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Research at the intersection of quantum gravity and quantum information theory has seen sig-
nificant success in describing the emergence of spacetime and gravity from quantum states whose
entanglement entropy approximately obeys an area law. In a different direction, the Kaluza-Klein
proposal aims to recover gauge symmetries by means of dimensional reduction of higher-dimensional
gravitational theories. Integrating both, gravitational and gauge degrees of freedom in 3+1 dimen-
sions may be obtained upon dimensional reduction of higher-dimensional emergent gravity. To this
end, we show that entangled systems of two and three qubits can be associated with 5 + 1 and
9 + 1 dimensional spacetimes respectively, which are reduced to 3 + 1 dimensions upon singling
out a preferred complex direction. In the latter case, this reduction is invariant under a residual
SU(3)×SU(2)×U(1)/Z6 symmetry, the Standard Model gauge group. This motivates a picture in
which spacetime emerges from the area law-contribution to the entanglement entropy, while gauge
and matter degrees of freedom are due to area law-violating terms. We remark on a possible natural
origin of the chirality of the weak force in the given construction.

I. INTRODUCTION: THE ‘QUANTUM FIRST’-PROGRAM

If our world, as is widely believed, is quantum, it is in principle representable as a single vector evolving in Hilbert
space, and thus, all spatiotemporal notions must be reducible to this description. This suggests a research program
that has been variously called ‘Hilbert Space Fundamentalism’ [1], ‘Mad Dog Everettianism’ [2], ‘extreme Occam’s
razor’ [3], or simply ‘physics from scratch’ [4]. Essentially, rather than trying to find quantized versions of classical
notions, whether of spacetime or of classical fields, one instead starts with a quantum description, and aims to locate
the appropriate dynamics within. We will thus think of it as simply the ‘quantum first’-program (cf. [5]).

This is a formidable task. Hilbert space itself is exhaustively described by its dimension; a vector in Hilbert space
contains virtually no information regarding its physical content—a single-qubit space C2 might model an electron’s
spin just as well as a current direction in a Josephson junction; a vector |ψ⟩ in this space might designate spin up,
down, or any superposition of these.

Yet, despite this apparent paucity of information, important advances have been made. Most significantly, a
thriving research program has established surprising links between quantum mechanics and general relativity, outlining
the possibility of deriving space and time, as well as its dynamics, starting from an abstract quantum description.
Indeed, the links appear so deep that Susskind has proposed to generalize ER = EPR, the conjecture that quantum
entanglement is equivalent to wormholes in spacetime [6], to GR = QM , proposing that ‘where there is quantum
mechanics, there is also gravity’ [7]. Hence, a quantum system does not merely come equipped with a geometry, but
that geometry is dynamical, approximating general relativistic spacetimes in a classical limit.

The origin of this idea can be traced to work of Jacobson, who has shown that Einstein’s equations can be recovered
from thermodynamics in the presence of black hole horizons [8] (see also [9, 10]). These arguments rely essentially
on the area law-scaling of the Bekenstein-Hawking entropy of black holes [11]. This scaling is also observed, in many
cases, for the entanglement entropy of quantum systems—indeed, it has been proposed to explain black hole entropy
as the entanglement entropy of degrees of freedom across the horizon [12, 13].

Along a different thread, van Raamsdonk has suggested that entanglement may be responsible for spacetime connec-
tivity [14, 15]. In the AdS/CFT correspondence, the Ryu-Takayanagi formula [16] relates the entanglement between
different patches of the conformal field theory on the boundary of Anti-de Sitter space with the area of a surface
partitioning the AdS-space; if the entanglement between both goes to zero, the space partitions into two disconnected
regions.

Combining these perspectives, the linearized Einstein equations follow from ‘entanglement thermodynamics’ for
perturbations of the AdS-spacetime [17, 18]. While the bulk of this work assumes the AdS/CFT-correspondence,
Jacobson has shown that a derivation of the full Einstein equations is possible without assuming an AdS-background,
given a condition of entanglement equilibrium [19].

A way to think about this is in terms of a graph, each node of which is itself an abstract element of quantum
information—a qubit, or perhaps more generally, some finite-dimensional Hilbert space—that carries no spatial in-
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formation itself, with the edges encoding the entanglement structure of the whole system. Geometry, then, must be
reconstructed from this basic picture.

This is, essentially, the proposal made by Cao and Carroll [20] (see also [21]). Starting from a graph as described
above, they show that the metric structure of spacetime, as well as the linearized Einstein equations, can be obtained,
using an argument closely related to that of Jacobson.

Intriguingly, there appears a natural bipartitioning of the entanglement degrees of freedom in proposals such as the
one in Ref. [20]. Recall that the area-law scaling of entanglement entropy plays a crucial role in recovering spacetime.
Such a scaling is typically only observed in a very special class of states, such as the ground states of local gapped
many-body systems [22]. In Ref. [20], a generalized notion termed ‘redundancy-constrained (RC) states’ is used, which
correspond to graphs such that the entanglement entropy can be computed by summing over all the contributions of
nearest-neighbor links over a given bipartition of the system into a region R and its complement, R̄. Explicitly,

SRC(R) =
1

2

∑
i∈R,j∈R̄

I(i : j), (1)

where I(i : j) is the quantum mutual information between nodes i and j (see Fig. 1).

R R̄∂R

FIG. 1. The entanglement entropy of a region R across its boundary ∂R is computed by summing up the contributions of
entanglement ‘links’ cut by the boundary. For a state with ‘short-range’ entanglement, this yields an area law.

One can now consider states that only approximately satisfy this constraint. Then, the entanglement entropy
receives a subleading correction

S(R) = SRC(R) + Ssub(R), (2)

which can be associated with long-range entanglement or excited degrees of freedom over and above the vacuum. This
subleading correction may then be associated to the entanglement entropy of an emergent gauge theory [23].

Along similar lines, Cao [24], following work by Harlow [25], has proposed to interpret the splitting of contributions
to the entanglement entropy in terms of quantum error correcting codes (QECC)—specifically, QECC protecting
against subsystem erasure. There, the information in some state ρ is nonlocally encoded into ρ̃ in such a way as to
be protected against erasure of the subsystem R̄. Thus, there exists a decoding unitary on R

URρ̃U
†
R = ρ⊗ χ, (3)

where χ is the generically entangled state of the remaining degrees of freedom, that restores the encoded information
ρ. Thus, the full information encoded on R

⋃
R̄ can be recovered from R alone. This yields for the entropy of

ρ̃R = TrR̄(ρ̃):

S(ρ̃R) = S(χ) + S(ρ), (4)
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R R̄∂R

FIG. 2. A state with additional long-range entanglement, or entanglement due to a state ‘encoded’ into it in the sense of
quantum error correction, receives subleading corrections to the entanglement entropy from these additional terms.

where S(χ) can be interpreted as the geometric, area-law contribution to the entropy, and S(ρ) in turn as stemming
from the emergent matter fields.

It is here that our investigation begins. If dynamical spacetime emerges from the area-law contribution to the
entanglement, it seems a natural proposal to investigate the emergence of matter degrees of freedom, together with
their symmetries, from the entanglement yielding subleading corrections to the entropy—the ‘logical’, encoded state
ρ, on the above view. However, we stress that this motivation is, at this point, heuristic; the discussion in the sequel
is independent of this interpretation.

Our main result is then to show how to use a construction of Dubois-Violette and Todorov [26, 27], as extended and
clarified by Krasnov [28], to derive the exact symmetry and degrees of freedom of (half a generation of) Standard Model
fermions from the entanglement properties of a three-qubit state. This proceeds by means of a kind of ‘dimensional
reduction’: a three-qubit state can be interpreted as yielding a 9 + 1-dimensional spacetime, which can be broken
down to 3 + 1 dimensions in a way left invariant by precisely the group transformation of SU(3)× SU(2)×U(1)/Z6,
the exact gauge symmetry of the Standard Model.

One can think of this in the following way. Standard, complex quantum mechanics can, as noticed long ago by
von Weizsäcker [29] (whose ‘ur-theory’ [30] might be considered the first example of a ‘quantum first’-approach), be
associated with 3+ 1-dimensional spacetime. In more modern times, it has been shown that the three-dimensionality
of position space and the state-space of elementary quantum systems, and the necessity of their correspondence, follow
from information-theoretical considerations [31, 32], and indeed, even the Lorentz transformations can be obtained
by considering the relation between different experimenters’ descriptions [33].

These arguments can be generalized to quantum theory over the quaternions H, leading to a 5 + 1-dimensional
spacetime. Furthermore, extending to the octonions O, we obtain 9+1 dimensions [34] (which are, not coincidentally,
precisely the dimensions in which a supersymmetric Lagrangian exists [35, 36]).

These spacetimes can then be broken down to 3+1 dimensions by simply singling out a preferred complex structure—
that is, fixing a split of H into C ⊕ C and O into C ⊕ C3. It is then the observation of Dubois-Violette, Todorov,
and Krasnov [26–28] that these splits are left invariant by SU(2) × U(1)/Z2 for the quaternionic case and SU(3) ×
SU(2)×U(1)/Z6 for the octonionic one. This is then a ‘quantum first’ realization of the proposal due to Kaluza [37]
and Klein [38, 39] that higher-dimensional spacetime theories can lead to gauge fields in lower dimension.

The appeal to higher division-algebraic generalizations of quantum theory has a long and distinguished history.
Of note, Finkelstein, Jauch, Schiminovich and Speiser provided the first example of quaternionic quantum theory in
1962/1963 [40, 41]—the latter of which is remarkable for introducing a mass-generating mechanism for an SU(2)-
gauge theory by means of a quaternion-imaginary dynamical field playing much the same role as the Higgs field in
the later explanation of electroweak symmetry breaking.

Applications of the octonions to particle physics date back to work by Günaydin and Gürsey, who first proposed
using them to model the strong force [42]. The attractivity of appealing to the (normed) division algebras C, H
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and O comes from the observation that the unit complex numbers form the group U(1), the electromagnetic gauge
group, while the unit quaternions form SU(2), the gauge group of the weak interaction. Of course, due to their non-
associative nature, the unit octonions form no group at all—but still, their automorphism group is the exceptional
G2, which contains SU(3) (the gauge group of the strong interaction) as a subgroup—in fact, the subgroup preserving
one octonion imaginary direction, and thus, singling out a preferred complex structure.

This has led to an alternative, algebraic approach to models of particle physics. Dixon, for instance, focuses on the
algebra D = R⊗C⊗H⊗O (where the factor of R is technically redundant and only included for aesthetic purposes),
and uses it to build a model incorporating the complete matter and force content of the Standard Model [43]. More
recently, Furey [44, 45] has proposed her unified theory of ideals, drawing on actions of the Dixon algebra D on itself.
Stoica [46] has proposed a construction in which the Standard Model emerges from the complex Clifford algebra Cℓ6,
with the color- and electromagnetic symmetry appearing in the same way as in the model of Furey. Also of note
here is the model of Morita [47–49], giving a quaternionic version of the theory of electroweak interactions, and an
octonionic QCD. For a more thorough review of this ‘algebraic’ approach to the Standard Model, see [46].

The final piece of the puzzle then is the origin of quaternionic/octonionic quantum theory. Here, we appeal
to work by Mosseri and Dandoloff [50, 51] and Bernevig and Chen [52]: entangled states of two qubits can be
written in terms of quaternionic spinors—more accurately, the state space of a two-qubit system is given by the
quaternionic Hopf fibration (just as the state space of a single qubit, the Bloch sphere, is the complex Hopf fibration).
Likewise, three-qubit systems can be considered as octonionic spinors, whose state space is given by the octonionic
Hopf fibration. This also provides the point of origin for the emergence of the Standard Model gauge group: the
equivariance group of the octonionic Hopf fibration is Spin(9), whose subgroup respecting the splitting O ≃ C⊕ C3

is just SU(3)× SU(2)× U(1)/Z6 [28].

Furthermore, the Hopf maps in each case are entanglement sensitive—disentangling each qubit results in the space
decomposing into a product of individual qubit state spaces. The information within separable states is then fully
representable within ordinary, empty 3+ 1-dimensional spacetime; but entanglement introduces additional. ‘internal’
degrees of freedom. The heuristic picture we propose then is one where 3+1 dimensional spacetime with its dynamics
emerges from the area-law contribution to the entanglement of a quantum state, while area-law violating corrections
can be viewed as ‘bubbles’ of higher-dimensional spacetime, which, upon reduction to 3+1 dimensions, which can be
interpreted as singling out a preferred tensor product decomposition, add matter and gauge degrees of freedom.

The origin of the Standard Model symmetry and its attendant idiosyncrasies has been an active topic of research
since its inception. Grand Unified Theories (GUTs) have proposed to embed its gauge group into a larger one, re-
covering its phenomenology after appropriate symmetry breaking; however, there is a large number of such schemes
conceivable, with little guidance for choosing among them. The division algebraic approach reduces this embar-
rassment of riches somewhat, but even here, finding a unique model has been challenging, and the reason for their
appearance—what, if anything, singles them out as relevant to the description of elementary particles—is not well
understood.

Our main aim here is then to provide a physical picture that one might hope to offer some guidance. In particular,
as we will see, the division algebraic description is singled out by the geometry of qubit Hilbert spaces, potentially
significantly reducing the search space for theory-building. Furthermore, by building a bridge between the ‘quantum
first’ and division algebraic programs, we hope that the insights of each may help stimulate research within the other,
in particular by introducing the possibility of emergent matter (and gauge) degrees of freedom, but more generally
by providing a unified framework for both.

The remainder of this article is structured as follows. In Sec. II, we introduce the basic template the subsequent
three sections will follow. First, we give a brief introduction to the scenario, starting with a single qubit; then, in
Sec. II A, we present the connection of complex quantum mechanics with 3+1-dimensional spacetime. In the following
Sec. II B, we introduce the complex Hopf fibration, and show its relation to the state space of single qubits. Then, in
Sec. II C, we illustrate the importance of the group Spin(3) as the complex Hopf map’s equivariance group.

In Sec. III, the construction is generalized to two qubits, and quaternions, showing the connection to 5 + 1-
dimensional spacetime (IIIA), and the quaternionic Hopf fibration (III B). In Sec. III C, then, it is illustrated how the
group SU(2)×U(1)/Z2 emerges from the subgroup of Spin(5) leaving a quaternion imaginary direction invariant. In
Sec. IV, the construction is analogously generalized to the octonions and three qubits, 9 + 1-dimensional spacetime
(IVA), the octonionic Hopf fibration and its relevance for three-qubit entanglement (IVB), and finally, the emergence
of SU(3)× SU(2)× U(1)/Z6 as leaving a choice of complex structure invariant (IVC).

In Sec. V, we will then speculate about an extension of the model to incorporate a full generation of Standard
Model fermions by generalizing to the four-qubit case, which will also allow us to include massive states in our model,
and yield a possible natural explanation for the chirality of the weak force. Finally, we conclude in Sec. VI, and
propose some directions of further development, such as the incorporation of a Higgs mechanism by taking account
of the non-triviality of the embedding of the fibre in the Hopf fibration.
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II. THE COMPLEX CASE: SINGLE QUBITS

We start by treating the simplest case, that of single qubits in ordinary, complex quantum mechanics. Any pure
qubit state can be written as

|ψ⟩ = c0 |0⟩+ c1 |1⟩ , (5)

where c0, c1 ∈ C, |c0|2 + |c1|2 = 1, and {|0⟩ , |1⟩} denotes a standard basis of the two-qubit Hilbert space C2.
It will be useful to represent qubit states in terms of the Pauli matrices

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
,

yielding

ρψ = |ψ⟩⟨ψ| =
(
c0c

∗
0 c1c

∗
0

c0c
∗
1 c1c

∗
1

)
=

1

2

(
1 + x3 x1 − ix2
x1 + ix2 1− x3

)
(6)

=
1

2
(1+ rψ · σ) ,

with x1 = c1c
∗
0 + c0c

∗
1, x2 = i(c0c

∗
1 − c1c

∗
0), and x3 = |c0|2 − |c1|2. This yields the parametrization of the Bloch sphere

and introduces the Bloch vector rψ = (x1, x2, x3), whose components are given by the expectation values of the Pauli
matrices for the given quantum state, xi = ⟨σi⟩ψ.

A. SL(2,C) and 3 + 1-Dimensional Spacetime

The correspondence between elementary quantum systems and 3 + 1 dimensional spacetime may be explicated in
various ways. VonWeizsäcker proposed a symmetry-based argument in the ‘50s [29], which has been echoed by Brukner
and Zeilinger in more recent times [53]. Müller and Masanes give a more operationalistic argument, showing that
probabilistically interacting systems exchanging ‘minimal amounts of direction information’ yield a three-dimensional
laboratory space. Höhn and Müller then show that the descriptions of two experimenters of such a situation will be
related by an element of O+(3, 1), the orthochronous Lorentz group [33]. A similar result is obtained by Dakić and
Brukner [32].

We propose a slightly different argument here, relying on the description of points on the heavenly sphere in terms
of spinors going back to the two-spinor formalism of Penrose and Rindler [54, 55].

Consider a Lorentzian four-vector (x0, x1, x2, x3)
T . It lies on the light cone if x20 −x21 −x22 −x23 = 0. The light cone

can be equivalently represented in a spinorial way. Thus, consider Hermitian matrices of the form

X =

(
c0
c1

)(
c∗0 c∗1

)
=

1

2

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
, (7)

where c0, c1 ∈ C, yielding

x0 =
(
|c0|2 + |c1|2

)
,

x1 = (c∗0c1 + c∗1c0) ,

x2 = −i (c∗0c1 − c∗1c0) ,

x3 =
(
|c0|2 − |c1|2

)
.
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As det(X) = 0 → x20 − x21 − x22 − x23 = 0, these parametrize the light cone.
We note, for later, that matrices of this form always have a well-defined determinant

det

(
a+ b d∗

d a− b

)
= a2 − b2 − |d|2 (8)

for a, b ∈ R, and d ∈ R,C,H or O [56].
Taking the three-dimensional slice at x0 = 1, we obtain the representation in Eq. (6), and this condition is satisfied

if x21 + x22 + x23 = 1, which is the normalization condition for a pure-state qubit. This entails that (pure) qubits
parametrize directions on the Riemann (‘celestial’) sphere—in other words, each pure qubit represents a light ray. For
now, we do not attach any explicit physical interpretation to the 4-vector associated to each qubit, and consider them
merely directions in Minkowski space; later on, it will become appropriate to think of them as giving 4-momenta of
particles.

The group of automorphisms of this sphere is the Möbius group MG, which transforms a complex number z as
follows (where a, b, c, d are complex numbers such that ad− bc ̸= 0):

m(z) =
az + b

cz + d
. (9)

Then, the following mapping defines a homomorphism between SL(2,C), the group of complex 2 × 2-matrices with
unit determinant, and the Möbius group:

ϕ : SL(2,C) −→MG

M =

(
a b
c d

)
−→ m(z) = az+b

cz+d

(10)

Now consider a transformation of the matrix X of the form

X ′ =MXM†. (11)

If det(M) = 1, it follows that det(X ′) = det(X), i. e. the transformation preserves the Minkowski interval, and is
thus a Lorentz transformation. This mapping has a nontrivial kernel {1,−1}, and hence, SL(2,C) is the double cover
of SO+(3, 1). In this way, the symmetry of 3 + 1-dimensional Minkowski space emerges from the identification of the
Riemann sphere with the Bloch sphere of a single qubit.

B. The Bloch Sphere and the Complex Hopf Fibration

Above, we have already introduced the Bloch sphere representation of single qubits. The normalization condition
|c0|2 + |c1|2 = 1 implies that the Hilbert space of a single qubit is the 3-sphere S3. However, quantum states are
properly represented by rays in Hilbert space, and hence, only unique up to an overall U(1) phase factor exp (iϕ).
Taking account of this, each qubit can be represented in the projective Hilbert space S2 = S3/U(1) = S3/S1. Hence,
there must be a map taking elements of S3 to S2. This is the complex Hopf map, and can be explicitly written as
the composition of a map h1 taking points of S3 defined by complex coordinates (c0, c1) to points on the extended
complex plane C ∪ {∞},

hc1 :
S3 −→ C ∪ {∞}

(c0, c1) −→ c0c
−1
1

, (12)

and a map h2 corresponding to an inverse stereographic projection from C to S2

hc2 :
C ∪ {∞} −→ S2

c0c
−1
1 −→ (x1, x2, x3)

, (13)

such that x21+x
2
2+x

2
3 = 1. As discussed above, this is of course just the map taking a quantum state |ψ⟩ = c0 |0⟩+c1 |1⟩

to its Bloch vector representation, yielding for each coordinate [52]

xi = ⟨σi⟩ψ

= (c∗0, c
∗
1)σi

(
c0
c1

)
,
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where it is obvious that each xi is defined only up to an U(1) ambiguity.
This provides a realization of the single-qubit Hilbert space in terms of the complex Hopf fibration

S3 S1

−→ S2, (14)

which is the simplest example of a nontrivial fibre bundle, meaning that S3 ̸= S2 × S1. Physically, this nontriviality
implies the impossibility of assigning a consistent phase to every point on the Bloch sphere.

It is at this point that the necessity of the division algebra property enters into the picture: without it, there is
no way to define c0c

−1
1 , and thus, to formulate the Hopf map unambiguously. This explains why there are precisely

four such constructions, corresponding to the four division algebras R, C, H and O. Consequently, the construction
presented here has a natural endpoint at the octonionic level.

C. Spin(3) and the Complex Hopf Fibration

We will now connect the story so far with the formalism in Ref. [28]. Thus, consider matrices of the form

X(r, c) =

(
r Lc
Lc∗ −r

)
, r ∈ R, c ∈ C, (15)

where by Lc we mean left-multiplication by c (for the commutative complex numbers, this is obviously not a salient
distinction, but it will become important in the generalization to higher division algebras). This is just the matrix
rψ · σ from Eq. (6) with r = x3 and c = x1 − ix2.
These matrices generate the Clifford algebra Cℓ3, as they fulfill the relation

X(r, c)X(r, c) = (r2 + |c|2)1. (16)

Furthermore, these matrices generate the group Spin(3) in the case of r2 + |c|2 = 1: a rotation along an axis in R3

can be realized by an even number of reflections, and conjugating a matrix of the form given in Eq. (16) by another,
yielding

X(r, c) −→ −X(r′, c′)X(r, c)X(r′, c′), r′2 + |c|′2 = 1, (17)

produces a reflection along (r′, c′) ∈ R3 [28].
The group Spin(3) here can also be understood as the equivariance group of the complex Hopf fibration, that is,

the Hopf map is equivariant with respect to the action of Spin(3). This becomes explicit by noting that the map can
be written in terms of coset spaces [57]:

S3 S1

−→ S2 ≡ Spin(3)

Spin(1)

Spin(2)
Spin(1)−→ Spin(3)

Spin(2)
. (18)

Here, the action of Spin(3) on S2 is induced by its action on R3, with S2 just being the set of unit-length vectors
of R3, and the action of Spin(3) on S3 is given by the isomorphism Spin(3) ≃ Sp(1) ≃ U(1,H), which acts by left
multiplication on (unit) quaternions, i. e. S3.

III. THE QUATERNIONIC CASE: TWO QUBITS

The above construction admits a ready generalization to the quaternionic case. The skew-field of quaternions H can
be obtained from the complex numbers by starting with two complex numbers c0 = r0 + r1i and c1 = r2 + r3i (where
we use bolding to mark quaternion imaginary directions), and introducing j such that j2 = −1, which anticommutes
with i. Then, a quaternion q0 is given by

q0 = c0 + c1j

= r0 + r1i+ r2j+ r3k,

where we have introduced ij = −ji = k as the third quaternion imaginary unit. This directly entails Hamilton’s
relations

i2 = j2 = k2 = ijk = −1,
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which fully define quaternionic multiplication.
Quaternionic conjugation is the operation taking q0 to q∗0 with

q∗0 = r0 − r1i− r2j− r3k,

which can be used to define the norm |q0|2 = q0q
∗
0 . This allows us to define a multiplicative inverse q−1

0 =
q∗0

|q0|2 ,

making H into a normed division algebra.
An arbitrary two-qubit state can be written in the form

|ψ⟩ = c0 |00⟩+ c1 |01⟩+ c2 |10⟩+ c3 |11⟩ , (19)

with |c0|2 + |c1|2 + |c2|2 + |c3|2 = 1. This state is separable if c0c3 = c1c2.
Due to the normalization, each two-qubit state can be represented by a point on the 7-sphere S7. We introduce a

pair of quaternions

q0 = c0 + c1j

q1 = c2 + c3j,

and define the quaternionic Pauli matrices

σq1 =

(
0 1
1 0

)
, σq2 =

(
0 i
−i 0

)
,

σq3 =

(
0 j
−j 0

)
, σq4 =

(
0 k
−k 0

)
,

σq5 =

(
1 0
0 −1

)
.

(20)

With these, we can define a quaternionic ‘Bloch vector’ with coordinates

xi = ⟨σqi ⟩ψ = (q∗0 , q
∗
1)σ

q
i

(
q0
q1

)
.

A. SL(2,H) and 5 + 1-Dimensional Spacetime

Analogously to Sec. IIA, we can write a point in 5 + 1-dimensional Minkowski-space by means of the quaternion
Hermitian matrix

X =
1

2

(
x0 + x5 x1 − x2i− x3j− x4k

x1 + x2i+ x3j+ x4k x0 − x5

)
, (21)

whose determinant again gives the 5 + 1-dimensional Minkowski interval, yielding det(X) = 0 → x20 − x21 − x22 − x23 −
x24 − x25 = 0. On these, the Lorentz transformations again act via conjugation by matrices from SL(2,H).
Due to the non-commutativity of the quaternions, some care has to be taken in defining this group. One possibility

here is to take SL(2,H) to be the group of 2× 2 matrices Mq with quaternionic entries,

Mq =

(
a b
c d

)
, a, b, c, d ∈ H, (22)

such that the Dieudonné determinant ∆(Mq) =
∣∣ad− aca−1b

∣∣ is equal to 1 [58]. Alternatively, one can construct the
group via its Lie algebra sl(2,H) [56].
We can now again, appealing to the Bloch representation, suppose each quaternionic qubit to parametrize a lightlike

direction on the heavenly sphere, and obtain the restricted Lorentz group SO+(5, 1). Hence, entangled two-qubit states
give rise to the symmetries of 5 + 1-dimensional Minkowski space [34].

Now suppose we single out a preferred complex structure on H, yielding a split H ≃ C⊕C. Suppose we single out
i and thus, require that the Lorentz transformations commute with it. This will restrict SL(2,H) to SL(2,C), thus
to the symmetries of 3+ 1-dimensional Minkowski space. The extra spatial dimensions in this picture, x3 and x4, are
due to the additional quaternionic imaginary directions j and k, and hence, are “ignored” by singling out a complex
structure.
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This is the first important point to note: if we want to represent quaternionic quantum mechanics within 3 + 1-
dimensional spacetime, we have to single out a preferred complex structure. Kaluza-Klein like dimensional reduction
can thus be achieved by means of identifying a preferred copy of the complex plane within a higher division algebra.
The motivation for such a singling out might then be given by the need to represent data obtained from such entangled
states in the spacetime emerging from the area-law portion of the entanglement, with respect to which we might think
of additional entanglement as introducing an ‘internal’ geometry.

B. Two Qubits and the Quaternionic Hopf Fibration

As in the complex case, we have above already implicitly introduced the second, quaternionic, Hopf fibration. To
make it more explicit, we again start with a map from the two-qubit state space S7 to the extended quaternionic
plane,

hq1 :
S7 −→ H ∪ {∞}

(q0, q1) −→ q0q
−1
1

, (23)

which is then composed with the inverse stereographic projection

hq2 :
H ∪ {∞} −→ S4

q0q
−1
1 −→ (x1, x2, x3, x4, x5)

, (24)

where again
∑5
i=1 x

2
i = 1.

Thus, this shows how S7 is realized as a nontrivial S3-fibration over S4,

S7 S3

−→ S4, (25)

exemplified in the fact that two points (q0, q1) and (q0q, q1q) where |q|2 = 1 are mapped onto the same point of the
base space S4.

The most interesting aspect of this map is that it is entanglement sensitive [50]: for each state with c0c3 = c1c2, i.
e. for each separable state, we have

x3 = x4 = 0 =⇒ h1(q0, q1) ∈ C ⊂ H. (26)

Thus, for non-entangled qubits, the fibration simplifies to S2 ⊗ S2, the product of the individual qubit spaces, and
the extra dimensions associated with the additional quaternionic imaginary units vanish. Hence, only entangled qubit
spaces lead to the above description proper. The fiber in the construction then contains the degrees of freedom of one
qubit, while the base space contains the other plus the entanglement degrees of freedom.

This also means the construction can be iterated: the S3 fiber, as the state space of the primary qubit, can itself
again be written as an S1 fibration over a S2 base.

C. Spin(5) and SU(2)× U(1)/Z2

As in the discussion of the complex case (Sec. II C), following Ref. [28] we consider matrices of the form

X(r, q) =

(
r Lq
Lq∗ −r

)
, r ∈ R, q ∈ H,

where here, due to the non-commutative nature of the quaternions, the specification of left-multiplication is essential.
These matrices now generate Spin(5) in the case of r2 + |q|2 = 1.

As in the complex single-qubit case, Spin(5) can be understood as the equivariance group of the quaternionic Hopf
fibration [59], where again the Spin(5)-action on the 4-sphere S4 is induced by its action on R5, and its action on the
7-sphere S7 follows from the isomorphism Spin(5) ≃ Sp(2) = U(2,H) by the left action of U(2,H) on H2.

As before, we can write the Hopf fibration in terms of coset spaces to make this more explicit, yielding [57]

S7 S3

−→ S4 ≡ Spin(5)

Spin(3)

Spin(4)
Spin(3)−→ Spin(5)

Spin(4)
. (27)
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It can now be shown that the subgroup of Spin(3) preserving the split H ≃ C ⊕ C is equal to SU(2) × U(1)/Z2.
To extend to the octonionic case, the argument proceeds on the Lie algebra level. We will not review this argument
in its entirety here, and instead refer to the presentation in Ref. [28].

However, thanks to the associativity of the quaternions, there exists a way to cast the argument in matrix terms,
which we reproduce here in summary to build some intuition for the general claim.

First, note that we can represent quaternions as 2× 2 unitary matrices,

q =

(
z u

−u∗ z∗

)
, (28)

with z, u ∈ C. Quaternion conjugation then reduces to Hermitean conjugation, q∗ = q†, and the quaternionic norm is
given by |q|2 = 1

2Tr
(
qq†
)
= det(q).

Spin(5) can then, via the exceptional isomorphism with U(2,H), be represented by 2×2 matrices with quaternionic
entries,

g =

(
A B
C D

)
, (29)

with A, B, C and D being quaternions, viewed as 2× 2 matrices. These act on quaternionic column vectors

S =

(
q
p

)
=

 z u
−u∗ z∗

v w
−v∗ w∗

 ∈ H2 (30)

Now, as before, fix a quaternion imaginary direction i. Then, the quaternions commuting with this choice are those
whose j, k-components vanish. In terms of the representation as 2 × 2-matrices, these are the diagonal matrices.
Consequently, we are left with the subgroup of U(2,H) where A, B, C and D are diagonal matrices satisfying
constraints imposed by the requirement of preserving the square norm [28], which can be parametrized as follows:

A =

(
eiϕa 0
0 e−iϕa∗

)
,B =

(
eiϕb 0
0 e−iϕb∗

)
C = −

(
eiϕb∗ 0
0 e−iϕb

)
,D =

(
eiϕa∗ 0
0 e−iϕa

)
The action on S then induces the action on the complex subspaces given by(

z
w

)
−→ eiϕ

(
a b

−b∗ a∗

)(
z
w

)
(
u
v

)
−→ eiϕ

(
a b

−b∗ a∗

)(
u
v

)
,

(31)

thus showing that the subgroup preserving the split is just SU(2) × U(1)/Z2. This has, in fact, a nicely intuitive
interpretation: the SU(2) ≃ SO(3) transformation acts on the {x1, x2, x5}-coordinates of the base space, while the
U(1) ≃ SO(2) permutes the {x3, x4}-directions. Hence, the splitting of H into two copies of C has the effect that the
transformations ‘mixing’ the two sets of coordinates are removed, leaving only those associated with each complex
subspace individually.

It should be noted that we are engaging in some double-counting of degrees of freedom, here: the {x1, x2, x5}-
coordinates that are taken to parametrize the celestial sphere in Sec. III A is here taken to be subject to the SU(2)-
symmetry. This will be addressed in Sec. V.

IV. THE OCTONIONIC CASE: THREE QUBITS

The third step in this construction takes us to the octonionic case. Remarkably, this is also the final step: the
octonions are the largest division algebra, and the octonionic one is the final Hopf fibration. The next algebra that
can be constructed via the Cayley-Dickson process, the sedenions, is no longer a division algebra, as it possesses
nontrivial zero divisors, and hence, the Hopf map cannot always be defined.

There is thus a certain finality to this case. Having this construction naturally stop here then may go some way
towards explaining why it is just this case—and not any one further ‘up the ladder’—that might play a role in nature.
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More complex states then should not be expected to bring anything fundamentally new to the table—or at least,
nothing that yields novel gauge symmetries in the way described here.

We will not give an in-depth introduction to the octonion algebra here, instead referring the reader to Baez’
magnificent exposition of their manifold subtle, and sometimes surprising, connections with the broader mathematical
landscape [56]. Suffice it to say, here, that octonions can be generated by taking a pair of quaternions and introducing
an additional imaginary unit, e4 (where we identify (i, j,k) ≡ (e1, e2, e3)), yielding (following the conventions of [52])

o0 = q0 + q1e4

= r0 + r1e1 + (r2 + r3e1)e2︸ ︷︷ ︸
q0

+ [r4 + r7e1 + (r6 − r5e1)e2]︸ ︷︷ ︸
q1

e4.

This gives the quaternionic triples

(123), (246), (435), (367), (651), (572), (714).

A salient property of the octonions is their non-associative nature: (eiej)ek = −ei(ejek) for i ̸= j ̸= k and eiej ̸= ±ek.
Octonions are, however, still alternative: for any two elements o1, o2 ∈ O, it holds that

(o1o1)o2 = o1(o1o2), (o1o2)o1 = o1(o2o1), (o2o1)o1 = o2(o1o1).

Octonion conjugation takes o0 to o∗0 with

o∗0 = r0 −
7∑
i=1

riei,

which again lets us define a norm |o0|2 = o0o
∗
0 =

∑8
i=0 r

2
i and a multiplicative inverse o−1

0 =
o∗0

|o0|2 .

An arbitrary three-qubit state can be written as

|ψ⟩ = c0 |000⟩+ c1 |001⟩+ c2 |010⟩+ c3 |011⟩
+c4 |100⟩+ c5 |101⟩+ c6 |110⟩+ c7 |111⟩ ,

(32)

with
∑8
i=0 |ci|2 = 1. The normalization condition entails that a three-qubit state can be represented by a point on

the 15-sphere S15. We now define the following four quaternions:

q0 = c0 + c1e2, q1 = c2 + c∗3e2
q2 = c4 + c5e2, q3 = c6 + c∗7e2,

(33)

which we combine into the octonions

o0 = q1 + q2e4
o1 = q3 + q4e4.

(34)

This particular choice avoids introducing an anisotropy on S15 [52].
We can now introduce an octonionic analogue of the Pauli matrices

σo1 =

(
0 1
1 0

)
σoi =

(
0 ei−1

−ei−1 0

)
σo9 =

(
1 0
0 −1

)
,

where i runs from 2 to 8. This allows us to define an octonionic ‘Bloch vector’, whose coordinates are

xi = ⟨σoi ⟩ψ = (o∗0, o
∗
1)σ

o
i

(
o0
o1

)
,

with i here running from 1 to 9.
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A. ‘SL(2,O)’ and 9 + 1-Dimensional Spacetime

Despite the nonassociativity of the octonions, the general picture described above is still valid. As before, we can
take matrices of the form

X =
1

2

(
x0 + x9 x1 −

∑7
i=1 xi+1ei

x1 +
∑7
i=1 xi+1ei x0 − x9

)
(35)

to parametrize the light-cone in 9 + 1-dimensional Minkowski space (recall that such matrices always have a well-
defined determinant, Eq. (8)), on which the Lorentz transformations are realized via conjugation by matrices from
‘SL(2,O)’. However, the octonions being non-associative in addition to non-commutative, it is not immediately clear
what, exactly, could be meant by this group. Nevertheless, it can be shown that a construction exists that generalizes
the complex and quaternionic case, and again allows us to think of (pure) octonionic ‘qubits’ as parametrizing the
9 + 1-dimensional celestial sphere [60] (s. a. [56, 61]).

B. Three Qubits and the Octonionic Hopf Fibration

Due to the normalization |o0|2+ |o1|2 = 1, an octonionic qubit defines a point on the sphere S15. There again exists
a map taking points of the sphere to the extended octonionic plane,

ho1 :
S15 −→ O ∪ {∞}

(o0, o1) −→ o0o
−1
1

, (36)

which can then be projected to S8 by means of

ho2 :
O ∪ {∞} −→ S8

o0o
−1
1 −→ (xi)i=1...9

, (37)

once more with
∑9
i=1 x

2
i = 1. As before, this is just the map taking (o0, o1) to the ‘Bloch-vector’ coordinates,

h2 ◦ h1 (o0, o1) = (xi)i=1...9 . (38)

This realizes S15 as an S7-fibration over an S8 base,

S15 S7

−→ S8, (39)

and as in the previous case, the map reduces to a projection into the complex subspace of O in case the state is
separable into a single-qubit and two-qubit state. Hence, the base space S8 contains the (projective) state of one
qubit, along with entanglement degrees of freedom, while the fiber contains the state of the leftover two qubits.

C. Spin(9) and SU(3)× SU(2)× U(1)/Z6

As with the previous two sections, there exists a generalization of the connection between the spin-groups and Hopf
fibrations to the octonionic case. One can arrive at an analogous description of the group Spin(9) in terms of matrices
of the form given in Eq. (15), with Lc replaced by Lo, denoting left-multiplication by octonions. However, we can
also again simply note that the octonionic Hopf fibration can be equivalently given as [62]

S15 S7

−→ S8 ≡ Spin(9)

Spin(7)

Spin(8)
Spin(7)−→ Spin(9)

Spin(8)
. (40)

Then, one must find the subgroup of Spin(9) respecting a split O ≃ C ⊕ C3, that is, singling out an octonion
imaginary direction. It was shown by Dubois-Violette and Todorov [27] (see also [26, 63, 64]), and put into a more
explicit form by Krasnov [28], that this is just the gauge group of the Standard Model, SU(3)× SU(2)× U(1)/Z6.

We will not give the full argument here, and refer to the cited literature instead. However, as in the quaternionic
case, there is an intuitive way of viewing the group’s action on the base space of the Hopf fibration. Under the
split O ≃ C ⊕ C3, the coordinates xi split into two sets, {x1, x2, x9} from the singled-out complex subspace, and
{x3, x4, x5, x6, x7, x8} from the additional octonionic complex directions (the entanglement degrees of freedom). Here,
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the first set characterizes one qubit, while the second gives the entanglement with the other two. Thus, we must look
at the transformations that do not mix these sets.

As before, the triplet {x1, x2, x9} is acted on by rotations from SO(3) ≃ SU(2). We now use the embedding of
U(1)× SU(3) into SU(4), given by

(α, g) −→
(
α−3 0
0 αg,

)
(41)

where α ∈ U(1) and g ∈ SU(3) [28]. With SU(4) ≃ Spin(6), this then acts on the six remaining directions, as
required.

Finally, from the above embedding, one sees that the O2-spinor splits into two representations, with the single
factor of C being associated to an SU(3)-singlet of U(1)-charge −1, and the C3 associated to a SU(3) triplet of
U(1)-charge 1

3 , both transforming as a doublet under SU(2) [28]. Consequently, the octonionic qubit can be seen
to contain precisely one generation of left-handed particles with the quantum numbers of the Standard Model, after
being split into a leptonic part from the factor C and a quark part from C3.

V. ENTANGLEMENT AND MASSIVE PARTICLES

The above has given us a way to interpret the degrees of freedom contained within a single octonionic qubit as
the left-handed part of one generation of the fermion content of the Standard Model, transforming under the gauge
symmetry SU(3) × SU(2) × U(1)/Z6 in the appropriate way, after singling out a complex direction and splitting O
into C⊕ C3.
However, some ambiguity still exists about the coordinates {x1, x2, x9}: if we view the octonionic spinor as spanning

the 9-dimensional heavenly sphere, these coordinates should be interpreted as the spatial coordinates upon dimensional
reduction by means of singling out a special complex direction; yet, they are acted upon by the SU(2)-part of the
Standard Model symmetry.

What comes to our aid is the observation that only half the particle content—the left-handed part—of the Standard
Model is subject to the SU(2)-symmetry: the Standard Model is a chiral theory. Hence, if we instead view {x1, x2, x9}
as spanning the 3-dimensional celestial sphere, only the U(1)× SU(3)-symmetry remains, and the O2-spinor models
a right-handed generation instead.

It then seems suggestive to move on to O4 ≃ C16, which is indeed large enough to accommodate a full generation
of Standard Model fermions.

But let us first step back and observe that, so far, we have only considered pure states. These, as discussed above,
give rise to light-like vectors (in 3 + 1, 5 + 1, and 9 + 1 dimensions respectively). Hence, these can, at best, model
massless particles propagating at the speed of light. However, we can appeal here to an observation due to Kiosses
[65] and Morikoshi [66]: while a pure density matrix will have a Bloch vector of norm 1, a mixed-state density matrix
defines a point at the interior of the Bloch sphere—and hence, in the correspondence above, a time-like direction
within the light-cone, in other words, the propagation of a massive particle.

Let us for the moment consider a single, unnormalized spinor

|ψ⟩ =
(
a
b

)
, (42)

such that a, b ∈ C, |a|2 + |b|2 = k0. Its density matrix is

ρψ =
1

2

(
k0 + k3 k1 − ik2
k1 + ik2 k0 − k3

)
, (43)

which yields

det(ρ) = k20 − k21 − k22 − k23 = 0. (44)

We can find a linearization of this equation of the form(
k0 −

3∑
i=1

kiσi

)
|ψ⟩ = 0. (45)

Acting on this from the left with ⟨ψ| recovers Eq. 44. This has the form of a Weyl-equation in the momentum
representation; hence, we have renamed our coordinates xi → ki to illustrate this interpretation.
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Explicitly, the ki are:

k0 = |a|2 + |b|2
k1 = a∗b+ b∗a
k2 = −i(a∗b− b∗a)
k3 = |a|2 − |b|2

(46)

Now, consider again an entangled state of the form

|Ψ⟩ = a |00⟩+ b |01⟩+ c |10⟩+ d |11⟩ , (47)

with ⟨Ψ|Ψ⟩ = K0. We can compute the Ki by appealing to the 4 × 4-matrix representation of the quaternion Pauli
matrices

σq1 =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , σq2 =

 0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

 ,

σq3 =

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 , σq4 =

 0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

 , (48)

σq5 =

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

This yields the following:

K0 = ⟨Ψ| Ψ⟩ = |a|2 + |b|2 + |c|2 + |d|2
K1 = ⟨Ψ|σq1 |Ψ⟩ = a∗c+ b∗d+ c∗a+ d∗b
K2 = ⟨Ψ|σq2 |Ψ⟩ = i(a∗c− b∗d− c∗a+ d∗b)
K3 = ⟨Ψ|σq3 |Ψ⟩ = a∗d− b∗c− c∗b+ d∗a
K4 = ⟨Ψ|σq4 |Ψ⟩ = i(a∗d+ b∗c− c∗b− d∗a)
K5 = ⟨Ψ|σq5 |Ψ⟩ = |a|2 + |b|2 − |c|2 − |d|2

(49)

With these, |Ψ⟩ obeys the Weyl equation (
K0 −

5∑
i=1

Kiσ
q
i

)
|Ψ⟩ = 0. (50)

Now let us introduce two (non-normalized) qubits

|ψA⟩ =
(
a
c

)
,

|ψB⟩ =
(
b
d

)
,

(51)

which combine into the four-component spinor

|ΨAB⟩ = |ψA⟩ ⊕ |ψB⟩ =

acb
d

 . (52)

(Compare the action of SU(2)× U(1) in Eq. (31) and the resulting decomposition of the quaternionic spinor.) With
these, we see that the components K0, K1, K2 and K5 can be decomposed:

K0 = kA0 + kB0 = ⟨ψA| ψA⟩+ ⟨ψB | ψB⟩
K1 = kA1 + kB1 = ⟨ψA|σ1 |ψA⟩+ ⟨ψB |σ1 |ψB⟩
K2 = −kA2 + kB2 = −⟨ψA|σ2 |ψA⟩+ ⟨ψB |σ2 |ψB⟩
K5 = kA5 + kB5 = ⟨ψA|σ3 |ψA⟩+ ⟨ψB |σ3 |ψB⟩

(53)
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If now K3 = K4 = 0 (that is, the state is separable), this leads to two equations of the form of Eq. (45) for |ψA⟩ and
|ψB⟩.
Furthermore, we note that we can write

K3 + iK4 = 2(d∗a− b∗c)
= −2i⟨ψB |σ2|ψA⟩

K3 − iK4 = 2(a∗d− c∗b)
= 2i⟨ψA|σ2|ψB⟩

(54)

which leads us to

K3 = −i ⟨ψB |σ2 |ψA⟩+ i ⟨ψA|σ2 |ψB⟩
K4 = −⟨ψB |σ2 |ψA⟩ − ⟨ψA|σ2 |ψB⟩ .

(55)

Let us now make the replacement |ψA⟩ → |ψ′
A⟩ = σ2 |ψA⟩. This finally yields:

K0 = ⟨ψ′
A| ψ′

A⟩+ ⟨ψB | ψB⟩
K1 = −⟨ψ′

A|σ1 |ψ′
A⟩+ ⟨ψB |σ1 |ψB⟩

K2 = −⟨ψ′
A|σ2 |ψ′

A⟩+ ⟨ψB |σ2 |ψB⟩
K3 = −i ⟨ψB | ψ′

A⟩+ i ⟨ψ′
A| ψB⟩

K4 = −⟨ψB | ψ′
A⟩ − ⟨ψ′

A| ψB⟩
K5 = −⟨ψ′

A|σ3 |ψ′
A⟩+ ⟨ψB |σ3 |ψB⟩

(56)

We can then write Eq. (50) for |ΨAB⟩ in the following block matrix form(
K012 +K1σ1 +K2σ2 +K5σ3 (K4 − iK3)12

(K4 + iK3)12 K012 −K1σ1 −K2σ2 −K5σ3

)(
|ψ′
A⟩

|ψB⟩

)
= 0, (57)

If we now introduce

me±i
ϕ
2 = −K4 ∓ iK3, (58)

we obtain,

(K0 +K1σ1 +K2σ2 +K5σ3) |ψ′
A⟩ = me−i

ϕ
2 |ψB⟩ ,

(K0 −K1σ1 −K2σ2 −K5σ3) |ψB⟩ = mei
ϕ
2 |ψ′

A⟩ ,
(59)

or, after multiplication of the first with ei
ϕ
2 [65],

(K0 +K1σ1 +K2σ2 +K5σ3) e
iϕ2 |ψ′

A⟩ = m |ψB⟩ ,
(K0 −K1σ1 −K2σ2 −K5σ3) |ψB⟩ = mei

ϕ
2 |ψ′

A⟩ ,
(60)

where we see that |ψA⟩ picks up a U(1) phase factor from the rotation through the circle m2 = K2
3 +K2

4 by an angle
ϕ. This, we recall, is the U(1) of the SU(2) × U(1)-subgroup of Spin(5) respecting the split H ≃ C ⊕ C. If we thus
want to keep this as a symmetry of the theory, we should require that it remains invariant under such transformations.
Consequently, we see that the symmetry preserving the split indeed acts as a gauge transformation.

This identification of the U(1) phase with electric charge is also made by Budinich [67], where the above equation
is interpreted as describing the proton and the neutron.

Absorbing the phase factor into our definition of |ψ′
A⟩, this can be brought into a more standard form by introducing

|Ψ′
AB⟩ =

(
|ψB⟩
|ψ′
A⟩

)
(61)

together with the matrices γi in the chiral representation

γ0 =

(
0 12

12 0

)
, γi =

(
0 σi

−σi 0

)
, (62)

which finally yields the Dirac equation (
4∑
i=0

γipi −m

)
|Ψ′
AB⟩ = 0, (63)
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where we have for ease of notation relabeled K5 → p3, and otherwise Ki → pi. Note that, to recover K2
0 −
∑
iK

2
i = 0,

we must act on this from the left with
〈
Ψ̃′
AB

∣∣∣ = |Ψ′
AB⟩

†
γ0.

Now introducing

γ5 = iγ0γ1γ2γ3 =

(
−12 0
0 12

)
(64)

and the left- and right-chiral projectors

PL = 1
2 (14 − γ5) =

(
12 0
0 0

)
,

PR = 1
2 (14 + γ5) =

(
0 0
0 12

)
,

(65)

we identify the left- and right-chiral components, |ψL⟩ = PL |Ψ′
AB⟩ = |ψB⟩ and |ψR⟩ = PR |Ψ′

AB⟩ = |ψ′
A⟩. Hence,

the entangled two-qubit state can be interpreted as a left- and a right-handed spinor in 3 + 1 dimensions of mass m,
with m2 = K2

3 +K2
4 = K2

0 −K2
1 −K2

2 −K2
5 . For vanishing entanglement, we again obtain two separate instances of

S2, parametrizing two points, two lightrays on the celestial sphere in three dimensional space.
Consequently, we have two different interpretations of the two-qubit state: in the interpretation given in Sec. III,

we obtain the internal symmetries of a left-handed fermion generation (without color degrees of freedom, i. e.
SU(2) × U(1)/Z2), while the interpretation in this section yields the spatial degrees of freedom of a left- and a
right-handed fermion, together with the internal U(1) of the right-handed part.

Putting both together, then, yields all the right ingredients for a unified description of a full generation (again,
without the color symmetry). As H4 ≃ C8, this means that we need a three-qubit state, however, now interpreted in
terms of two copies of the construction referring to the quaternionic Hopf fibration.

This then suggests an extension of these observations to the octonionic case. The move from O2 to O4 is equivalent
to moving from a three-qubit to a four-qubit state. This gives rise to two copies of the octonionic Hopf fibration—
which may be motivated due to the fact that there is no fourth fibration, and thus, the construction as presented in
this paper finds its natural endpoint there.

As discussed in Sec. IVC, the coordinates after singling out a complex direction split into two sets, {K0,K1,K2,K9}
and {K3,K4,K5,K6,K7,K8} in the notation of this section, and with the norm K0 made explicit. These obey

K2
0 −K2

1 −K2
2 −K2

9 = K2
3 +K2

4 +K2
5 +K2

6 +K2
7 +K2

8 , (66)

where the right half (giving the ‘mass term’ as in Eq. (58)) is acted on by the SO(6) ≃ SU(4) into which the
SU(3)×U(1)-part of the Standard Model symmetry is embedded, as in Eq. (41). Thus, we see that the octonionic qubit
can be interpreted, analogously to the quaternionic one, as the left-handed part of one family of fermions transforming
under the full Standard Model symmetry SU(3) × SU(2) × U(1)/Z6, or as a right-handed part, together with the
energy-momentum four-vectors of the left- and right-handed fermion, transforming under the residual SU(3)×U(1)-
symmetry. Putting both together, then, seems well poised to yield the description of a full generation of fermions.
However, we leave the full formulation of the model for future work.

We note here that in this form, the model is also closely related to that proposed by Budinich [67].

VI. CONCLUSION

The present study draws inspiration and arguments from several disparate sources, aiming to integrate them into
a coherent whole. These avenues are, as delineated above:

◦ The ‘quantum first’ program of deriving physics from scratch, starting from a quantum state in Hilbert space,

◦ the Kaluza-Klein-like emergence of forces and matter from dimensional reduction,

◦ the connection between spacetimes of dimensions 2 + 1, 3 + 1, 5 + 1 and 9 + 1 and the division algebras R, C,
H and O,

◦ the division-algebraic approach to particle physics, and

◦ the application of division algebras to entanglement theory.
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In summary, we seem to have arrived at an not altogether unpleasant picture. The background of spacetime, together
with its dynamics, emerges from large-scale properties of the area-law contribution to the total entanglement entropy.
Area-law violating contributions, which can be viewed as due to an ‘encoded’ state in the sense of quantum error
correction, on the other hand, yield gauge- and matter-fields. These can be viewed as what one might picturesquely
call ‘bubbles’ of higher dimensional spacetime, which, upon reduction to the 3 + 1-dimensional background, yield the
familiar gauge symmetries of the Standard Model, along with appropriately transforming matter fields, in a novel
realization of the Kaluza-Klein mechanism.

In this vein, we have reviewed how a succession of tensor product spaces of elementary systems gives rise to a
succession of constructions based on the Hopf fibration, terminating with the final octonionic case. Using only the
postulate of singling out a preferred imaginary direction, motivated by the requirement of representing all higher-order
systems within the 3 + 1-dimensional spacetime associated to the elementary case of the single qubit, we have seen
that the largest of these cases, as shown in [26, 28, 63, 64], gives rise to the exact gauge group of the Standard Model,
complete with the correct transformation laws for lepton and quark states (of a single handedness).

Furthermore, by including one last doubling, taking us to four qubits in the Hilbert space C16 ≃ O4, we sketched
a possibility to include both left- and right-handed fermion states, as well as extending the description to massive
particles, giving an intrinsic explanation of the chirality of the weak interaction as due to the fact that one set of
directions for one of the two Hopf fibrations in this case is taken up as spanning the celestial sphere.

Thus, a state of four qubits appears to be a microcosm containing many of the ingredients necessary to build up
our universe: we get the spacetime and internal symmetries of the right-handed half of one generation of massive
Standard Model fermions in 3 + 1-dimensions, and the internal symmetries of the left-handed half.

Furthermore, as this construction reaches its natural end-point with the octonionic Hopf fibration, the discovery of
additional particles or ‘fifth’ forces would not be easily accomodated, and thus, constitute strong evidence against it.

The above does not pretend to give a full theory. Its intent is merely to point out that many of the ingredients
making up the most fundamental theory of particle physics, the Standard Model, seem to crop up in an—at first
sight—entirely unrelated setting, namely, the structure of entanglement in qubit Hilbert spaces. The characteristics
of the Standard Model are often regarded as arbitrary, unsightly, and odd—their independent appearance in two
unrelated settings, then, would seem to be doubly odd. Hence, one might venture the more parsimonious hypothesis
that there is, in fact, a deep relation between the two areas, whose outline the present account has just begun to
trace.

On the basis that this is indeed more than accidental, we have provided a sketch pertaining to how a connection
between these fields might be realized, by incorporating ideas from the ‘quantum first’ program. Thus, the present
proposal is best understood as attempting to provide a suitable physical background within which the seemingly
disconnected strands outlined above fall naturally into place.

However, there remains much work to be done in putting this idea on the solid footing it needs to be fully convincing.
For one, there still seems to be an element of choice in the question of which complex structure to preserve; several
inequivalent options are discussed in Ref. [28]. There are, of course, also many more elements of the Standard
Model our present discussion has not touched upon—such as its generational structure, the values of elementary
masses/Yukawa couplings and interaction strengths, the mixing angles, and others.

One intriguing problem is the inclusion of a Higgs mechanism. Here, we offer up the following observation: the
above discussion implicitly assumed that it is possible to associate a single distinguished imaginary axis with each
point of the base manifold of the Hopf fibration. However, the nontriviality of the bundle means that this ultimately
cannot be done. This is well known in the standard qubit case, where it represents just the impossibility of assigning
a consistent phase to every point on the Bloch sphere.

A difficulty of this sort was already encountered by Finkelstein, Jauch, Schiminovich and Speiser in their original
formulation of quaternionic quantum mechanics [41]. There, it was proposed that the ‘special’ quaternion imaginary
direction should be promoted to a dynamical variable, thus introducing an additional scalar degree of freedom into
the theory (a move that was generalized to the octonionic case by Casalbouni, Domokos, and Kövesi-Domokos [68]).
Furthermore, it was shown that, due to this addition, the gauge bosons of the resulting SU(2) gauge theory acquire
mass, meaning that the quaternionic field assumes a Higgs boson-like role. It would be highly interesting to investigate
this possibility for the present model.

Another salient question lies in the origin of the tensor-product structure we have implicitly assumed in resolving
an abstract quantum state into distinct qubits. In ordinary quantum mechanics, systems are largely individuated by
their spatial relations—and thus, we assign a tensor product structure according to a split of a system in degrees
of freedom over here versus over there. But in the picture outlined here, we do not have recourse to any a priori
spatial structure. What, then, determines the tensor product structure of the Hilbert space? This is the quantum
factorization problem [3], or the question of quantum mereology [69], and, unless one is willing to settle for considering
the tensor product structure as an a priori input into the theory, will need a convincing answer to make the notions
outlined so far fully well-defined. Indeed, without an answer to this question, there is in general no fact of the matter
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regarding whether a system is entangled.

Recently, Stoica has argued that there is no unique way to reconstruct 3D space from the quantum state [70].
If that is the case, then the present proposal will need to appeal to additional structure. One possibility might be
to interpret the proposal in an epistemic way, with a preferred basis being picked out by the actually performed
observations. This would put the observer into a central role, opening up a ‘first-person’ account of physics, similarly
to the proposal of ‘law without law’ due to Müller [71].

There are many other intriguing possibilities for future development. For instance, while more complex states do
not add more chapters to the story told above, that does not necessarily imply that they can contain nothing but
additional copies of the above construction. Further degrees of freedom might exist that, while not having a neat
decomposition in terms of ordinary particles as per the present construction, nevertheless add to the total mass-energy
content of the universe. As the Standard Model particles can only account for ∼ 15% of this mass-energy content,
one might then conjecture that these additional degrees of freedom have something to do with dark matter.
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