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Abstract

Treating the Bekenstein-Sanders field Bμ, for which BμBμ = − 1 as a gauge field requires that the field be non--Abelian.

This structure was worked out in a previous publication by Horwitz, Gershon and Schiffer, where an equivalent Kaluza-

Klein metric was found for an extended (5D) spacetime. In this paper, we study a quaternionic formulation of this theory

with quaternionic gauge fields and quaternionic wave functions (as discussed in two seminal books by S.L. Adler),

thereby establishing a connection between quaternionic quantum mechanics and general relativity.
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I. Introduction

The Bekenstein-Sanders [1] tensor-vector-scalar theory of gravitation (TeVeS) has been shown to account for the galactic

rotation curves, lensing, and other cosmological phenomena (see review of Skordis [2]) without the significant presence of

dark matter.1

It has recently been shown [3], that there is an invariant Hamiltonian formalism for the TeVeS theory, achieved by a

conformal transformation, for which the essential Bekenstein-Sanders field Bμ , satisfying BμBμ = − 1, emerges as a

gauge field (see also [4] for the many body case).Since the normalization condition BμBμ = − 1 must be maintained under

gauge transformations, it is necessary that the field Bμ be non-Abelian, similar to a Yang-Millls [5] field.

The interesting possibility that the field Bμ can be represented as a quaternionic field is investigated in this paper. This

possibility would imply that the quantum mechanical wave functions for which Bμ is the gauge field are also quaternionic,

as discussed by [6][7].
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In the following we will be working in the framework of the embedding of the relativistic quantum theory [8] in the curved

space of Einstein's general relativity [9][10]. The vectors and tensors we shall discuss, and local partial derivatives are well-

defined in the local tangent space at each point.

The dynamics of such quaternionic wave functions has been discussed by Adler [11] using trace dynamics, thereby

opening up a possibly fruitful field relating quaternionic quantum mechanics and general relativity.

II. Quaternionic Non-Abelian Gauge

As discussed in [6], the quaternionic wave function ψ(x) may undergo left and right gauge transformations 

ψ →
ψ
_ = ωψω′, (2.1)

with ωω∗ = ω′ω′∗ = 1, where {∗} is the quaternion conjugate, for complex units {ei}, i = 1, 2, 3 and 

e1e2e3 = − 1, ei
2 = − 1 and cyclic, (eiej)

∗ = ejei , i ≠ j . The prime indicates the left gauge.

The covariant derivative [6] is defined by (∂μ ≡

∂
∂xμ

, and indices are raised and lowered by the Minkowski metric 

ηνμ
= { − 1, + 1, + 1, + 1}) 

Dμψ = ∂μψ + Bμψ − ψB ′
μ, (2.3)

with Bμ
∗ = − Bμ, B ′

μ
∗ = − B ′

μ. Under gauge transformations of the form (2.1),

Bμ → ωBμω∗ + ω∂μω∗

B ′
μ → ω′B ′

μω′∗ + ω′∂μω′∗ (2.4)

Differentiating ωω∗ = 1, we see that 

ω∂μω∗ = − ∂μωω∗ = − (ω∂μω∗)∗ (2.5)

so the additional terms in equations (2.4) are pure quaternion imaginary.

Under the general gauge transformation 

D
_

μ

ψ
_ = ∂μ(ωψω′∗) + (ωBμω∗ − ∂μωω∗)ωψω′∗

−(ωψω′∗)(ω′B ′
μω′∗ + ω′∂μω′∗)

= ∂μ(ωψω′∗) + (ωBμψω′∗ − ∂μωψω′∗)

−ωψB ′
μω′∗ − ωψ∂μω′∗

= ω∂μψω′∗ + ωBμψω′∗ − ωψB ′
μω′∗

= ωDμψω′∗,

(2.6)
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 showing that the covariant derivative of ψ transforms under gauge transformations in the same way as ψ [6].

We will be primarily interested in the left gauge in the following (because of the structure of the quantum quaternionic

scalar product, as we shall see) but a similar argument is effective for the right sided gauge as well.

It is essential for the Bekenstein-Sanders results that, as mentioned above, under gauge transformations, the relation 

BμBμ = − 1, (2.7)

requires that the gauge field be non-Abelian. The proof that there is a class of gauge transformations which preserves 

(2.7) can most easily be carried out for infinitesimal gauge transformations. With the help of (2.5), we may write the

transform of (2.7) as

BμBμ → (ωBμω∗ + ω∂μω∗)(ωBμω∗ − ∂μωω∗)

= ωBμBμω∗ − ∂μωBμω∗ + ωBμ∂μω∗ − ∂μω∂μω∗ (2.8)

The first term on the right provides the necessary −1, so we must show that 

−∂μωBμω∗ + ωBμ∂μω∗ − ∂μω∂μω∗ = 0. (2.9)

Moreover, since 

(∂μωBμω∗)∗ = − ωBμ∂μω∗ (2.10)

we have, from (2.9), the requirement 

2Re∂μωBμω∗ − ∂μω∂μω∗ = 0. (2.11)

We now show that there exist solutions for this nonlinear relation by studying infinitesimal local gauge transformations of

the form (ϵ real and small), for a neighborhood of some xμ, 

ω = 1 + ϵv, (2.12)

with v pure quaternion imaginary, so that 

ωω∗ = (1 + ϵv)(1 − ϵv) = 1 + O(ϵ2).

Now, substituting (2.12) into (2.11), one finds, to O(ϵ2), that we must have 

ReBμ∂μv = 0 (2.13).

Since Bμ is timelike, there is a (local) Lorentz frame for which only its time component is non-zero; in this frame, 

ReB0∂0v = 0. (2.14)

For

B0 = e1b1 + e2b2 + e3b3

∂0v = e1∂0v1 + e2∂0v2 + e3∂0v3
(2.15)
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from which it follows that 

ReB0∂0v = − Σ3
i=1bi∂

0vi. (2.16))

It is therefore necessary and sufficient (by successive infinitesimal transformations), that in this local frame, the

quaternionic parts of the time deivative of the infinitesimal gauge transformation be orthogonal to the quaternionic vector

part of B0. Since (2.12) is invariant under local Lorentz transformations, this result implies that (2.13) must be valid as well,

at any point in the manifold, implying that there is a class of gauges that leaves BμBμ = − 1.2

Although the quaternionic wave function has the property that it can carry left or right gauge trnsformations, it will be

convenient (and sufficient for our present purposes) to use the left gauge3.

III. Quaternionic Kaluza-Klein Theory.

Consider a local single particle gauged Hamiltonian of the form 

K =

1
2mgμν(x)(pμ − ϵBμ(x))(pν − ϵBν(x)) + Φ(x), (3.1)

where Φ is a (real-valued) world scalar field, K is quaternion real, gμν is the (real-valued) Einstein metric, pμ is quaternion

imaginary (discussed in [6]), and Bμ is the quaternionic Bekenstein-Sanders field. We define, as in [3], a conformally

modified metric 

ĝμν = gμν

K
K − Φ (3.2)

Since gμν is real-valued, we may cancel K from both sides, and multiply by (K − Φ) to show the equivalence between (3.2)

 and (3.1).

Defining, as in [3], [1], 

K
K − Φ ≡ e−2ϕ, (3.3)

the Hamiltonian 

KK =

1
2mg̃μνpμpν, (3.4)

for [1] 

g̃μν = e−2ϕ(gμν + BμBν) − e2ϕBμBν, (3.5)

KK == e−2ϕgμνpμpν − 2sinh2ϕBμBν (3.6)

is equivalent to (3.1), generating the same equations of motion [8][12].
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We argue here that for pμ = q∂μ, with q imaginary quaternionic [6], 

[q, ω] = 0
[Bμ, q]. = 0 (3.7)

The first of (3.7) is implied by the requirement 

(pμ −
B
_

μ
)
ψ
_ = (q∂μ −

B
_

μ
)ωψ

= ω(q∂μ − Bμ)ψ

, (3.8)

or 

q(∂μω)ψ + qω∂μψ −
B
_

μ
ωψ = ωq∂μψ − Bμψ. (3.9)

The gauge condition 

B
_

μ
= (q∂μω)ω−1 + ωBμω−1 (3.10)

follows if [q, ω] = 0, so that the ∂μψ term cancels on both sides.

Furthermore, since q is constant, and we take it to commute with ω, 

[
B
_

μ
, q] = ω[Bμ, q]ω−1; (3.11)

if we start with (Bμ)initial = 0, it follows from (3.10) that a first gauge step to (
B
_

μ
)next will still commute with q. This condition

is maintained for any sequence of ω's (commuting with q), and, therefore, for any Bμ constructed in this way. 

We may now define a Kaluza-Klein metric [12] 

gAB =
gμν Bμ

Bμ g55 . (3.12)

If we take [3] 

p5 = −

pμBμ

g55 (1 ± √1 − 2g55sinh2ϕ, (3.13)

then 

KK =

1
2mgABpApB. (3.14)

( )
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Wesson [13] and Kaluza [12] chose g55 = const, but in our context, it may be taken to be zero.

Conclusions

We have discussed a quaternionic formulation of the Bekenstein-Sanders [1] TeVeS gravitational theory. It was shown

in [3] that this theory can be derived by a conformal transformation from a Hamiltonian form on a curved space [10], for

which the Bekenstein-Sanders vector field Bμ is a non-Abelian gauge field. We give here a quaternionic formulation

suggested by this structure. We proved for this quaternionic formulation (as well as provided a missing proof for the Yang

Mills form [3]) that there is a set of gauge transformations that preseves the Bekenstein-Sanders condition BμBμ = − 1. It

has been shown [4] that one can construct a theory for N ≥ 2 particles in such a TeVeS theory, suggesting that a rigorous

statistical mechanics could be developed (see also Giordino et al. cited in [2]).

Since the wave functions in the Hilbert space, carrying the non-Abelian quaternionic guage, are quaternionic, as

dynamical variables they may satisfy the race dynamics developed by Adler [11], opening a subject for future research,

relating quaternionic quantum mechanics to general relativity.

Appendix I

Proof for existence of gauges preserving BμBμ = − 1 for standard Yang-Mills theory.

For standard Yang-Mills theory [3] (result stated but not proved there), under gauge transformation, 

B
_

μ

B
_ μ = (ωBμω∗ −

i
ϵ

∂ω
∂xμ

ω∗)(ωBμω∗ −

i
ϵ

∂ω
∂xμω∗)

= ωBμBμω∗ −

i
ϵ [

∂ω
∂xμ

Bμω∗ + ωBμω∗

∂ω
xμ

ω∗]

−

1
ϵ2

∂ω
∂xμ

ω∗

∂ω
∂xμω∗.

(I.1)

Now, differentiating ω∗ω = 1 (as above), 

ω∗

∂ω
∂xμ

ω∗ = −

∂ω∗

∂xμ
, (I.2)

we find from (I.1) that 
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B
_

μ

B
_ μ = − 1 −

i
ϵ [

∂ω
∂xμBμω∗ − ωBμ

∂ω∗

∂xμ ]

+

1
ϵ2

∂ω
∂xμ

∂ω∗

∂xμ

(I.3)

Now,

( − ωBμ

∂ω∗

∂xμ )∗ = +

∂ω
∂xμBμω∗ (I.4)

so that, to maintain the relation 
B
_

μ

B
_ μ = − 1, we must have

2Re[

∂ω
∂xμBμω∗] =

1
ϵ

∂ω
∂xμ

∂ω∗

∂xμ (I.5)

In order to analyze this relation, we first study the infinitesimal gauge, for v∗ = − v, 

ω = 1 + ηv. (I.6)

Substutiting into (I.5), one finds the condition, to first order, 

{

∂ω
∂xμ , Bμ} = 0. (I.7)

Now, choose a local Lorentz frame for which Bμ → B0, so that our condition becomes 

{

∂ω
∂x0 , B0} = 0. (I.8)

For the Yang-Millls fields, we may represent 

∂ω
∂x0 = ia0 + iΣ3

i=1aiτi

B0 = ib0 + iΣ3
i=1biτi

, (I.9)

where a0, ai, b0, bi are real numbers , τi Pauli mmatrices. To satisfy (I.8), we must have a0 = b0 = 0. What remains is the

condition 

Σ3
i aibi = 0, (I.10)

closely analogous to what was obtained in (2.15) for the quaternionic theory.

Appendix II
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Quaternionic Hilbert Space Scalar Product and Left Gauge

We take the quaternionic Hilbert space scalar product to satisfy 

(af, g) = a(f, g)

(f, ag) = (f, g)a∗ (II.1)

Then, to pass to Dirac wave function representation, we use the spectral representation of the xμ operator 

∫dE(x) = ∫ |x >< x |d4x = I, (II.2)

where the integration is in the same sense as in [14]. Then, for (conjugate of the usual form) 

f(x) =< f |x > , (II.3)

we have, 

(f, g) = ∫ < f |x >< x |g > d4x = ∫ f(x)g(x)∗d4x, (II.4)

With our convention (II.1), we have < af |x >= a < f |x >  so that 

∫ < af |x >< x |g >∗d4x = ∫a < f |x >< x |g >∗d4x = a(f, g). (II.5)

For the left gauge ω(x), it then follows that 

< ωf |x >= ω(x)(f |x >= ω(x)f(x), (II.6)

and 

(ωf, g) = ∫ω(x)f(x)g(x)∗d4x, (II.7)

the left gauge, as we have used in the text.

Using the choice of linearity (fa, g) = a∗(f, g), with < x | f >= f(x), we would have < x | fω >=< x | f > ω(x) = f(x)ω(x),  the

alternative right gauge.

Footnotes

1 Similar results have been obtained by Yahalom [15] using retarded forces carried by gravitational waves [16]. Although

gravitational waves emerge from Einstein's equations with a special choice of gauge (to harmonic coordinates) for

spacetime, the prediction of physically observable phenomena is independent of the choice of gauge, as for the choice of

Lorentz gauge in electromagnetism. The retardation theory of Yahalom is therefore completely covariant. Our study here

is motivated by the interesting connection between the TeVeS theory and non-Abelian gauge fields.

2 We show in Appendix I that an analogous proof can be given for the standard Yang-Mills [5] formulation followed in [3].

3 The representation of wave functions in configuration space and linearity of scalar products are discussed in Appendix
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II [6], [7]

References

1. a, b, c, dJ.D. Bekenstein, Phy. Rev. D 70,083509 (2004); R.H. Sanders, Astrophys. Jour.480, 492 (1997).

2. a, bC. Skordis, Classical and Quantum Gravity 26 143001. (2009). See also S. Giardino, Jour. Geom. Physics

158.10395 (2020) and arXiv:2306.01580 (2023).

3. a, b, c, d, e, f, g, hL.P. Horwitz, A. Gershon and M.Schiffer, Found. of Physics 41, 14(2011).

4. a, bL.P. Horwitz, Jour. of Physics Conf. Series 2482, 12001 (2023).

5. a, bC.N. Yang and R.L. Mills, Phys. Rev. 96, 191 (1954).

6. a, b, c, d, e, f, gS.L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Oxford University Press, Oxford

(1995).

7. a, bL.P. Horwitz and L.C. Biedenharn, Annals of Physics 157, 432-488 (1984).

8. a, bLawrence P. Horwitz, Relativistic Quantum Mechanics, Fundamental Theories of Physics 180, Springer, Dordrecht

(2015).

9. ^S. Weinberg, Cosmology and Gravitation, Wiley, New York (1972).

10. a, bL.P. Horwitz, European Physical Journal Plus 134, 313 (2019).

11. a, bS.L. Adler, Quantum Theory as an Emergent Phenomenon, Cambridge University Press, Cambridge (2004).

12. a, b, cA. Gershon and L.P. Horwitz, Jour. Math. Phys.50,102704 (2009).

13. ^P.S. Wesson, Space-Time Matter, World Scientific, Singapore (2007).

14. ^L.P. Horwitz Euro. Physical Journal Plus 135 479 (2020) doi.org/10.1140/epjp/513360-020-00-446-0

15. ^M. Wagman. L.P. Horwitz and A. Yahalom, Jour. of Phys. Conf. Series 2482,012005 (2022).

16. ^A. Yahalom, Universe, MDPI 7, 207, (2021)

Qeios, CC-BY 4.0   ·   Article, July 5, 2023

Qeios ID: 6478T8   ·   https://doi.org/10.32388/6478T8 9/9


	Quaternionic Bekenstein-Sanders Guage Fields for TeVeS
	Abstract
	I. Introduction
	II. Quaternionic Non-Abelian Gauge
	III. Quaternionic Kaluza-Klein Theory.
	Conclusions
	Appendix I
	Appendix II
	Footnotes
	References


