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In this paper, we introduce iLLaVA, a simple method that can be seamlessly deployed upon current Large Vision-

Language Models (LVLMs) to greatly increase the throughput with nearly lossless model performance, without a

further requirement to train. iLLaVA achieves this by �nding and gradually merging the redundant tokens with an

accurate and fast algorithm, which can merge hundreds of tokens within only one step. While some previous

methods have explored directly pruning or merging tokens in the inference stage to accelerate models, our method

excels in both performance and throughput by two key designs. First, while most previous methods only try to save

the computations of Large Language Models (LLMs), our method accelerates the forward pass of both image

encoders and LLMs in LVLMs, which both occupy a signi�cant part of time during inference. Second, our method

recycles the bene�cial information from the pruned tokens into existing tokens, which avoids directly dropping

context tokens like previous methods to cause performance loss. iLLaVA can nearly 2  the throughput, and reduce

the memory costs by half with only a 0.2% - 0.5% performance drop across models of di�erent scales including 7B,

13B and 34B. On tasks across di�erent domains including single-image, multi-images and videos, iLLaVA

demonstrates strong generalizability with consistently promising e�ciency. We �nally o�er abundant

visualizations to show the merging processes of iLLaVA in each step, which show insights into the distribution of

computing resources in LVLMs. Code is available at https://github.com/hulianyuyy/iLLaVA.

1. Introduction

Over the past several years, Large Vision-Language Models (LVLMs)[1][2]  have demonstrated tremendous progress

and enabled promising applications in various downstream tasks including cross-model retrieval[3][4][5][6], image

captioning[7][8] and image/video generation[9][10]. Within these impressive models, images are usually �rst divided

into patches and then transformed into token sequences, �nally fed into a Large Language Model (LLM) and

concatenated with system prompts and user instructions to generate the desired textual outputs. The direct

combination of image tokens and textual contexts already shows impressive performance over a broad range of tasks,

which enables the emergence of powerful AI tools like GPT-4o, Gemini 1.5 pro, DALL E3 and Kling.

However, the surge of these models also faces severe challenges in computational complexity and computing

resources in real life. As they usually rely on the self/cross-attention operations to model input information, the
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inherent    computational complexity of attention operations corresponding to input tokens introduces heavy

computations. Moreover, when faced with image/video inputs, the transformed image input sequences always own

thousands or ten thousands of tokens, which further drastically increase the computational burden. In practice,

inference with a LVLM with 34B size would need around 80GB memory[11], which is unavailable for many institutions

with limited computing resources in real-world scenarios. The slow inference speed for LVLMs also poses substantial

concerns in cases requiring fast responses[12][13] for real-time processing. Thus, to promote the inference e�ciency of

LVLMs is of great signi�cance in real-world scenarios.

Some works on model acceleration found that the input features are inherently redundant and proposed to directly

prune unnecessary tokens for inference acceleration. In Vision Transformers (ViTs), ToMe[14] adopts a soft bipartite

matching algorithm to merge tokens from one subset into another, and �nally reduce the token number by a large

portion. SparseViT[15] prunes the windowed activations in ViTs and applies the evolutionary search to e�ciently �nd

the optimal layerwise sparsity con�guration. In LVLMs, FastV[12] tries to directly discard 50% unnecessary tokens in

the language model to accelerate the inference process. LLaVA-PruMerge[16]  designs an adaptive token selection

strategy based on Interquartile Range to detect outliers and perform merging. These methods could notably increase

the throughput by a large margin, showcasing the e�cacy of reducing feature redundancy to accelerate models.

In this paper, we revisit the utilization of feature redundancy in LVLMs and design a novel simple method for model

acceleration, termed iLLaVA, which excels previous methods in both accuracy and e�ciency. iLLaVA accomplishes

this goal by two key factors. First, while most previous methods only reduce tokens within the language model, our

method accelerates the forward pass of both image encoders and Large Language Models (LLMs), which further lifts

the upper bound of e�ciency. Second, instead of directly dropping unnecessary features, our method recycles and

merges the pruned tokens into existing tokens, avoiding discarding bene�cial information for performance loss. As

shown in Fig. 1, iLLaVA could nearly 2   the throughput, reduce the memory costs by half with only a 0.2% - 0.5%

performance drop. When evaluated upon various benchmarks including single-image benchmarks, multi-image

benchmarks and video benchmarks, iLLaVA demonstrates great generalizability and robustness across models of

di�erent scales including 7B, 13B and 34B. We show that iLLaVA could decrease the computations and memory of a

large model (e.g., 7B) to what a smaller-size model (e.g., 2B) requires while maintaining superior performance.

Visualizations validate that iLLaVA successfully focuses on the meaningful targets in the images.
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Figure 1. Comparison between iLLaVA and the base model LLaVA-Onevision 7B in terms of the accuracy, memory cost and

throughputs over MMMU[17] and Egoschema[18] datasets.

2. Related Work

2.1. Large Vision-Language Models

Our work is closely related to the surge of LVLMs. Traditional methods[19][20][21]  usually collected large vision-

language datasets and learned joint representation between vision and language from scratch to handle di�erent

tasks. These methods usually worked well in in-domain data but performed inferior in out-domain data that require

common sense and world knowledge.

Later, powered by the abundance of high-text data, LVLMs[1][2][8][10]  shows impressive performance across a wide

range of image understanding[17][22][23][24][25] and reasoning tasks[26][27]. These methods usually �rst transform the

input images as patches, and then feed them into a vision-transformer-based image encoder. The extracted features

are sent into a projector for dimension projection, whose outputs are further concatenated with the system prompts

and user instructions to serve as inputs for the language model to generate textual outputs. As the attention

mechanism with computational complexity   is both used in the image encoder and language model in LVLMs,

they have to consume high computational resources and own high inference latency when faced with long input

sequences. Our method is deployed upon the state-of-the-art LLaVA-Onevision[1]  and QWen2-VL[2]  series to

accelerate the model forward pass.

2.2. Token reduction

Token reduction has been widely explored in both computer vision[28][15][29][30][31] and natural language processing

(NLP)[32][33][34]. However, these methods usually require training, while our method can be done in a training-free
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manner. In multimodal learning, a series of methods tried to prune the tokens of intermediate layers for model

acceleration. FastV[12]  proposes to select the TopK-activated tokens within the language model to accelerate the

forward pass. FlexAttention[35]  designs a special architecture to �rst encode low-resolution images and then select

corresponding areas in high-resolutions with high responses. LOOK-M[36] utilizes the redundancy of image tokens to

guide optimizing the KV cache in LVLMs to achieve reduced memory size. ZipVL[37]  propose a dynamic strategy to

prune the token across di�erent layers by their received attention scores. Free Video-LLM utilizes an additional CLIP

model to help determine which area is the most bene�cial and crop the corresponding region into LVLMs for

processing. HiRED[38] presents a dynamic high-resolution early dropping strategy for allocating computing resources

between partitioned sub-images and the main image. VidCompress[39]  designs a memory-enhanced token

compressor to encode the short-term memory and long-term memory in videos for model acceleration. Zhang et al.

[40] propose to identify redundant tokens by assessing the pattern repetitiveness of correlations between patches and

then conducting pruning. LLaVA-PruMerge[16]  leverages the attention scores between the [CLS] token and other

tokens in the image encoder to guide token dropping before processing with the language model. While these methods

mostly only focus on accelerating the language model in LVLMs, we try to make both the image encoder and language

model lightweight, which could further enhance the model e�ciency. Besides, unlike most previous methods that

simply prune the redundant tokens, we reuse them and absorb helpful contexts from them into existing tokens to

avoid performance drop.

3. iLLaVA

Our target is to design a plug-and-play token merging approach that can be seamlessly combined with existing

LVLMs for higher e�ciency with no performance sacri�ce, without a further need to train.

3.1. Motivation

Our motivation is from the structure of inference time for components in LVLMs, and the inherent feature redundancy

of input tokens. First, in Fig.  2(a), we plot the inference time distribution for components in LVLMs including the

image encoder, projector and language model. We compute the averaged scores upon single-image benchmarks

including SeedBench[26], MMBench[22]  and MME[41], mutli-image benchmarks including MuirBench[42]  and

MMMU[17], video benchmarks including VideoMME[43], Egoschema[18]  and ActivityNet-QA[44]as output values for

comparison. It can be observed that the image encoder and the language model both occupy a signi�cant portion of

inference time within LVLMs, and the proportion of the image encoder consistently increases as the input image

tokens increase from single-image tasks, multi-image tasks to video tasks. While most previous methods only

consider pruning tokens within the language model, exploring how to accelerate both the image encoder and language

model would clearly o�er higher upper bounds.

Second, we explore the feature redundancy from the input perspective. In Fig. 2(b), we visualize a raw image on the

left and four attention maps drawn from di�erent intermediate layers of the image encoder on the right. On the one

qeios.com doi.org/10.32388/69KFLK 4

https://www.qeios.com/
https://doi.org/10.32388/69KFLK


hand, one can see that the attention module only pays major attention to some areas in the image (the bird) and

overlooks others, which shows feature redundancy does exist in raw images and the model itself could well learn to

attend to important regions. On the other hand, we �nd that this location ability only performs well within shallow

layers of the image encoder (Layer 1-10) and gradually diminishes for deep layers. This may be attributed to the fact

that the input tokens for deep layers are mostly composed of context features instead of raw texture features. We thus

conclude attention scores from the shallow layer are a great clue in revealing important tokens. Let’s forward to the

language model. Fig.  2(c) illustrates an attention map from Layer 1 of the language model in the left, and four

attention maps from di�erent intermediate layers in the right. As previous methods[12] disclosed, in Layer 1 the image

tokens already receive much less attention (deeper color in Fig.  2(c)) compared to system prompts and user

instructions. This phenomenon becomes more severe in deeper layers like Layer 3 and Layer 10 where the received

attention scores for image tokens become further sparser. This shows that the image tokens in LLMs are overcrowded

for the language model.

Figure 2. (a) The proportion of inference time for each component in LVLMs. (b) Visualizations for the attention scores in

the image encoder. (c) Visualizations for the attention scores in LLMs.
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3.2. Method

While previous methods have strategically designed various token reduction methods to accelerate models during the

inference stage, we �nd two drawbacks of them. First, most previous methods[12][38][37][35][40]  only consider

optimizing the inference procedure of LLMs in LVLMs, and our method tries to accelerate the forward pass of both

image encoders and large language models, which greatly improves the upper bound of model e�ciency. Second,

most previous methods simply prune tokens and discard the unused ones, and our method recycles the bene�cial

information from the pruned tokens into existing tokens, avoiding dropping meaningful contexts. We next detail our

design.

Figure 3. (a) Visualizations for the token merging process across di�erent blocks in the image encoder. The red region

denotes selected tokens and the black regions represent discarded tokens. (b) The framework overview for iLLaVA. Images

are �rst sent into an image encoder to extract spatial features, followed by a projector. The projected image features are then

concatenated with system prompts and user instructions and fed into the large language model to generate text outputs. We

apply token merging at the intermediate layers of the image encoder and the language model to accelerate the forward pass.

Token similarity

Before merging tokens, we �rst which tokens are similar. As we have demonstrated in Sec. 3.1, attention scores from

the attention module in the image encoder serve as a good indicator for revealing important tokens. Similarly, in the

language model, we �nd the attention scores from the attention module also perform well in guiding the model to

excavate context information. This motivates us to use the attention score as metrics for measuring token similarities.

Another advantage of attention scores is that we don’t need to perform re-calculation but could directly reuse the

attention scores from the attention module from image encoders/language models. In the image encoder, given a pre-
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computed attention map    with    denoting the number of image tokens, we de�ne the similarity 

 between token   and others as the averaged attention scores over all other tokens as:

In the language model, given a pre-computed attention map    with    denoting the number of image

tokens in the language model, we similarly de�ne the similarity    between token    and others as the averaged

attention scores over other image tokens as:

A slight di�erence for the language model is that we �nd using the image-to-image attention scores gives slightly

better performance than adopting text-to-image attention scores.

Token merging.

We apply the same token merging strategy with di�erent merging steps for the image encoder and language model.

Fig. 2(a) visualizes the merging process in LVLMs. In the image encoder of   blocks, we select   blocks and gradually

merge tokens by   per layer. Note that   is a quantity instead of a ratio. In the language model, inspired by previous

methods[12], we only perform token merging at one speci�c layer   and reduce the token number by a constant  .

Thus, assuming the input tokens are  , we �nally only keep   tokens (e.g., 729 - 4 92 - 108 = 253

tokens, around   input tokens).

An ideal token merging algorithm should meet two requirements, fast and accurate. It should be computed as fast as

possible to avoid incurring any additional inference latency, and be as accurate as possible to avoid losing bene�cial

information. A naive solution is to conduct greedy merging by gradually merging tokens with the highest similarity

until meeting the required number. However, we �nd in practice that repeatedly conducting the   function in

the greedy merging process over a matrix with thousands of rows and columns to �nd the elements of highest

similarities causes severe time delay, which even occupies   times of the whole inference time. This motivates us to

�nd a token merging algorithm to be as simple and robust as possible.

Taking the image encoder as an example, we divide the tokens into two subsets    with length of 

 and   with a length of  , according to attention scores received from other tokens. We apply

merging operations for   only. Unlike gready merging that performs repeated merging operations, we �nish the

merging process within one operation. The operations are shown as follows. We �rst reorder the tokens in   by

their similarity, with tokens receiving the least attention at the start of the queue. As our goal is to keep the tokens

receiving the most attention, we should gradually merge the tokens with the least attention one by one until meeting

the required number. We here take a linear schedule by gradually merging the �rst token with the second one from the

start of   one by one. As the merging process is deterministic after obtaining the attention scores for tokens in 

, this process can be simpli�ed to a simple multiplication between tokens in    with a pre-calculated
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weight list  . Thus, we can �nish it by a simple multipication once to obtain 

, with quite few computations of only    computational complexity. We concatenate 

 with   to form the pruned token sequences [ ,  ], with length of  . Note that this is not

equal to the greedy merging algorithm, but we �nd it performs already well in practice. We apply it for token merging

in both the image encoder and language model.

4. Main Results

4.1. Model Settings

Unless otherwise stated, we use LLaVA-Onevision 7B[1]  as the base model, and gradually merge    tokens for

Layer 3, 4, 5 and 6 with    in the image encoder, and merge    tokens for Layer    in the language

model. After merging, given 729 input tokens, the intermediate layers in the image encoder just process 361 tokens

while the intermediate layers of language model only process 253 tokens, around   times the input tokens.

4.2. Model E�ciency

We �rst validate the e�ectiveness of iLLaVA by improving model e�ciency across di�erent model scales. In Fig. 4, we

plot the performance-throughput curve for 7B-size models including LLaVA-Onevision 7B[1]  and QWen2-VL 7B[2],

and larger models including LLaVA-Next 13B[45]  and LLaVA-Next 34B[45]. We respectively select single-image

benchmarks including MMMU[17], MME[41], NoCaps[46], Flickr30k[47]  and video benchmarks including Egoschema

for comparison. The metrics used for comparison include accuracy (Primary Axis), memory usage (Secondary Axis)

and throughput (X-Axis) We observe that across benchmarks of di�erent settings, iLLaVA could consistently be

around 2   the throughput and reduce the memory usage by around 1.7 -2.0   for models of di�erent sizes with

competitive performance.
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Figure 4. The performance-throughput curves by deploying iLLaVA upon 7B-size models including LLaVA-Onevision 7B

and QWen2-VL 7B, and larger models including LLaVA-Next 13B and LLaVA-Next 34B, respectively. It can be observed that

across benchmarks of di�erent settings, iLLaVA could 2  the throughput without severe performance sacri�ce.

Model

Single-image benchmarks
Multi-image

benchmarks

AI2D MMBench MME MMMU MMStar MMVet SeedBench MuirBench Q-Bench

test en-dev test val test test image test test

LLaVA-

OneVision 7B
81.4 80.8 418/1580 48.8 61.7 57.5 75.4 41.8 74.5

iLLaVA 7B
78.6

(-2.8%)

79.9

(-0.9%)
423/1566

48.4

(-0.4%)

59.0

(-2.7%)

57.2

(-0.3%)

73.6

(-1.8%)

41.1

(-0.7%)

74.2

(-0.3%)

QWen2-VL 7B - 81.7 - 54.0 60.5 62.0 - - -

iLLaVA 7B -
81.2

(-0.5%)
-

53.6

(-0.4%)

59.1

(-1.4%)

61.5

(-0.5%)
- - -

Table 1. Results of deploying iLLaVA upon LLaVA-Onevision 7B and QWen2-VL 7B over single-image/multi-image

benchmarks.

×
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Model

Video benchmarks  

ActivityNet-

QA
Egoschema MLVU NextQA PerceptionTest SeedBench VideoChatGPT VideoDC VideoMME

test test m-avg mc val video test test wo/w-subs

LLaVA-

OneVision

7B

56.6 60.1 64.7 79.4 57.1 56.9 3.51 3.75 58.2/61.5

iLLaVA 7B
56.4

(-0.2%)

60.2

(+0.1%)

64.4

(-0.3%)

79.0

(-0.5%)
56.8 (-0.1%)

56.5

(-0.4%)
3.50 (-0.01)

3.73

(-0.02)

58.2/61.4

(-0.0%/-0.1%)

QWen2-

VL 7B
- 66.7 - - 62.3 - - - 63.2/68.8

iLLaVA 7B -
66.3

(-0.3%)
- - 61.8 (-0.5%) - - -

62.9/68.5

(-0.3%/-0.3%)

Table 2. Experimental results by deploying iLLaVA upon LLaVA-Onevision 7B and QWen2-VL 7B over video benchmarks.

Here, we abbreviate PerceptionTest as PTest and Video Detail Description as VideoDC.

4.3. Broader Validation

We further validate the e�ectiveness of iLLaVA upon a much wider range of benchmarks by deploying it upon state-

of-the-art open-source LVLMs, LLaVA-Onevision 7B[1]  and QWen2-VL 7B[2]. The benchmarks are composed of

single-image benchmarks including AI2D[48], MMBench[22], MME[41], MMMU[17], MMStar[27], MMVet[49],

SeedBench (Image subset)[26], multi-image benchmarks including MuirBench[42]  and Q-Bench[50]  in Tab.  1, and

video benchmarks including ActivityNet-QA[44], Egoschema[18], MLVU[51], NextQA[52], PerceptionTest[53],

SeedBench (Video subset)[26], VideoChatGPT[54], Video Detailed Descriptions (VideoDC)[55]  and VideoMME[43]  in

Tab. 2. From Tab. 1 and Tab. 2, we can observe that in most cases iLLaVA could achieve competitive performance with

LLaVA-Onevision 7B with only around 0.2%-0.5% performance loss, while in practice it could bring around 2  the

throughput and nearly reduce the memory consumption by half.

4.4. Comparison with smaller models

We deploy iLLaVA upon LVLMs and compare its performance and throughput against a LVLM of a smaller size. In the

upper part of Fig. 5, we deploy iLLaVA upon LLaVA-Next 13B and compare it with a smaller LLaVA-Next 7B model,

plotting the performance-throughput curves over MMMU and SeedBench benchmarks. We �nd that iLLaVA upon a

13B model achieves much better performance-throughput trade-o� than a 7B model. iLLaVA outperforms LLaVA-

Next 7B by around 2.0% and 2.2% on MMMU and SeedBench, respectively, with higher throughputs. In the bottom

×
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part of Fig. 5, we deploy iLLaVA upon QWen2-VL 7B[2] and compare it with QWen2-VL 2B, plotting the performance-

throughput curves over MMMU and MMStar benchmarks. iLLaVA demonstrates clear advantages than QWen2-VL 2B

by outperforming it with 15% and 16% in accuracy upon two benchmarks, and better throughputs.

Figure 5. Deploying iLLaVA over LVLMs and comparing it against a LVLM with a smaller size. The

upper part: deploying iLLaVA upon LLaVA-Next 13B and comparing it with LLaVA-Next 7B. The

bottom part: deploying iLLaVA upon QWen2-VL 7B and comparing it with QWen2-VL 2B.

4.5. Comparison between iLLaVA and Other E�cient Multi-modal Methods

In Tab.  3, we compare iLLaVA with other e�cient multi-modal methods by deploying them on a LLaVA-Onevision

7B[1] backbone. These methods keep similar number of tokens after pruning/merging for fair comparison. We notice

that iLLaVA achieves much higher performance while keep comparative or better throughput and memory usage than

these candidates, validating its e�ectiveness.

qeios.com doi.org/10.32388/69KFLK 11

https://www.qeios.com/
https://doi.org/10.32388/69KFLK


Methods Accuracy(%) Throughput(%) Memory(%)

FastV 47.6 4.20 19.1

ToMe 46.8 4.22 19.1

LLaVA-PruMerge 47.4 4.18 19.2

Free-VideoLLM 47.2 3.82 22.3

iLLaVA 48.4 4.22 19.1

Table 3. Comparison between iLLaVA based on LLaVA-Onevision 7B[1] with other e�cient multi-modal methods over

accuracy, throughput and memory on the MMMU benchmark.

4.6. Model Choices

We report the averaged performance across MMMU, MMBench and MuirBench as evaluation metrics.

Style Methods Acc (%) Inference time

Pruning

Attention-based 56.6 4h10min

Random 42.1 4h10min

Token merging

Greedy merging 57.8 5h40min

Bipartite matching 55.2 4h10min

Kmeans (5 iters) 55.7 4h30min

CLIP 53.2 4h50min

CLIPSeg 53.2 10h30min

iLLaVA 57.6 4h10min

Table 4. Token merging strategy in the image encoder.
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Kept tokens Acc (%) Inference time

729 (Original) 57.6 7h40min

576 57.6 4h24min

425 57.6 4h24min

361 57.6 4h10min

289 57.3 4h

225 57.1 3h45min

169 56.7 3h30min

Table 5. The number of kept tokens after the image encoder.

Layers Acc (%) Inference time

{1} 55.2 4h08min

{5} 56.4 4h08min

{2,3} 56.8 4h10min

{7,8} 56.8 4h09min

{2,3,4,5} 57.4 4h09min

{5,6,7,8} 57.6 4h10min

{7,8,9,10} 57.5 4h11min

Table 6. Ablations on the layers to apply token merging in the image encoder.

Token merging strategy in the image encoder

In Tab. 4, we ablate the token merging strategy in the image encoder. The approaches used for comparison are divided

into pruning strategies, including attention-based and random pruning, and merging strategies, including greedy

merging, bipartite matching, kmeans merging. We additionally include methods that adopt CLIP[5] (denoted as CLIP)

and CLIPSeg[56]  (denoted as CLIPSeg) to determine the most signi�cant areas corresponding to input texts, which

crop the corresponding region and feed it into the LVLM for processing. Notably, we �nd that token merging

approaches achieve better results than pruning approaches, among which attention-based pruning beats random

qeios.com doi.org/10.32388/69KFLK 13

https://www.qeios.com/
https://doi.org/10.32388/69KFLK


pruning largely. For token merging approaches, greedy merging achieves the best performance. However, it consumes

too much time during the merging process and severely lags the inference process. Our method achieves competitive

results with it but is much faster. Bipartite matching performs well in token merging in ViTs[14], but doesn’t o�er

promising results in LVLMs. We speculate that it may not fully attend to the required contexts from inputs. Adopting

kmeans with 5 iterations for merging slightly slows down the inference procedure, and also causes performance drop.

Finally, we try using CLIP or CLIPSeg to locate the meaningful areas and crop the corresponding region for LVLMs.

However, we �nd that they both don’t achieve promising performance. This may be attributed to that they can only

perform well in word-level understanding but are not skilled in understanding a complex sentence, thus failing to

locate bene�cial regions.

Kept tokens after the image encoder

We explore the relationships between the number of kept tokens and performance in the image encoder in Tab.  5.

Given 729 input image tokens, we gradually decrease the kept tokens from 425 to 169 and test the performance and

inference time. We notice decreasing kept tokens until 361 doesn’t hurt the performance, but drastically lowers the

inference time by around half. Further reducing the kept tokens consistently decreases the inference time but causes a

slight performance drop. We set the kept token as 361 by default.

Which layers to apply token merging in the image encoder

We ablate the layers to apply token merging in the image encoder in Tab. 6. We �nd that directly completing token

merging at a layer once would hurt the performance much. By maintaining the overall reduced token number, we

gradually increase the number of layers for token merging and consistently observe better performance. When we

apply token merging with four layers, we �nd the combination of {3,4,5,6} layers performs slightly better than other

combinations. Generally, we �nd that conducting token merging with di�erent layer combinations owns inference

time, and set {3,4,5,6} layers for token merging by default.

Style Methods Acc (%) Inference time

Pruning

FastV 57.2 4h10min

Random 48.4 4h10min

Token merging

Greedy merging 57.8 4h50min

Bipartite matching 56.2 4h10min

Kmeans (5 iters) 56.8 4h17min

iLLaVA 57.6 4h10min

Table 7. Ablations for the token merging strategy in the language model.
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Kept tokens Acc (%) Inference time

361 (Original) 57.6 4h33min

300 57.4 4h21min

253 57.4 4h10min

225 57.2 3h58min

200 57.1 3h50min

169 56.8 3h40min

Table 8. The number of kept tokens within the language model.

Layers Acc (%) Inference time

{2} 57.4 4h09min

{5} 57.5 4h09min

{8} 57.6 4h10min

{10} 57.4 4h10min

{5,6} 56.9 4h10min

{8,9} 57.0 4h10min

Table 9. Ablations on the layers to apply token merging in the language model.

Token merging strategy in the language model

In Tab.  7, we ablate the token merging strategy used for the language model. We compare iLLaVA with pruning

strategies including FastV[12] and random pruning, and token merging strategies including greedy merging, bipartite

matching and kmeans (5 iterations). Similarly, we �nd greedy merging achieves the best results with much longer

inference time. As a pruning method, FastV performs superiseingly well and beats most token merging methods.

Thanks to the information recycling design, iLLaVA achieves the best performance-latency trade-o� among these

candidates.

Kept tokens within the language model

With 361 kept tokens after the image encoder, we explore how many tokens to keep for the intermediate layers in the

language model in Tab. 8. With 361 input image tokens, we gradually decrease the kept tokens from 300 to 169. We
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notice decreasing tokens would consistently lead to performance drop, and the performance decrease is more obvious

as kept tokens decrease. We speculate that after token merging in the image encoder, the most remained image tokens

contain bene�cial information for understanding the image, which are hard to prune. Considering the performance-

latency trade-o�, we set the kept tokens as 253.

The layer to apply token merging in the language model

We ablate the layer(s) to apply token merging in the language model in Tab. 9. Generally, we �nd directly performing

token merging at a layer once o�ers better results than over multiple layers. Conducting token merging at di�erent

layers owns similar inference time, we adopt the 2nd one by default for its better performance.

Approaches DocVQA (%) InfoVQA (%) ChartQA (%)

LLaVA-Onevision 7B 87.5 68.8 80.0

iLLaVA 79.5 (-8.0%) 56.8 (-12.0%) 69.8 (-10.2%)

Table 10. Performance of iLLaVA on DocVQA[25], InfoVQA[24] and ChartQA[23].

4.7. Visualizations

To better understand the token merging process in iLLaVA, we visualize the selected image tokens for single-image

benchmarks, multi-image benchmarks and video benchmarks in Fig. 6, respectively. Over each benchmark, we select

three images and visualize the raw image, selected tokens from the image encoder and selected tokens from the

language model in order. We notice that both the image encoder and language model can well attend to the important

information from raw images, like the words in the �rst row and the person in the last row. We also have an

observation that the language tends to allocate more tokens to images closer to the output texts, and pay less

attention to images earlier input into the language model. This may a�ect the behavior of LVLMs in memorying long

contexts.
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Figure 6. Visualizations for selected tokens over single-image benchmarks, multi-image benchmarks and video

benchmarks. Three images are visualized for each benchmark, with the raw image on the left, selected tokens from the

image encoder in the middle and selected tokens from the language model on the right, respectively.

5. Limitations

While we have validated that iLLaVA performs well across a wide range of benchmarks, we �nd that upon benchmarks

that require detailed image context understanding, conducting token merging may lead to performance drop. For

example, as shown in Tab.  10, iLLaVA leads to consistent performance decrease on DocVQA, InfoVQA and ChartQA

which require a large quantity of image tokens to perform detailed document understanding. In this case, reducing

token numbers would inevitably hurt the performance.

6. Conclusion

In this paper, we revisited the existence of feature redundancy in Large Vision-Language Models (LVLMs) and

utilizeed it to accelerate the inference procedure. Compared to previous methods, our method is characterized by two

key designs. First, instead of only conducting token pruning/merging within the language model, we accelerated both

the forward pass of the image encoder and language model in LVLMs, which o�ers high e�ciency. Second, unlike

previous methods that simply prune the unnecessary tokens, we recycled the bene�cial information from them to

avoid incurring performance drop. Experimental results across di�erent model sizes over single-image, multi-image

and video benchmarks validated the e�ectiveness and generalizability of our method.
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