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Recent developments in spintronics have drawn renewed attention to the spin dynamics of cubic

ferromagnetic crystals EuO and EuS. These ferromagnets have the simplest possible magnetic

structure, making them the most suitable systems for testing various theoretical models of magnetic

materials. A commonly used Wess mean-�eld approximation (MFA) provides only a qualitative

description of magnetization temperature dependence  . We develop a consistent theory for 

, based on the perturbation diagrammatic technique for spin operators, leading to an excellent

quantitative agreement with the experimental dependence of   for EuO and EuS throughout the

entire temperature range from   to Curie temperature  . In particular, our theoretical

dependence   demonstrates an anomalous scaling behavior   with the scaling

index   in a wide range of temperatures, in agreement with the experimentally observed

scaling in EuO and EuS. This scaling index is principally di�erent from the scaling index 

 predicted by the MFA.

Corresponding authors: Igor Kolokolov, kolokol@itp.ac.ru; Victor S. L'vov, victor.lvov@gmail.com;

Anna Pomyalov, anna.pomyalov@weizmann.ac.il

I. Introduction

A. Ferromagnetics EuO and EuS

The development of spintronics has generated signi�cant interest in rare-earth oxide ferromagnetic

semiconductors, such as europium chalcogenides EuO and EuS. In particular, EuO is especially
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promising for applications[1]  as it has the third strongest saturation magnetization of all known

ferromagnets[2], one of the largest magneto-optic Kerr e�ects [3], pronounced insulator-to-metal

transition [4][5][6] as well as colossal magnetoresistance e�ect [7].

Moreover, among various magnetically ordered materials, EuO and EuS are probably the most suitable

systems for testing various theoretical models of magnetic material because they are well-studied

experimentally and have a simple crystallographic structure. Unlike other well-known magnetics,

such as Yttrium Iron Garnet (YIG), which has 80 atoms in the unit cell with 20 of them (Fe) possessing

a magnetic moment [8], EuO and EuS are the only known ferromagnets having only two atoms in the

unit cell, with only one of them (Eu+2, with the spin  ) having a magnetic moment. The

crystallographic structure of EuO and EuS [face-centered Cubic (FCC) lattice] is illustrated in Fig. 1.

Figure 1. FCC crystallographic structure of EuO and

EuS. Blue balls represent Eu atoms, and red balls

represent oxygen (O) or sulfur (S) atoms. The lattice

constant is  Å for EuO and   Å for

EuS. Curie temperatures are  K for EuO

and  K for EuS. In both structures, the

coordination number of the Eu atoms is  . For

additional parameters, see Tab. 1.
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Figure 2. Experimental and numerical results for   vs.   [panel (a)] and vs.   [panel (b)]. In

panel (a), the results for EuO are summarized in the main panel and for EuS – in the inset. The inset in

(b) gives a close-up of the low-  range for the same data as in the main panel of (b). Experimental

results [9][10][11] for EuO are plotted as solid black lines with circles and for EuS by solid blue lines with

squares. The results of numerical solutions are denoted as follows:(1) Quantum version (II.9) of the

Weiss-Heisenberg MFA for EuO in the main panel and for EuS in the inset of (a) –dotted blue lines;(2) 

-corrected equation of the Weiss-Heisenberg MFA  (III.1) for EuO —solid blue line. Recall that 

 is the coordination number of Eu atoms, see Fig. 1.(3) Spin-wave-improved version of the MFA

(III.12) for EuO– dashed green line;(4) Spin-wave-improved version with the �rst-order  -

corrections (III.16) for EuO in the main panel of (a) and (b), and for EuS in the inset of (a) — solid green

line;The red line represents the power-law �t to the solution of Eq. (III.16) in the form  , 

 with  . The predicted coe�cients are   in (a) and   in (b).

B. Plan of the paper and main results

This paper aims to describe and improve a theory of spontaneous magnetization    of

ferromagnetics over an entire temperature range from    to Curie temperature  , at which 

. The theory is evaluated by comparing it with the existing experimental data[9][10][11]. Instead

of using the normalized magnetization  , which is assumed to be aligned with the small

external magnetic �eld  , we adopt a more convenient from the theoretical viewpoint
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approach to use normalized  -projection of the mean spin  . The mean spin 

 is de�ned as follows

Here    is the local spin projection on the external magnetic �eld,   runs over magnetic ions lattice

sites per unit volume and   is their number.

In Figure 2(a), we plot the experimental results for the normalized mean spin   for EuO (main

panel, a solid black line with circles) and EuS (inset, a solid blue line with squares). The experimental

Curie temperatures  K for EuO and  K for EuS are clearly visible in the �gure.

The experimental dependences of    on the normalized temperature    for both materials

practically coincide, as is observed in Fig. 2(b). This allows us to focus on the theory-experiment

comparison mainly for one material. For concreteness, we choose EuO. The relevant parameters of

EuO and EuS are listed in Tab. 1.

The plan of the paper is as follows.

  ,

  Oe K K K K K    

EuO 1920 69.8 86.6

EuS 1115 0.44 -0.2 16.6 21.4

Table 1. Important parameters of EuO and EuS: the magnetization at zero temperature  ; nearest

neighbors   and next-nearest neighbors   exchange integrals; the experimental value   of the

Curie temperature; the “theoretical”   Curie temperature in the quantum Weiss-Heisenberg MFA,

(II.10a); Curie temperature  , Eq.(III.15c) in the spin-improved MFA. Experimental[10],   and

theoretical   values of the apparent scaling index   that governs the temperature dependence of the

magnetization   below  .

Section II is devoted to the historical and physical background of the problem. In Section II.A, we
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provide a brief overview of the achievements and fundamental problems of the celebrated classical

Weiss mean-�eld approximation (MFA) [12] and recall in Sec. II.B their resolution by Heisenberg, who

introduced the exchange interaction of quantum-mechanical origin into the original Weiss MFA[13].

The quantum version of the Weiss-Heisenberg (WH) MFA, as represented by (II.9), provides a simple

yet reasonable description of the temperature dependence of magnetization (or the mean value of the

spin projection on the external magnetic �eld  ). A numerical solution of Eq. (II.9) for EuO, plotted in

the main panel of Fig. 2(a) by a dotted blue line labeled (1), gives WH-MFA value of the Curie

temperature (where  )  K in EuO (about 20 % larger than its experimental value 

 K).

The numerical solution for EuS, shown in the inset in Fig. 2(a), yields  K (to be compared

with  K).

However, some problems with the WH-MFA still remain. For example, in the low-temperature limit,

when  , Eq. (II.9) predicts exponential decay of    with  , while a well established spin-

wave theory gives  , see for example[14].

Vaks, Larkin, and Pikin solved this problem[15][16] using a developed diagrammatic technique (DT) for

ferromagnetics in thermodynamic equilibrium, as brie�y outlined in Appendix  A.1. However, their

approach resulted in an unphysical behavior of    near  , where the calculated corrections to 

 become in�nite.

To resolve this issue and obtain a regularized description of   across the entire range of   from 

  to  , we develop in the Appendix A the DT for spin operators, based on the functional

representation of the generating functional  , introduced and analyzed in Sec. A.3. The �rst-order

correction in the inverse coordination number    to the WH-MFA can be found in the one-loop

approximation for the e�ective potential formulated in Sec. A.4. The resulting Eq. (III.1) is presented in

Sec.III.A. The numerical solution of these equations for EuO is shown in Fig. 2(a) by the solid blue line

labeled (2). It decays much faster than the blue dotted line for the WH-MFA with its exponential decay

from the value  , not discernable for  K. More detailed analysis [not shown in Fig. 2(a)]

indicates that the di�erence    is proportional to  , as expected from the low temperature

supression of   by spin waves; see, e.g. [14].

In addition, we observe that the numerical solution of Eq. (III.1) is in good quantitative agreement with

the experiment conducted in EuO (solid black line with circles) up to about 65 K. At this temperature, 
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 decreases twice, reaching S/2.

However, for larger    [ K in EuO] Eqs. (III.1) give slower decrease of    than in the

experiment, with the same    (about 86.6 K in EuO) as in the WH-MFA. The reason for this

inconsistency is explained in Sec. III.B, which provides a brief overview of the Belinicher-L’vov (BL)

DT[17]. Equations (III.1) with  -corrections do not adequately consider the impact of the spin wave

on the average spin projection    for temperatures close to    (speci�cally, between    and 

). The key advantage of BL DT is that it takes into account, order-by-order, the kinematic

relationship (III.11) between the spin correlations, which relates transverse spin correlators describing

propagating spin waves and longitudinal correlators [including  ]. As shown in Sect.III.3, this

allows us to account for the e�ect of spin waves even in the zero-order approximation, i.e., in the

MFA.

The numerical solution of the resulting spin-wave-improved WH-MFA (III.12), shown in Fig.2(a) for

EuO by a dashed green line labeled (3) demonstrates much better agreement with the experiment than

all previous approaches. In particular, it includes low-temperature spin-wave corrections,

proportional to  , and coincides in this respect with  -corrected MFA (III.1). In addition, it

decreases much faster than the solution of Eq. (III.1) with   increasing toward  , in agreement

with the experimental behavior of  . As a result, it reaches zero at    (about 66.5 K in EuO),

which is essentially closer to   (about 69.9 K in EuO) than the previous result (86.6 K in EuO). The

physical reason for lowering the theoretical   stems from the spin wave that is highly exited in the

vicinity of  , supressing    according to the kinematic relationship (III.11). Therefore, the

mean-�eld value [proportional to  ] is smaller, and consequently, the value of   decreases.

Further improvement of our results for   is given in Sect. III.3.3, where we present  -corrected

spin-wave-improved MFA, summarized in Eq. (III.16). The numerical solutions of these equations are

shown by a solid green line labeled (4) in the main panel of Fig.2(a) for EuO, and for EuS in the inset.

The calculated Curie temperatures remain identical to those in the uncorrected spin-wave-improved

scenarios, as follows from Eq. (III.10). However,  -corrections signi�cantly improve the behavior

of    at intermediate temperatures, bringing it much closer to experimental results. This

improvement for EuO is evident in Fig. 2(a) by comparing the dashed (3) and solid (4) green lines.

Small discrepancies between the calculated and observed Curie temperatures may stem from the

approximate nature of the theory, uncertainty of the exchange integrals, or limited accuracy of the

Curie temperature measurements. Leaving these di�erences aside, we plotted in Fig.2(b) the
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temperature dependencies of    versus normalized temperature  , using    for the

experimental curves and their own values of    for the numerical curves. We observe excellent

quantitative agreement between the theoretical dependence  , shown by the solid green line,

and the experimental results, represented by the solid black line with circles for EuO and the blue line

with squares for EuS. All three lines coincide in the entire range of temperatures from    to 

.

It is important to emphasize that in the intermediate range of temperatures   where 

 varies from 0.8 to 0.1, the experimental and the theoretical curves of   closely resemble the

power-law-like behavior   (plotted in Fig.2 as a solid red line). The apparent index

is estimated to be  , which is in good agreement with the experimental value 

 reported in [10] as well as with the   derived from the renormalization

group theory for 3D Heisenberg model [18].

We are hesitant to assign our   to the critical behavior in the vicinity of the  . Our approach yields a

classical mean-�eld scaling index of  , in the very vicinity of  , invisible Fig. 2. Therefore,

we prefer to attribute the observed scaling with   to an apparent temperature dependence in

the intermediate temperature range between   and  , which, nevertheless, preserves the tail of

the critical behavior.

We summarize our results in Sect. IV.

II. Historical and physical background

A. Classical Weiss mean-�eld approximation

The theoretical description of ferromagnetism has a long history, starting with the celebrated Weiss’s

mean-�eld approximation �rst published in 1907[12]. Shortly before this, Langevin developed his

theory of paramagnetism, based on the fundamental idea that the orientation of a molecular dipole of

moment   in a �eld   is governed by the Boltzmann distribution law. If so, the magnetic momentum

per unit volume [the magnetization  ] is given by the expression

where   is the magnetization at  ,   is the Langevin function [19],  ,   is the spin of

the magnetic ion and    is the Borh magneton, where    is the reduced Planck constant, 
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 and   are the electron charge and mass, and   is the speed of light.

The basic idea of the Weiss MFA is that the e�ective �eld acting on an elementary magnet in a

ferromagnetic medium is not the applied �eld  , but rather  , where    is the

magnetization at a given temperature and    is some temperature independent factor. The term 

  is called the “self-consistent molecular �eld” and is clearly a manifestation of some

cooperative phenomenon.

With this modi�cation, Eq. (II.1) becomes

For small  , Eq.  (II.2a) describes magnetization saturation at the level  . For very large  , the

argument   of the Langevin function becomes small and   can be approximated as

Accounting only for the �rst term in expansion (II.2b), we reduce Eq. (II.2a) to

Here    denotes the susceptibility  , which formally diverges at some critical temperature 

 known as the “Curie-Weiss temperature”.

For   and   slightly below  , Eqs. (II.2a) and (II.2b) give

The interpolation formula  (II.3a), plotted in Fig.  3 as a dashed black line labeled  , is exact in the

limit    and normalized such that  . It is very close to the numerical solution of Eq.

(II.2a) for   that takes the form

see solid black line labeled   in Fig. 3.

e m c

H H + gM(T ) M(T )

g

gM(T )

M = L[μ(H + gM)/T ].M0 (II.2a)

T M0 T

x L(x)

L(x) = − + … , for x ≪ 1.
x

3

x3

45
(II.2b)

χ = M/H ≈ , = gμ /3.
μM0

[3(T − )]TC
TC M0 (II.2c)

χ M/H

TC

H = 0 T TC

M(T ) = .M0 (1 + )(1 − )
2T 2

3TC

T

TC

− −−−−−−−−−−−−−−−−−−

√ (II.3a)

(6)

T → TC (0) = SS
¯¯̄
z

H = 0

M(T ) = L[ ] ,M0
3M

M0
( )

T

TC

2/3

(II.3b)

(5)

qeios.com doi.org/10.32388/64SBAD 8

https://www.qeios.com/
https://doi.org/10.32388/64SBAD


Figure 3. Comparison between magentization temperature dependencies   vs.

normalized temperature   obtained from:(1) numerical solution of the WH-MFA

(II.9) - blue dotted line, the same as line (1) in Fig.2;(5) classical Weiss MFA, numerical

solution of Eq. (II.3b) –solid black line;(6) interpolation formula (II.3a) – dashed black

line;Experiments in EuO (solid black line with circles) and EuS (solid blue line with

squares) are shown by the same line types as in Fig.2.

Undoubtedly, Eqs. (II.2) and (II.3) represnt the most signi�cant result of Weiss’s theory. They predict

the critical temperature  . As this temperature is reached from below,   gradually decreases to

zero. Beyond this temperature,    vanishes, consistent with observations from numerous

experiments.

However, in 1907, when Weiss published his paper[12], there was a problem with the obtained values

of  , Eq.  (II.2c). At that time, the only known interaction between magnetic moments was the

classical dipole-dipole interaction, leading to the so-called demagnetization magnetic �eld, which

/SS
¯¯̄
z

T /TC

TC M(T )

M(T )

TC
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depends on the shape of the sample. For example, for the orthogonally magnetized �lm, it gives 

, and for the spherical sample  . Taking for concreteness  , and with actual

values in EuO  Oe and  , Eq.  (II.2c) gives  K which is far below its

experimental value  K.

The situation is even worse for Yttrium Iron Garnet (YIG), the ferrimagnetic widely used in

fundamental studies[8]  and applications[20]. With    Oe,      (for the sphere),

Eq. (II.2c) gives   K which has nothing in common with the experimental value   K.

However, Weiss was courageous enough to publish his article despite the signi�cant discrepancy

between the predicted and experimental values of  . As Van Vleck wrote[21], Weiss’ approach is

“qualitatively right but quantitatively wrong and is based half on theory and half on the genius at

empirical guessing.”

B. Exchange interaction and quantum Weiss-Heisenberg theory

The way out of this discrepancy was found 20 years later in the framework of newly emergent

quantum mechanics. In 1926, Heisenberg explained  that, in addition to the magnetic dipole-dipole

coupling, a much stronger coupling of Fermi particles– electrons– of electrostatic Coulomb nature

exists[22]. In quantum mechanics, the wave function    of two identical electrons must be

antisymmetric. Therefore, when the spins are parallel, the coordinate part of the   function will also

be antisymmetric, while for antiparallel spins it will be symmetric. This di�erence in symmetry of the

coordinate function    leads to a distinct spatial distribution of the two electrons, resulting in a

variation in their Coulomb energy, termed by Heisenberg the exchange energy[22][19]. He proposed a

straightforward form of exchange energy   between two localized spins   and   at lattice points 

 and  :

Here   is the so-called exchange integral. Total exchange energy in the lattice   reads

Factor   accounts for each particular contribution in (II.4a) appearing in (II.4b) twice.

The magnetic moment of Eu+2 originates from very localized   electrons with total spin   and

magnetic moment  . In the quantum era, to compute    we have to account for a

g = 4π g = 4π/3 g = 4π/3

≈ 1920M0 μ = 7μB ≈ 3.77TC
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exp
C
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discrete series of spin orientations rather than a continuous distribution, as in the classical Langevin

theory. With this modi�cation, we have replaced Langevin function    in (II.2a) by so-called

Brillouin function

Now (II.2a) is corrected as follows

Here the parameter    originates from the exchange interaction (II.4a).    is the zero Fourier

component of the exchange integral;    is the exchange integral between the nearest-neighbor (nn)

sites,   is the nn coordination number (the number of nn pairs);   is the next-nearest neighbor

(nnn) integral, and   is the nnn coordination number, etc.

The exchange interaction in EuO and EuS occurs indirectly via more extended    wave functions[5].

Only two types of exchange interactions are important:   and  ; for their values see Tab. 1. The rest

of the interactions can be neglected peacefully. Therefore, in (II.5b) for  , it is enough to account for

only two terms. In FCC crystals, like EuO and EuS,    and  , see Fig. 1. The lattice

separations   for the   nearest neighbor sites and for the   next-nearest neighbors sites are

as follows:

Here   is the size of the full cube in Fig. 1 consisting of 4 elementary cells of volume   each.

It is convenient to rewrite (II.5b) in terms of  , introducing the so-called “normalized

Brillouin function

For small 
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For   we come to the quantum WH equation

Using expansion (II.5a) and Eq.(II.5b) for  , we �nd a new equation for the WH temperature 

 similar to (II.2c), but now accounting for the exchange interaction (II.4b):

Temperature dependence of the magnetization (or mean spin  ) near   is also similar to (II.3a), but

with di�erent prefactor

Taking exchange integrals from Tab. 1 and using (II.5b), we get  K for EuO and  K for

EuS. This gives    for EuO and    for EuS which is not far from corresponding

experimental values  K for EuO and  K for EuS.

The solution of Eq. (II.9) in the WH-MFA across the whole temperature range for EuO is shown in the

main panel and for EuS in the inset of Fig. 2(a) by blue dotted line labeled  . However, the agreement

with the experiment is only qualitative. We conclude that WH-MFA with the quantum-mechanical

Heisenberg exchange interaction, Eq. (II.9), can serve as a zero-order approximation for the study of

thermodynamic properties of ferromagnetics.

Further e�orts to improve the WH-MFA took into account larger clusters. In the paramagnetic phase

(above  ) their equilibrium dynamics were rigorously studied by Chertkov and Kolokolov[23][24].

Below   larger clasters were studied, e.g. by Chamberlin[25]. However, due to the divergence of the

correlation length in the proximity to  , it becomes essential to use very large clusters to achieve the

desired precision, resulting in minimal or no computational bene�ts compared to the evaluation of

the whole system.

It is crucial to recognize that the methods mentioned above are unsystematic, making it di�cult to

control the nature of the assumptions and calculate corrections in a regular manner. This issue can be

(x) =bs

B =

− B + …
S(S + 1)x

3

Sx3

90
1 + 3S + 4 + 2 .S 2 S 3

(II.8)

H = 0

(T ) = [ ] .S
¯¯̄

bS
(T )S

¯¯̄
J0

T
(II.9)

gex

TC

= = .T th
C

2S(S + 1)Nlatμ
2
Bgex

3S

S(S + 1)

3
J0 (II.10a)

S
¯¯̄

TC

= .S
¯¯̄ − 1

TC

T

− −−−−−
√

90

SB

− −−−
√ ( )

T

J0

3/2

(II.10b)

≈ 16.5J0 ≈ 4.1J0

≈ 86.6T th
C

≈ 21.4T th
C

≈ 69.8T
exp
C

≈ 16.6T
exp
C

(1)

TC

TC

T
C
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resolved by using perturbation theory with graphical notation for the terms, known as the

diagrammatic technique.

The details of the DT usage are too complex for the general reader, as it is geared towards experts in

theoretical physics. Therefore, we placed our derivation of required corrections to the MFA in

Appendix A, where the interested reader will �nd all the technical details of the theory. The main

physical results of Appendix A are collected and thoroughly discussed in Section III, where we describe

the consistent step-by-step improvements of the WH-MFA, culminating in an accurate quantitative

description of the temperature dependence of magnetization throughout the entire temperature range

from   to  . These �ndings are in excellent agreement with experimental results for EuO

and EuS.

III. Beyond the quantum Weiss-Heisenberg MFA

In this Section we describe systematic, step-by-step corrections to WH-MFA, analyze them in various

limiting cases, and explain the physical mechanisms behind the improved description of  .

Note that both Weiss and Weiss-Heisenberg MFA replace the actual, time-dependent e�ective

magnetic �eld   acting on some spin   with its mean value  , completely ignoring the

�uctuations of the surrounding spins    which are relatively small in a parameter  , with 

  being the coordination number in EuO and EuS. The initial step to improve WH-MFA is

described in Sec III.1, where �uctuations are considered in the �rst order of perturbation theory with

respect to  . This allows us to correctly describe the power-like decay of   for   caused

by spin waves instead of the incorrect exponential decay of   in the WH-MFA.

Nevertheless, the behavior of   near   is still not corrected su�ciently and gives the same   as

the initial WH-MFA. This problem is addressed in the subsequent sections: III.B and III.3. The e�ect of

long-propagating spin waves on the �uctuations of   is described more accurately by considering

the exact kinematic identities (III.11), which connect all projections of the spin operator  . This

approach improved the behavior of    not only in the low-temperature region but also near the

temperature  , including the value of   itself.

In �nal Sec.III.D, we combine two types of corrections to get the accurate quantitative description of 

 in the entire temperature range from   to  .

T = 0 T = TC

M(T )

(t)Hi Si H = (t)Hi
¯ ¯¯̄ ¯̄¯̄ ¯̄¯

(t)Sj 1/Z

Z = 12

1/Z M(T ) T ≪ TC

M(T )

M(T ) TC TC

(t)Hi

Ŝ

M(T )

TC TC

M(T ) T = 0 TC
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A.  -corrections to the Weiss-Heisenberg MFA

The perturbation theory in    works well if the �uctuations of the magnetic �elds are small

compared to the mean value  . Unfortunately, the �uctuations of the e�ective magnetic �eld   on

a given spin    are relatively small with respect to their mean value    only when  . As 

 approaches  ,   goes to zero. In this case, the �uctuations of   become large compared to  ,

even in the �rst order in  . This is a common problem in the theory of second-order phase

transitions. Therefore, accounting for the �rst order in    is not simple. First attempts in this

direction, even using the diagrammatic perturbation approaches, faced serious problems (for more

details, see Appendix A.1.) As is elaborated in Appendix A.3, we use a more sophisticated version of DT

based on a generation functional. In our version of DT,   corrections are introduced in a much more

compact form of one-loop e�ective potential, described in Appendix A.4. The resulting equations with

the �rst-order in   corrections are as follows:

Here

which can be interpreted as the mean value of some function   per magnetic site,    is the unit cell

volume and integration in Eq. (III.2) over    is carried out in the �rst reduced Brillouin zone for the

wave vectors.

In Eq (III.1),     and    are the �rst and the second derivatives of the

normalized Brillouin function    given by (II.7),    is the mean value of the magnon numbers 

 per magnetic site, given by the Bose-Einstein distribution:

1
Z

1/Z

H (t)Hi

Si H T ≪ TC

T TC H (t)Hi H

1/Z

1/Z

1/Z

1/Z

=S̄

=A0

=A1a

=A1b

=A2

=A3

+ + + ,A0 A1 A2 A3

(β ), = + , β = 1/T ,bs J0S̄ A1 A1a A1b

− ⟨ = −N ,nk⟩k

⟨ (β ) = [exp( /T ) − 1 ,n0 S̄J0 ⟩k J0S̄ ]−1

β (β )⟨ ,b′
S

J0S̄ Jknk⟩k

⟨ .
β (β )b′′

S
J0S̄

2

βJk

1 − β (β )Jkb′
S

J0S̄
⟩k

(III.1)

⟨ ≡ ∫ k, ⟨1 = 1,fk⟩k

v

(2π)3
fkd

3 ⟩k (III.2)

fk v

k

(x) = d /dxb′
S b

S
(x) = /db′′

S d2b
S

x2

(x)b
S

N

nk

=nk

(T ) =Ek

=Jk

,[exp − 1]
(T )Ek

T

−1

(T )( − ),S̄ z J0 Jk

exp(ik ⋅ ).∑
j

Jij Rij

(III.3)
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Here   is “self-consistent” energy of spin waves, which can be found in the simplest version of

splitting of the Greens function suggested by Tyablikov[26]. To rationalize this result from a physical

point of view, at least for small   and �nal temperatures, note that in these conditions the main

contribution to the decrease in    comes from the fast spin waves with  . This allows us to

average the spin system over fast motions and to consider slow spin waves with  , as in the

limit  , by replacing   (in our case  ) with  .

For actual calculations in EuO and EuS, we need explicit expressions for    in these crystals.

From (III.3) and (II.6) we �nd:

1. Low temperature limit

In the limit  , the term   in Eq. (III.1) gives the expected trivial answer  . Together with the

term    it gives a well-known result (see, for example,  [14]) for the spin-wave correction of low-

temperature mean spin

To estimate   note that at small  , say for  K in EuO, the integral in   is dominated by

small   and the upper limit can be expanded to  . In cubic crystals for small 

For example, for EuO and EuS [according to (III.3) and Eqs. (III.4)], gives

This allows us to integrate    over angles in spherical coordinates and, �nally, to come to a one-

dimensional integral

Then   can be estimated as follows

(T )Ek

ak ≪ 1

S̄ z ak ∼ 1

ak ≪ 1

T → 0 S S = 7/2 (T )S̄ z

−J0 Jk

− =J0 Jk 4 [ +J1 sin2 ( + )akx ky

4
sin2 ( − )akx ky

4

+ +sin2 ( + )akx kz

4
sin2 ( − )akx kz

4

+ + ]sin2 ( + )aky kz

4
sin2 ( − )aky kz

4

+4 [ + + ] .J2 sin2 akx

2
sin2 aky

2
sin2 akz

2

(III.4)

T → 0 A0 = SS
¯¯̄

A1a

≈ S − N (T ).S
¯¯̄ (III.5)

N (T ) T T < 10 ⟨ ⟩nk

k ∞ k

(T ) = (ak .Ek Eex )2 (III.6a)

= (T )( + ).Eex S
¯¯̄
z J1 J2 (III.6b)

⟨ ⟩nk

= ζ(3/2) ≈ 1.579.∫

0

∞

dxx2

exp − 1x2

π−−√

4

N (T )

qeios.com doi.org/10.32388/64SBAD 15

https://www.qeios.com/
https://doi.org/10.32388/64SBAD


Using   from Tab.1 in Eq. (III.6b), we obtain the values of  K for EuO and  K

for EuS.

In the limit   the rest of the terms in (III.1) give exponentially small corrections:

– Term  ;

– Term   where  , see (III.7);

– Term  , where   is de�ned by Eq. (III.3).

Therefore, our result, Eqs.(III.1), gives an expected and well-known low-temperature behavior (for 

K in EuO) of  , see, for example, [14].

2. Near   behavior: 

To �nd the behavior of the magnetization in the limit    we consider the basic equations (III.1)

with   given by Eqs. (III.3). Here we can use the Rayleigh-Jeans distribution

Using the expansions of (II.8) for   we can simplify equations for   accounting terms

of order of  , denoted as  :

Here averaging   is understood according to (III.2).

We see that in the limit   the terms   and   diverge as  . However, the sum of these

two terms

N (T ) ≈ .
ζ(3/2)

32(π)3/2
( )

T

Eex

3/2

(III.7)

,J1 J2 ≈ 1.50Eex ≈ 0.22Eex
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≈ exp(− S/T )A1b J0
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i.e. behave as    near Curie temperature (II.10a),    under assumption that 

.

To verify this assumption, consider Eq.(III.1) with approximate values of    given by (III.9). To

simplify appearance of the resulting (III.10) we multiply each term by  , divide by    and

rearrange to get

Here we note that    is proportional to    and neglect it in (III.10). Terms 

 and   contribute to the left-hand-side (LHS) of Eq. (III.10), while   and   contribute to

its right-hand-side (RHS).

In particular, we see that for   close to  ,   with the same   as original, not corrected

Eq.(II.10a), but with the prefactor which di�ers from (II.10b).

3. Numerical solution of Eq.(III.1)

The numerical solution of Eq.(III.1), shown in Fig. 2(a) by the solid blue line, is compared to the

solutions of the Weiss-Heisenberg Eq.(II.9) (dotted blue line) and the experimental results for EuO. It

is observed that the solution of the mean-�eld equation   (solid black line with circles)

deviates signi�cantly from the experiment in the entire temperature range. At the same time, the

solution of the  -corrected Eq.(III.1) (represented by the solid blue line) o�ers an accurate

quantitative description of the experiment in the low-temperature region ( K for EuO),

dominated by spin-wave contribution. However, this solution deviates signi�cantly from the

experiment for larger temperatures.

A way to resolve this problem, demonstrating very accurate qualitative agreement between the

developed theory and experiment, is shown below.

B. Non-equiribrium Belinicher-L’vov DT for spin operator

The essential progress in this area was made by Belinicher and L’vov (BL), who developed a

diagrammatic technique for spin operators[17] using graphical notations similar to those traditionally

employed in Feynman’s diagrammatic technique. BL extended Keldysh’s diagrammatic technique to

+ = ⟨ ⟩ [ − ] ∝A
(−1)
1 A
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2

Jk

−J0 Jk
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S¯¯̄
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non-equilibrium Bose systems for the case of spin operators. The key element here was the

formulation of Wick’s theorem for spin operators, which allows the expression of the mean values of

the product of any number of spin operators

through products of only operators  . The BL-DT explicitly incorporates the mean values of the spin-

wave propagators (expressed via  ) while the longitudinal correlation functions of   play a role as

external parameters characterizing the media in which the spin waves propagate. Calculating

longitudinal correlations is a non-trivial task. One way to achieve this is to formulate a perturbation

approach starting from the basic WH-MFA in which there is no mention of spin waves. With this

starting point, one has to account in any order of perturbation approach the ful�llment of the

kinematic identities

which provides a connection between dynamic operators   and powers of the static ones,  .

In BL-DT kinematic identities, (III.11) is used from the start to express correlations    as

polynomials of  . These correlations can be calculated using the longitudinal part of the DT. This

approach allows for an e�cient calculation method in which even a single simple diagram considered

corresponds to the summation of a series of several diagrams in the framework of the Vaks-Larkin-

Pikin approach.

C. Spin-waves-improved Weiss-Heisenberg MFA

BL showed that accounting for kinematic identities (III.11) in zero-order approximation in   leads

to the following modi�cation of MFA:

where  , the mean value of the occupation numbers, is the free parameter of the problem. Its

value depends on real physical conditions: in the case of strong external pumping, it can be found

from the wave kinetic equations. In thermodynamic equilibrium,    is determined by the Bose-

Einstein distribution (III.3).

In thermodynamic equilibrium, equations Eq. (III.12) were suggested by Praveczki [27]  for 

  (recall that in EuO and EuS  ) and were accounting only for nearest-neighbors

= ( ± i )/ andŜ± Ŝx Ŝ y 2–√ Ŝ z

Sz

Ŝ± Ŝ z

= −2 + − = S(S + 1)Ŝ
2

Ŝ+Ŝ− Ŝ
2

z Ŝ z (III.11)

Ŝ± Ŝ z

⟨ ⟩Ŝ
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Ŝ±

1/Z

(T ) = (y), y = ln(1 + ),S¯¯̄
z bS
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N
(III.12)

N = ⟨nk⟩k

nk
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interactions, see also [28][29][26].

Eqs.(III.12) can be rewritten in a form more closely resembling the original version (II.9) of the

quantum MFA:

Here, we replace   in Eq. (II.9) with the e�ective energy on the site   de�ned by Eq. (III.3).

In a way,    can be considered as a sophisticated mean value of the spin waves energy 

  over the entire  -space at a given  . We consider Eq. (III.13) to be physically motivated and

more transparent than its original form (III.12).

As is shown below, Eq.(III.12) [or, equivalently, Eq. (III.13)] is signi�cantly more accurate than the

corresponding Eq.(II.9) for WH-MFA and even Eqs.(III.1) describing WH-MFA with  -corrections.

1. Low   behavior: 

When  ,   is very small and   in (III.12). In that case

i.e., as anticipated, the decrease in   is precisely governed by the excitation of spin waves[14]. Note

that Eq. (III.14) coincides with Eq. (III.5) for    in the “original” mean-�eld approximation with 

 corrections.

2.   behavior for 

Let us show that temperature dependence    in the spin-wave-improved mean-�eld

approximation, considered here and in the “original” mean-�eld,    corrected approximation are

very di�erent when   approaches  , the mean spin   and the energy   in (III.13a) also

approaches zero and become much smaller than  . In that case, the Bose-Einstein distribution

(III.13b) can be approximated by the Rayleigh-Jeans distribution   and Eq.(III.13b) reduces to

Here we introduce the e�ective exchange integral, de�ned as follows

(T ) =S
¯¯̄
z
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We observe that Eqs. (III.13a) and (III.15a) coincide with the original mean-�eld Eq. (II.9) after

replacing   with  . It means that in the spin-wave-improved MFA   vanishes at the new value of

the Curie temperature

and in its vicinity behaves as a square root of the temperature di�erence, similarly to (II.3a):

where   is de�ned by (II.8) and   depends only on  . The Curie temperature denoted as  , is

now determined by the e�ective exchange integral  , which is smaller than the ”bare” exchange

integral  . The ratio    in EuO and    in EuS. The physical reason is that

kinematic identities (III.11) suppress longitudinal correlations of spins due to the excitation of spin

waves in the vicinity of  .

3. Numerical solution of Eq. (III.12) and its analysis

The numerical solution of the spin-wave-improved WH-MFA, (III.12) for    in EuO is shown in

Fig. 2(a) by the dashed green line labeled (3). It is interesting to compare this behavior with the similar

curve of   in   corrected WH-MFA, Eq. (III.1), plotted in Fig. 2(a) by the solid blue line labeled

(2). We showed analytically that in both approximations, the low    behavior is the same: 

. Consequently, both curves practically coincide for  K and remain quite close

for temperatures up to  K. However, for larger    these curves deviate signi�cantly: solid blue

line for  -corrected MFA goes to zero at  K, while the dashed green line for spin-wave-

improved MFA approaches zero at  K which is much closer to the experimental value   in

EuO.

We conclude that the spin-wave-improved MFA captures physics better than its 1/Z-corrected

counterpart for  . We tend to associate this di�erence with the kinematic identities, (III.11)

that relate the dynamic operators   to the static ones   on the same site. In the original, WH-MFA

an interaction of a spin on a given site with its real environment with �uctuating spins is

approximated by its interaction with the mean values of surrounding spins, producing a time-

≡ .
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independent magnetic �eld  . In thermodynamic equilibrium, this �eld causes a non-zero

value of  , given by the normalized Brillouin function    according to (II.9). However, in the

presence of intense spin waves, this is not the case: according to kinetic identities when  ,

the mean spin   cannot reach its maximal value   and vanishes for smaller   i.e. faster than without

accouning for the spin waves.

D. 1/Z-corrections to the spin-wave-improved mean-�eld equation and its analysis

Using the spin-wave-improved mean-�eld equation, Eq. (III.12), as a zero-order approximation, and

�nding the required �rst-order corrections in  , we obtain the following version of the self-

consistent equation for  :

Here  ,  ,    and    are given by Eq. (III.1). Equation    coincides with the spin-wave-

improved mean-�eld equation (III.13). As we have shown, it gives for   the spin-wave correction 

. The same correction gives the term   in Eq.(III.1). The prefactor in Eq.(III.16c) vanishes

for   to prevent double counting of the spin-wave correction.

Note that analysis of near-   behavior of    in the framework of Eqs. (III.9) for  -corrected

WH-MFA shows that    at  . This follows from the balance of  ,    and 

 terms in (III.10). The analytical equations for these terms in (III.16), are the same as in Eqs.(III.1)

and (III.9). Therefore, it is not surprising that   for   and not for  . The reason

is that we derived the equations for   in the framework of DT developed in Appendices A.3 and A.4,

which ignores kinematic identities. The straightforward way to account for them is to derive   in the

framework of the BL DT. Unfortunately, this is quite a cumbersome procedure. To avoid this issue, we

observe that spin waves in the range where    suppress the e�ective exchange integrals by a

factor of  . Therefore, we replace in all expressions for  ,    by    and    by  .

Modi�ed in this way, Eqs. (III.16) for  -corrected, spin-wave-improved MFA for    was

solved numerically with Eu0 parameters and shown in Fig.2(a) by a solid green line. We see further

improvement of the result in comparison with the uncorrected spin-wave-improved mean-�eld

equation (III.13), plotted in Fig.2(a) by the dashed green line.
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When the small disagreement in the Curie temperature values is compensated by plotting in Fig.2(b) 

  vs normalized temperature  , the theoretical curves of    in the  -corrected spin-

wave-improved MFA almost coincides with experimental results for EuO and EuS.

Another impressive result is observed in Fig.2. We approximated here a theoretical solution of   by

a power-law-like  -dependence  , shown by solid red line. The value of the apparent

scaling index    is in excellent agreement with its experimental value 

 in EuO and EuS[10] as well as with the theoretical value  , derived in the

framework of the renormalization group theory for the 3D Heisenberg ferromagnetic [18]. Even though

the mean-�eld value   is expected in our approximations in a very narrow (not observable)

near-   range, the wider temperature dependence is faithfully described. This improvement,

therefore, re�ects the importance of the introduced corrections in describing the basic physical

mechanisms de�ning the magnetization.

IV. Summary

In this paper, we revisited the theoretical description of spontaneous magnetization in cubic

ferromagnetic crystals. We developed a theory that accounts for intensive and long-propagating spin

waves - �uctuations of the transverse spin components - via the consistent two-step procedure based

on the diagrammatic technique. Our theory resolves the long-standing problem of an accurate

quantitative description of the temperature dependence of magnetization in cubic ferromagnetic

crystals, including the anomalous (i.e. not predicted by the mean-�eld approximation) scaling

observed experimentally over a wide temperature range.

We explain the physical reasons for the failure of other approaches and demonstrate the step-by-step

improvement in describing the temperature dependence of the spontaneous magnetization emerging

in our method.

Our theoretical approach marks a signi�cant advancement in the description of magnetic systems. It

is not limited to simple ferromagnets but may be extended to ferrimagnetic materials with multiple

magnetic sublattices, such as yttrium-iron-garnet and antiferromagnets that involve exchange and

dipole-dipole interactions, as well as anisotropy energy, among other factors.

/SS
¯¯̄
z T/TC /SS

¯¯̄
z 1/Z

/SS
¯¯̄
z

T (1 − T/TC )βth

β = 0.34 ± 0.02

= 0.36 ± 0.01βexp ≈ 0.365βth

= 1/2βMF

TC
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Appendix A. Diagrammatic technique for Heisenberg ferromagnets

A.1. Vaks-Larkin-Pikin DT for spin operators in thermodynamic equilibrium

The initial formulation of the DT for ferromagnetic materials was proposed by Vaks, Larkin, and Pikin

(VLP)[15][16]. Their DT, formulated for the thermodynamic equilibrium, produced important results.

Later Izyumov and Skryabin[30], and Bar’yakhtar, Krivoruchko, and Yablonski[14] adapted VLP DT for

direct use with spin operators. These DTs have produced several noteworthy and crucial �ndings[15]

[16][30][14].

From the formal point of view, the WH mean-�eld Eq.(II.9) is the zero-order approximation in these

approaches, valid in the limit of an in�nitely large radius of interaction  , de�ned as follows

VLP also computed �rst-order corrections in    for    in (II.5b) and the simultaneous spin

correlation functions. According to[15], the expansion parameters of this theory for the cubic, body-

centered (BCC), and FCC lattices with nearest-neighbor interactions are  ,  , and 

, respectively. However, since exchange interactions decay rapidly with distance, the

theory, in its original formulation, is formally inappropriate for most ferrodielectrics.

Most of the results obtained in this DTs[15][16][30][14]  have not gained widespread acceptance, both

because of the speci�c di�culties inherent in these diagram techniques and the unsuccessful

graphical notation, which makes it di�cult to establish analogies and perceive the information

presented.

Note also that in the VLP approach, the corrections to   become in�nite as   approaches  . This

behavior is not physical because  . Therefore, it is necessary to reformulate the theory

to eliminate these in�nite values. This is done below in Appendices A.2, A.3 and A.4, where we provide

a regularized theory that describes corrections to quantum WH-MFA that are applicable over a wider

range of temperatures.

A.2. Physical small parameter

We have to note that from a physical point of view, MFA in ferromagnetics neglects the �uctuation of

the e�ective magnetic �eld and becomes exact when the number of interacting magnetic atoms goes

R

= / .R2 ∑
j

R2
ijJij a2J0 (A1)

R−3 M(T ,H)

1 ≈ 0.352−3/2

≈ 0.193−3/2

M(T ) T TC

0 < M(T ) < M0
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to in�nity. For FCC crystals with nearest-neighbor interactions, this number is the coordinate

number  . Thus, the applicability parameter in this case is  , which is much smaller

than the formal expansion parameter  , declared by VLP. Moreover, when the next-nearest

interactions are important one has to account for their contribution to the exchange integral  . Thus

we expect that in the general case, the role of coordinate number    is played by 

. In EuO   while in EuS  . This explains why we hope

to reach a better agreement between an experiment and the mean-�eld approach for EuO than for

EuS. Indeed, according to Tab.1, in EuO    while in EuS this ratio is about

0.29.

A.3. Functional representation

In this paper, we are interested in the spontaneous magnetization   which is proportional to the

mean spin  , de�ned by (I.1) and aligned with the external magnetic �eld  .

Following[31][32] we compute   as

from the generating function

Here ”Tr” represents the trace operator. The Heisenberg exchange Hamiltonian, denoted as  , is

derived from the energy described in equation (II.4b) and has the following form:

where   are spin operators on the lattice sites  . To con�ne the operator problem to a single lattice

site, the Hubbard-Stratonovich transformation [33][34] is utilized.

The non-commutativity of spin components prevents us from rewriting the partition function as an

integral over vector variables de�ned on each lattice site. Instead, �elds dependent on an arti�cial

time emerge, leading to an expression that involves functional integrals over these �elds de�ned on

the lattice. This proceeds as follows: First we represent   as an in�nite product:

= 12Z1 1/ = 1/12Z1

1/ = 1R3

J0

Z

= / ≈ + /Zeff J0 J1 Z1 Z2J2 J1 ≈ 13.2Zeff ≈ 9.4Zeff

[Δ − ]/ ≈ 0.24T ex
C

T
exp
C

T
exp
C

M(T )

S
¯¯̄
z h = {0, 0, ≡ h}hz

M(T )

= ln Z(h), h → 0.S¯¯̄
z

T

Nlat

d

dh
(A.2)

Z(h) = Tr exp(−β − βh ).Hex ∑
j

S z
j (A.3)

Hex

= − ,Hex
1

2
∑
jk

JjkSjSk (A.4)

Sj Rj

Z(h)

Z(h) = exp(−ϵ + ϵh ) × …Hex ∑j S
z
j

× exp(−ϵ + ϵh ).Hex ∑j S
z
j

(A.5)
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Formally, we need to let    approach 0, but for now, let us consider it as a very small, but �nite

quantity. The number of terms in the product (A.5) is  . Then we use the identity valid in the limit 

where   is the inverse matrix of   and   is a normalization factor. Substituting it into (A.5), we

have for each lattice site    a set of integration variables corresponding to each multiplier in the

product (A.5). This set can be considered as a function   de�ned in discrete time  .

In a formal continuum limit, we obtain integral sums as an exponent and a product of time-ordered

exponentials:

The symbol T denotes a chronological product and  . The path integral (A.3) is understood

as a limit of �nite-dimensional approximations. The measure of integration is

where 

Let us rewrite (A.3) in a more convenient manner by shifting the variables of functional integration 

:

The time-ordered operator exponent

is de�ned by the equation

ϵ

β/ϵ

ϵ → 0

=

exp( )ϵ

2
JjkSjSk

∫ d exp(− + ϵβ ),Mϵ ∏j ϕj
ϵ

2
J −1
jk

ϕjϕk ϕjSj

(A.6)
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β
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∫

β

0
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φz
j Nlat

βh2

2J0
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∫
β
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φj Sj
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(t) = T{exp[ φ(τ)Sdτ]}Â ∫
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with the initial condition  . The operator   cannot be expressed explicitly as a functional of 

. However, there is a way to rewrite the T-ordered exponential as a product of regular ones. To

demonstrate this, let us consider the operator given as a product of the usual matrix exponential:

Here,   and   are some new �elds. Using the commutators

where    is some function, one can be convinced that the operator    satis�es the following

equation:

The last factor in (A.11) provides the equality  . Considering the following change of variables

in the functional integral over the measure

we see that the T-ordered operator  , de�ned by Eqs. (A.10), takes the form (A.11):

without T-ordering. This allows us to obtain an explicit functional integral representation for any

physical quantities of interest.

The change of variables (A.14) contains the time derivative of   on the right-hand side. Hence, it is

necessary to impose the boundary or initial conditions.

Here we utilize the periodic boundary conditions that are typically used in statistical physics of Bose

systems. It is essential to calculate the Jacobian   considering the boundary conditions:
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φ(t)
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ψ−

J

qeios.com doi.org/10.32388/64SBAD 26

https://www.qeios.com/
https://doi.org/10.32388/64SBAD


The analyticity of the integrand and the convergence of the functional integral allows us to deform the

initial surface of integration into standard one:  ,  . In this way, the trace of the

operator   (A.11) can be easily calculated for an arbitrary value of the spin  :

Here   is a primitive of normalised Brillouin function  , givn by (II.7):

Note that   di�ers from the original Brillouin function  , given by (II.5a).

Thus, (A.2) and (A.3) together with (A.14)-(A.18) lead to the statement that the spontaneous

magnetization is given by the expectation value

with respect to the measure

where the Lagrangian   has the form:

with   being the inverse Jacobian (A.16) and the function   is

J = const sinh( ρdt).
1

2
∫
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Figure 4. (a) Graphical notation for the correlators  , and  . (b) notation for vertices 

, and  ,  , and  . (c) One-loop renormalization of the frequency spectrum. (d) The one-

loop equation for magnetization.
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A.4. One-loop equation for spontaneous magnetization

a. Integration measure in perturbation approach

To prepare the integration measure over �elds   at the site  , we note that in our system with a

nonzero mean spin  , the �eld   also has a non-zero mean value  :

where �uctuations   are assumed to be small in some sense.

In our case of spatial and time homogeneity, it is customary to use Fourier components

The equation for spontaneous magnetization follows from the identity

valid for any   and   due to homogeneity. To compute this expectation value explicitly we substitute

the decomposition (A.24) into (A.20)-(A.22a) and arrive at the measure of perturbative averaging over

�uctuations around the mean �eld:

Hereafter    is the Kroniker delta function de�ned as follows:  , and  .

Furthermore:

,ρj ψ±
j rj

S
¯¯̄
z (t)ρj ρ̄̄̄
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Vertex    is independent of Matsubara frequencies    and, due to the conservation law of

momentum, is symmetric with respect to the permutation  .

Last but not least, the contribution to    in (A.26b), denoted as    , is an in�nite series over

�uctuations   with zero Matsubara frequencies:

A.4.2. Magnetization in the �rst order in 

Seed correlation functions are diagonal in   and  :

Graphical notations for correlators    and    are shown in Fig. 4 together with

graphical notations for vertexes  ,  , and  , de�ned by Eqs. (A.26d), (A.26f) and (A.27).

The one-loop renormalization of the Green function    depicted in Fig. 4(c) is equivalent to

substitution   in the expression (A.28) for  . Additionally, the regularization of simultaneous

�eld products related to the initial spin problem follows the Stratonovich rule[34] rather than relying

on chronological ordering. It is equivalent to symmetrical    cut-o� in summation over

Matsubara frequencies. It gives

It can be veri�ed that equation (A.29), along with Jacobian (A.16), is consistent with the kinematic

identities (III.11) described in Section III.B. For example, in the case where  , the free energy

is proportional to  .
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Note that Eq. (A.25) for   represents the sum of connected diagrams. In the one-loop approximation,

we have the terms shown in Fig. 4(d). By substituting the analytical expressions for the propagators

and vertices provided above, we arrive at Eq. (III.1).
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