatively 

correlated with SES. The same statistically significant patterns emerge in the directionality of the 

BGA-SES associations: European BGA admixture proportion has a positive association with 

SES whereas both Amerindian and African BGA admixture proportions have a negative 

association; all three of these signed patterns of association are highly statistically significant. 

The observed correlations are not explained by self-identified race or ethnicity (SIRE) 

since correlation estimates on samples restricted to African-American SIRE and to Hispanic-

American SIRE show essentially the same patterns as unrestricted samples. Also, it is not 

explained by particularly American historical or institutional features since the pattern of 

correlations is very similar in US samples and non-US samples.   

The correlations between BGA admixture proportions and SES are a tangential concern 

in epidemiology but have core relevance to the economic study of socioeconomic status. Since 

this meta-analysis clearly shows that BGA admixture proportions have significant univariate 

correlation with SES, it is incumbent to consider BGA admixture proportions as a candidate 

variable in economic analysis of SES. Obtaining this variable can be cumbersome and expensive 

since it requires DNA sampling and genotyping, but its complete absence from extant results 

makes the existing economic analysis of SES unreliable. There is a potential omitted-variable 

bias of notable concern.  
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Technical Appendix: Review of CHE-RVE-REML 

        The paper uses the R programming language, metaphor library, routine rma.mv to 

estimate the CHE-RVE-REML model without moderators (Table 5) and with four moderators 

each used singly (Tables 7-10). This short appendix reviews this methodology and gives some 

details of our implementation. 

    In our application the model starts with the meta-analytic database of estimated correlations, 

𝑟! , 𝑖 = 1,… ,𝑀 with numbers of observations in the original source studies of 𝑁! , 𝑖 = 1,… ,𝑀. As 

recommended by Harrer et al. (2021) our meta-analysis of estimated correlations uses as input 

the transformed values of the estimated correlations into Fisher's Z-statistics: 

 𝑍! =
"
#
ln ."$%!

"&%!
/ 

which are treated as multivariate normal with known estimation variances. 

    The restricted maximum likelihood (REML) approach to meta-analytic model estimation is 

well-established as a favored technique. For purposes of estimating the variance components it 

involves maximizing the likelihood on a reduced sample after restriction of the original set of 

observations to contrasts: each observation is replaced with its original value minus a fixed linear 

combination of the observations. This shrinks the number of linearly independent observations in 

the empirical likelihood but improves the small-sample properties of the resulting variance 

estimates. The REML estimate of the mean(s) uses the raw observations not the contrasts. In a 

simulation comparison of estimators for meta-analysis with random effects models,Viechtbauer 

(2005) concludes "the restricted maximum likelihood estimator strikes a good balance between 

unbiasedness and efficiency and, therefore, could be generally recommended." Langan et al. 

(2018) use simulation methods to compare various estimators and recommend REML for 

estimating random effects models; Pustejovsky (2021) specifically recommends REML for 

estimation of the CHE-RVE model. We use REML as implemented in the rma.mv routine via 

the option Method = REML. 

    The CHE-RVE model originates with Putejovsky and Tipton (2021); see Harrer et al. (2021, 

ch. 10) for R implementation guidelines. The CHE-RVE model is motivated by meta-analytic 

applications like ours which need to allow for non-independent sampling errors in the database 
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of study estimates. Many of the studies in our database include multiple estimates of BGA-SES 

correlations for a given BGA. For the particular BGA being analyzed let 𝑗 = 1,… , 𝑆 denote the 

set of independent samples 𝑆 ≤ 𝑀 with the number of estimates in each sample 𝐾' , 𝑗 = 1,… , 𝑆 

where 𝐾' ≥ 1. In our meta-analytic database some of the estimates come from samples with only 

one correlation estimate for that BGA whereas others have multiple estimates using different 

SES measures; see Table 1 in the paper for M and S for each BGA. 

    The CHE-RVE model begins with a three-level model of the randomness in 𝑍!: 

 𝑍! = �̅� + 𝜑! + ∑ 𝐷!'𝜔' + 𝜀!(
')" 	𝑖 = 1,… ,𝑀 

where �̅� is the mean to be estimated, 𝜀! is the (level-1) estimation error of estimate i, 𝜑! is the 

(level-2) individual-estimate level random effect, and 𝜔' is the (level-3) sample-level random 

effect. The dummy variable 𝐷!' equals one if estimate i comes from sample j and zero otherwise. 

The random effects 𝜑!, 𝜔' are mutually independent for all i,j with 𝜑!~𝑁(𝑜, 𝜎*#), 𝜔'~𝑁(𝑜, 𝜎+#) 

and independent of 𝜀! for all i,j. The known variance of 𝜀! , 𝜎,!#  is assumed to equal "
-!&.

 for each 

i; Olkin and Finn (1995) show that this well approximates the true variance for reasonably large 

𝑁! . 

    The estimation errors are assumed independent if they come from different samples, but if 

𝜀! , 𝜀!∗	come from the same sample j then they are assumed to have fixed (known) correlation 𝜌. 

This simple structure imposed on the covariance matrix of estimation errors allows Putejovsky 

and Tipton (2021) to solve the REML problem elegantly. We impute the full block-diagonal 

covariance matrix of 𝜀! , 𝑖 = 1,… ,𝑀 from 𝜌 and 𝜎,!# , 𝑖 = 1,… ,𝑀	using the R routine 

impute_covariance_matrix.  

    Putejovsky and Tipton (2021) note that this simple correlation restriction on the covariances of 

the within-sample estimation errors is necessary for their solution to the likelihood maximization 

problem but it is not necessary to impose this assumption when computing the parameter 

estimation variances. They propose a Huber-White sandwich estimator for the parameter 

estimation variances. In the "middle term" of the Huber-White sandwich estimator the 

covariance submatrix within the same-sample diagonal blocks is proxied by the outer product of 

the demeaned observations; see Tipton and Pustejovsky (2015, p. 608). Outside these block 
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diagonals the covariance matrix is set to zero. We implement this in R using vcov = "CR2" in 

metaphor with the clubsandwich library. 

    Tables 7-10 in the paper enhance the analysis done in Table 5 by including a moderator, 

giving a mixed effects model. The variance parameters are assumed constant across the 

subgroups and only the means differ. Let 𝐷!0 denote a dummy variable which is one if estimate i 

comes from the moderator subgroup and zero otherwise. The model becomes: 

 𝑍! = 𝑍1III(1 − 𝐷!0) + 𝑍"III𝐷!0 + 𝜑! + ∑ 𝐷!'𝜔' + 𝜀!(
')" 	𝑖 = 1,… ,𝑀 

    Except for the presence of two mean parameters 𝑍1III, 𝑍"III, the modeling assumptions and 

estimation methodology are unchanged. In Table 8 we also consider the case with three 

subgroups, replacing 𝑍1III(1 − 𝐷!0) + 𝑍"III𝐷!0	with 𝑍1III𝐷!01 + 𝑍"III𝐷!0" + 𝑍#III𝐷!0#	with the three 

dummy variables defined in the obvious way.  


