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1. Simplest Proof6

The actual form of the Riemann zeta function implies that if the zeta7

function satisfies ζ(x+ i y) = ζ(1−x+ i y), then ζ(x+ i y) = 0, where x8

is extremely close to 1/2 or x is a value from the critical strip 0 < x < 1,9

which is not exactly 1/2. The form of the zeta function is a convergent10

sum of non-singular terms. Therefore, ζ has no singular poles inside11

the critical strip; hence, the continuous limit x → 1/2 can reveal the12

value of the zeta function on the critical line. Therefore, taking the13

limit x→ 1/2, I am getting a value of the zeta function exactly on the14

critical line: ζ(x+ i y) = ζ(1− x+ i y) = ζ(1/2 + i y) = 0.15

2. Second Proof16

It is known that Riemann’s zeta function ζ(s) and Landau’s xi func-17

tion ξ(s) have the same places for zeros in the critical strip. Is known18

that ξ(s) = ξ(1 − s). Let s = x + iy be a zero of the xi function, i.e.,19

ξ(x+ iy) = 0. So, ξ(1−x− iy) = 0. By taking the complex conjugate,20

ξ∗(x+ iy) = ξ(x− iy) = 0 (because the only complex quantity in the xi21

function is the argument x+ iy), or ξ∗(1− x− iy) = ξ(1− x+ iy) = 0.22

There is a symmetry of the position of the critical line in the critical23

strip 0 < x < 1, and the proof of the hypothesis has to explain this24

symmetry. The formula ξ(u+ iy) = ξ(1− u+ iy) does this job. Any u25

that is a zero of the xi function satisfies this formula. But what about26

u = 1/2? In this case the formula gives ξ(1/2 + iy) = ξ(1− 1/2 + iy).27

Hence, u satisfies the formula solely because of the symmetry of the28

position of the critical line in the critical strip. This has explained the29

symmetry.30
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It is known that Riemann’s zeta function ζ(s) and Dirichlet’s eta
function

η(s) =
∞∑
n=1

(−1)n

ns
=
∞∑
n=1

(−1)n zx cos(y ln z)+i
∞∑
n=1

(−1)n zx sin(y ln z)

have the same places for zeros in the critical strip. Here s = x + i y
and z = 1/n. Due to the property ξ(s) = ξ(1− s) the identity η(s) =
η∗(1 − s) or η(x + iy) = η(1 − x + iy) holds for the zeros of the zeta
function. Nevertheless, the situation for the hypothetical x 6= 1/2 case
has to support the four equations:

∞∑
n=1

(−1)n zx cos(y ln z) = 0 ,

∞∑
n=1

(−1)n zx sin(y ln z) = 0 ,

∞∑
n=1

(−1)n z1−x cos(y ln z) = 0 ,

∞∑
n=1

(−1)n z1−x sin(y ln z) = 0 ,

making the system for finding x, y largely over-determined: 4 > 2.
However, considering solely the two equations,

∞∑
n=1

(−1)n zx cos(y ln z) = 0 ,

∞∑
n=1

(−1)n zx sin(y ln z) = 0 ,

I do not see any over-determination for finding (x, y). Hence, pairs1

of values (x, y) can indeed be present. All such pairs have x = 1/22

because otherwise the system would become largely over-determined3

and, hence, loose any outlook to be ever solved.4

3. Third proof5

If for all n > 5040 one has σ(n) < eγ n ln(ln n) = A(n), the Rie-6

mann Hypothesis is true [1]. And if for all n > 1 one has σ(n) <7

Hn + exp(Hn) ln Hn = B(n) where Hn is the n-th harmonic number,8

the Riemann Hypothesis is true [2]. One has A(n) < B(n). Let me9

consider the smallest n that violates the Riemann Hypothesis. So, if10

the Riemann Hypothesis is wrong, then σ(n) > B(n) from Ref. [2]11
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must be. On the other hand, if A(n) < σ(n) < B(n), the Riemann1

Hypothesis is wrong too. From this contradiction, no such n exists.2

None of these two papers has shown that some particular A(n) <3

σ(n) position type is impossible, including the A(n) < σ(n) < B(n) po-4

sitions. But my remarkable mental effort made on the A(n) < σ(n) <5

B(n) area has enabled this proof of the Riemann Hypothesis. I have6

proven that A(n) < σ(n) is not possible.7

Appendix. Notably, if A(n) < σ(n) < B(n), the Riemann Hypothesis8

is both: true and wrong. Hence, no such n exists. This is an additional9

argument for the validity of my line of thinking because above it was10

already proven that A(n) < σ(n) is not possible.11

4. Fourth Proof12

The total amount H of prime numbers is infinite:13

(1) H =∞ .

Therefore, H cannot be any finite number. This means that H 6= 1,14

H 6= 2, H 6= 3, and so on. I see that the number on the right-hand15

side grows indefinitely, so I have the right to write the final record:16

(2) H 6=∞ .

But recall Eq. (1). Therefore, after inserting this equation into the left-17

hand side of Eq. (2), I have ∞ 6= ∞ and ∞−∞ 6= 0. The equations18

(1) and (2) are not in mutual contradiction because∞−∞ is a type of19

mathematical uncertainty. Mathematical uncertainty∞−∞ can have20

any value. And since a non-zero value is not excluded, I did not come21

to a contradiction between the first and second formulas.22

A “counter-example” is a situation in which the zero of the zeta23

function does not belong to x = 1/2. The total number V of such24

counter-examples is still unknown but cannot be a finite number [1].25

Therefore, V 6= 1, V 6= 2, V 6= 3, and upto infinity:26

(3) V 6=∞ .

By inserting the definition of V into the left-hand side of Eq. (3), I am27

reading from it: the unknown number of counter-examples cannot be28

infinite.29

5. Fifth Proof30

Suppose that Riemann Hypothesis fails. Then [3]31

(4) λn ≤
ln(ln(NYk

k ))

ln(ln(nk))
=

ln Yk + ln(ln(Nk))

ln(ln(nk))
,
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where Nk = rad(nk) ≤ nk is the radical of nk, Yk = Yk(pk) ≥ 1 is a1

function of the largest prime factor of Nk, and2

(5) λn =
k∏
i=1

pai+1
i

pai+1
i − 1

≥ pav+1
v

pav+1
v − 1

≥ 1 ,

where pi are the prime factors of nk and ai are the powers of those.3

From Eqs. (4) and (5), one has4

(6)
NYk
k

nk
≥ 1 .

Yk tends to 1, as pk → ∞ during nk → ∞. The nk ≥ (Nk)
h holds,5

where h is defined as a fixed constant, e.g., h = 1.3. Therefore, Eq. (6)6

will be violated which proves Riemann’s Hypothesis.7

If the only choice for h is h = 1, this means that for some nk one8

has nk = Nk, i.e., all ai = 1. The latter contradicts the property of9

being p-adic. The p-adic property is seen from Eq. (5). Why? Because10

Eq. (4) with λn ≥ 1, Yk → 1, and Nk ≤ nk means λn → 1. The latter11

combined with Eq. (5) means that all av →∞, where 1 ≤ v < k.12

By the way, the p-adic property implies pk →∞ for nk →∞. Why?13

See Eq. (4) with λn → 1. The latter means Nk → ∞ which again14

means that pk →∞.15

6. Sixth Proof16

Let within the first N non-trivial zeroes of the Zeta Function happen17

to be X counter-examples, which are the zeroes outside the critical line.18

Is known that X/N = 0 at the limit N → ∞ from Ref. [4]. However,19

that result has zero importance because any distribution of counter-20

example is allowed. For example, none of the counter-examples within21

N < 101000000000000000. However, the result must have meaning because22

it is based on a logical endeavor. That is only possible if there are none23

of the counter-examples at all because the result has the title: “100 %24

of the zeros of ζ(s) are on the critical line.”25

6.1. Alternative proof. Prior to the “100 % of the zeros of ζ(s) are26

on the critical line” paper, the possibility that “100 % of the zeros of27

ζ(s) are on the critical line” was statistically excluded if the Riemann28

Hypothesis is wrong. Now, it is proven: “100 % of the zeros of ζ(s)29

are on the critical line.” Therefore, the Riemann Hypothesis cannot be30

wrong.31
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7. Seventh Proof1

The number N(T ) = Ω(T ) + S(T ) of zeroes of Zeta function has2

jumps only when S(T ) has a jump ∆S(T ) = S(T + δ T ) − S(T ) = 13

if δ T → 0, see Ref. [5], where 0 < x < 1, 0 < y ≤ T + δ T area was4

studied. Therefore, ∆N(T ) = N(T + δ T ) − N(T ) = 1. However,5

there are at least two counter-examples at a given y: x0 + i y and6

1 − x0 + i y due to Dr. Riemann’s original paper (or the introductory7

part of the Sixth Proof in this paper). But ∆N(T ) = 1 < 2. From8

this contradiction, there cannot be counter-examples.9

8. Eight Proof10

The Dirichlet’s Eta and Landau’s Xi functions have the same zeroes11

s0 = x + i y as the Zeta function in the critical strip. As well as their12

complex-conjugate versions. The Xi function has ξ(s) = ξ(1−s), hence,13

η(s0) = η(1− s0). All this means that14

(7)
∞∑
n=1

(−1)n (zx − z1−x) sin(y ln z) = 0 ,

where z = 1/n. It is the equation x = x(y). Taking the ν-th order15

y-derivative of both sides, I obtain a system where the unknowns are16

the derivatives17

(8) L(µ) =
dµx

dyµ
,

where µ = 1, 2, 3, . . . , ν. The necessary condition for all L(µ) to be18

zero is19

(9)
∞∑
n=1

(−1)n (zx − z1−x) (ln z)ν cos(y ln z) = 0 ,

if ν is odd, and20

(10)
∞∑
n=1

(−1)n (zx − z1−x) (ln z)ν sin(y ln z) = 0 ,

if ν is even because if one inserts L(µ) = 0 into the equations, they do21

not hold true unless Eqs. (9), (10) are holding.There are infinitely many22

independent equations for the unknown x because ν = 1, 2, 3, . . . ,∞.23

However, the value x = 1/2 is the obvious solution of all these equa-24

tions. Hence, no other values of x exist. Because all L(µ) vanish at25

x = 1/2 no deviation from x = 1/2 is possible.26



6 DMITRI MARTILA

9. Ninth Proof1

Oppermann’s conjecture [6] is closely related to but stronger than2

Legendre’s conjecture, Andrica’s conjecture, and Brocard’s conjecture.3

The unsolved conjecture states that for every integer n > 1, there is at4

least one prime number between n (n− 1) and n2, and at least another5

prime number between n2 and n (n+ 1).6

Then, according to conjecture, each of the following ranges contains7

at least one prime number: [n2, n (n + 1)], [m (m − 1), m2], where8

m = n+1. I have n (n+1) = m (m−1). Therefore, the entire area of x9

becomes covered by such non-intersecting ranges; for example, the next10

ranges are [m2, m (m+ 1)], [h (h− 1), h2], where h = m+ 1. Take z =11

2 (
√
x−√x0) to be the number of ranges inside [x0, x]. Oppermann’s12

conjecture necessarily holds if N/z = 1, where N = π(x)−π(x0), where13

π(x) is the prime-counting function. Holds x/(2 + ln x) < π(x) <14

x/(−4 + ln x), where x ≥ 55, see Ref. [7]. Then because d = N/z =∞15

at x → ∞, the conjecture holds. Hereby, d = ∞ holds if calculated16

within each of K sub-areas of [x0, x] (each one of (x − x0)/K width,17

where K is any finite number).18

The conjecture implies Riemann Hypothesis because the latter im-19

plies the validity of Dudek’s result (in the abstract of Ref. [8]). The20

validity of Oppermann’s conjecture makes the result of Dudek stronger.21

Hence, I have shown that Dudek’s result is valid. This points me to22

the Riemann Hypothesis because the latter is introducing new con-23

straints/laws on the relation of the numbers: in 1901, Dr. Koch showed [9]24

that the Riemann Hypothesis is equivalent to25

(11) |π(x)− lix| ≤ 1

8π

√
x ln x ,

where x ≥ 2657.26
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