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Abstract

Recent advances in understanding the Planck scale have led to a new, straightforward method for quantizing
the general theory of relativity. This results in a theory of gravity that predicts the same outcomes as general
relativity with greater fundamental comprehension connected directly to the Planck scale.
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1 Backround

Einstein’s theory of general relativity [1, 2] is a fundamental cornerstone of modern physics. It has been successfully
tested against a wide range of astronomical and macroscopic observations. However, its testing in relation to the
atomic scale has been limited. On the other hand, quantum mechanics has been extensively tested at the atomic
and subatomic scales, but it currently cannot explain or be successfully unified with gravity.

As early as 1916, Einstein proposed that the next advancement in gravity theory would involve a quantum
gravity theory, which could ultimately lead to a unified theory of gravity. Despite dedicating much of his life to
this pursuit, Einstein made limited progress. Other attempts, such as superstring theory and quantum loop gravity
theory, have also had limited success. Despite significant progress in both experimental and theoretical gravity
research, it is generally agreed that a breakthrough in gravity theory is still lacking [3–5]. As Kiefer has described
in his article ”Quantum Gravity – An Unfinished Revolution,” a lot has been achieved in the pursuit of a quantum
theory of gravity, but a major breakthrough is still missing. We contend that the lack of a major breakthrough
is not due to a lack of brilliant researchers or mathematical abilities, but rather because we may have taken a
wrong path at some point or overlooked a simple solution that has been in front of us all along. We argue that we
are actually much closer to a revolutionary theory of quantum gravity than previously believed. However, before
explaining why, we need to delve deeper into the history of gravity. Since the so-called Newtonian gravitational
constant plays a central role in both Newtonian mechanics and general relativity, we need to take a closer look
at what it actually represents. To do this, we should go back to Newton’s time and examine how and when the
gravitational constant, as well as the concept of gravitational mass, were introduced.

Newton [6] in his Principia only introduced the gravitational force formula in words that corresponded to

F =
Mnmn

R2
(1)

We use the notation Mn and mn to distinguish it from the kilogram mass M and m used in the modern modified
Newton gravity force formula. This formula and its mass have been used successfully for more than 200 years with
no knowledge of any gravitational constant. For example, in Maxwell’s [7] book ”A Treatise on Electricity and
Magnetism,” published early in 1873, he mentions astronomical mass, which has units of [L3 · T−2], and how one
can find this mass. Maxwell describes that he can find this mass from Newton’s gravitational acceleration formula
g = Mn

R2 or any other gravitational-related formula that includes the mass. We can easily measure gravitational
acceleration on Earth without any knowledge of G or the kilogram mass M . This can be done, for example, by
simply dropping a ball from a height of H above the ground. We need to measure the time it takes for the ball to
hit the ground. There even exist balls with built-in stopwatches and sensors for exactly this purpose, known as a
”g-ball.” or more accurate apparatuses. The gravitational acceleration is then given by g = 2H

T 2
d

, where Td is the

time it took for the ball to hit the ground. So we simply have Mn = 2HR2

T 2
d

.
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Maxwell mentioned that there were multiple mass standards during his time. The so-called astronomical mass,
based on Newton’s original theory of gravity, was used for astronomical purposes. In France, for non-astronomical
objects, Maxwell mentioned the gram and the kilogram. In the United Kingdom, the standard unit of mass was the
avoirdupois pound, which was preserved in the Exchequer Chambers. Additionally, Maxwell mentioned the grain,
which he defined as the 7000th part of this pound.

The original formula for the Newtonian gravitational force, therefore, had output units of [L4 ·T−4], which is in
strong contrast to the modern version of the Newton formula, which has output units of [M ·L ·T−2] or kg ·m · s−2.
This may lead one to mistakenly think that the two formulas give very different output predictions and that the
original Newton formula must be corrected. However, the small mass in the original Newton formula, as well as
in the modern version of the formula, always cancels out during derivation when formulating equations that can
actually be used to predict observable phenomena. Furthermore, it should be noted that Mn = GM , which means
that both the original and modern formulas for the Newtonian gravitational force always give the same predictions,
as analyzed in detail in [8] and that also can be seen from Table 1 that we soon will get to.

When did the Newtonian gravitational constant come into play? In an effort to standardize mass notation
across countries and to use the same mass definition for small and astronomical masses, the kilogram mass was
chosen during the 1875 Meter Convention meeting. This decision had been planned and discussed for several years.
Therefore, we believe there is no coincidence that the gravitational constant was suggested in 1873 by Cornu and
Baille [9], who proposed modifying the original Newtonian formula from F = Mnmn/R

2 to F = fMm/R2, where
f represented the gravitational constant.

Boys [10] is likely the first to have introduced the notation G for the gravitational constant in 1894, but it took
many years before G became the standard notation. Max Planck [11] used the notation f as late as 1928, while
Einstein used the notation k in 1916 in his general relativity theory. Ultimately, whether one uses the notation
f , G, or k for the gravitational constant is merely cosmetic. What’s important to note is that the Newtonian
gravitational force formula existed and was used for over 200 years without the gravitational constant.

What about Cavendish? Some books and papers incorrectly claim that Cavendish [12] was the first to measure
the gravitational constant in 1798. However, as pointed out by Clotfelter [13] and Sean [14], Cavendish did not use
or measure any gravitational constant. What is correct is that a Cavendish apparatus can also be used to find the
gravitational constant. What Cavendish did was to measure the density of the Earth relative to a uniform clump
of matter whose density was already known, and thereby, he was able to measure the density of the Earth. Newton
had not been able to achieve that, even though he discussed possibilities for it in the Principia. A more accurate
measuring device was needed for this, and the Cavendish apparatus was accurate enough to do this. It could also
accurately measure gravitational effects from macroscopic masses of a size we can easily handle, such as the large
balls in the Cavendish apparatus.

As Thüring [15] pointed out, the gravitational constant was basically ad hoc inserted into the gravitational
formula. This was done to make the formula consistent with the newly chosen mass standard, the kilogram.
Thüring also noted that the gravitational constant cannot be directly linked to anything physical; it is a constant
that must be calibrated to a gravity observation to make the kilogram mass work to predict gravity phenomena.
We will argue that the gravitational constant is not currently fully understood by modern physics and, as we will
soon show, a deeper understanding of what it truly represents is one of two important keys to developing a quantum
theory of gravity.

For example, Hossenfelder [16] claims that “Newton’s constant (G) quantifies the strength of gravity”. However,
we argue that such claims cannot be entirely correct, or at least imprecise. If G truly quantifies the strength of
gravity, then why can the original Newtonian theory predict all gravitational phenomena just as well as the modern
Newtonian gravity force formula F = GMm/R2, despite the original formula not having a gravitational constant?

The original formula for gravitational acceleration used by Maxwell in 1873, just before the invention of the
gravitational constant, is:

g =
Mn

R2
(2)

Since the original Newtonian mass has units of [L3 · T−2], the output here is [L · T−2]. If we use meters and
seconds, it gives exactly the same result as the modern GM/R2. This means that we must have Mn = GM .
However, this also means mn = Gm. Therefore, the original Newton formula can also be written as:

F =
Mnmn

R2
=
GMGm

R2
= G2Mm

R2
(3)

Based on Hossenfelder’s reasoning, the strength of gravity must be different in the original Newton formula and
the modern Newton formula, but this idea doesn’t seem to make sense. The two gravity force formulas indeed
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give both different output units and numbers, but the gravity force itself has never been measured. The gravity
force formulas are only used for the derivation of new formulas to predict the effects of gravity that can actually be
observed and checked. If we, for example, want to derive the escape velocity based on the original Newton formula,
we can use:

1
2
mnv

2 − Mnmn

R
= 0 (4)

Solving this equation for v gives v =
√

2Mn/R. Since Mn = GM , we have v =
√

2GM/R. Note that we could
have also written the derivation as:

1
2
mnv

2 − Mnmn

R
= 0

1
2
Gmv2 −G2Mm

R
= 0 (5)

Solving this equation for v also gives v =
√

2GM/R, which is the same result as one obtains in derivations using
the modern 1873 version of Newton. The fact that we can have no gravity constant but still use the Newton mass
or even G2 or G and the kilogram mass to obtain the same predictions should, at a minimum, raise the question
of whether we truly understand the gravity constant. We claim that the reason for introducing the gravitational
constant was to make the incomplete definition of the kilogram mass complete in relation to gravity, and this was
done ad hoc without a full and deep understanding, but it worked. After G was calibrated to one observable gravity
phenomena, one could use the same constant in relation to other kilogram masses (other astronomical objects) and
for a series of different gravitational observations that do not need a re-calibration of G. In other words, G is indeed
likely a constant, but what does it represent from a deeper perspective?

1.1 The Planck scale and the Compton scale

Max Planck [17, 18] assumed in 1899 and 1906 that there were three important universal constants: the speed
of light c, the Planck constant1 ~, and Newton’s gravitational constant G. By combining these constants with

dimensional analysis, he found a unique length: lp =
√

G~
c3 , time: tp =

√
G~
c5 , mass: mp =

√
~c
G , and temperature:

Tp = 1
kb

√
~c5
G . To calculate temperature, one must also use the Boltzmann constant kb, which is simply a constant

used to convert from one unit scale to another, namely from joules to temperature.
Eddington [19] was likely the first to suggest in 1918 that a quantum gravity theory should be connected to

the Planck length. This viewpoint is still widely held among most experts in the field of quantum gravity [20–22],
but despite extensive efforts, no breakthrough has yet been achieved, and there is no consensus on any quantum
gravity theory. In this paper, we propose a new and simple method for incorporating the Planck scale and achieving
quantum gravity. It is so straightforward that it may be easy to dismiss it based on preconceptions, but we encourage
the gravity community to examine it closely before rejecting it. Sometimes, the simplest solution is the best.

In 1984, Cahill [23, 24] suggested that the Planck units might be more fundamental than the gravitational
constant and proposed that the gravitational constant could be expressed as a composite constant of the form
G = ~c

m2
p
, which is simply the Planck mass formula solved with respect to G. Cohen [25] derived the same formula

for G in 1987, but correctly pointed out that since no one had been able to find the Planck mass or some of the
other Planck units independently of G, expressing G in terms of the Planck units would lead to a circular and
unsolvable problem. This has been a view held at least to 2016; see [26]

In 2017, Haug [27] showed for the first time that the Planck length can be determined independently of any
knowledge of G. He used a Cavendish apparatus and derived the following equation:

lp =

√
~2π2LR2θ

MT 2c3
, (6)

where ~ is the reduced Planck constant, L is the distance between the two small balls in the apparatus, R is
the distance between the center of the large and small balls in the apparatus, θ is the measured angle, T is the

1Max Planck originally used the Planck constant h, rather than the reduced Planck constant ~, for this purpose. However, the
standard now is to use the reduced Planck constant, which also appears to be more appropriate for our purposes. We plan to write a
separate paper on this topic in the future, but it will not affect the conclusions of this paper.
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oscillation period, c is the speed of light, and M is the mass of the large ball in kilograms. The mass of the large
ball can be determined using a standard balance weight and does not require knowledge of G. Generally, we only
need to know G when we need to determine the kilogram mass of astronomical objects.

Further investigations [28] have shown that the Planck length can also be determined in a Cavendish apparatus
using the following equation:

lp =

√
λ̄2π2LR2θ

T 2c2
, (7)

In this case, we are no longer dependent on knowing either the kilogram mass of the large ball in the Cavendish
apparatus or the Planck constant. However, we now do need to know the reduced Compton wavelength of the
large ball in the apparatus. This we have demonstrated in a series of papers [28–30] can be done for any mass
independent of knowing both the Planck constant or the kilogram mass of any object and also without knowing G.

The fact that we can find the Planck length independent of G means that we can express the gravitational
constant in terms of Planck units. We can solve the Planck length formula for G, which gives us the equation:

G =
l2pc

3

~
(8)

There are many ways to express the gravitational constant using Planck units. For example, we could have

solved the Planck time formula for G, which would give us G = t2pc
5

~ . Other suggestions can be found in the
literature, as discussed in [31], which provides a review of the composite view of the gravitational constant.

Now that we have the composite gravity constant, we can input it into the modified 1873 Newton formula:

F = G
Mm

R2
=
l2pc

3

~
Mm

R2
(9)

However, this does not provide much new or deeper insight. While one could argue that Newton’s force of
gravity is now a function of both the Planck constant and the Planck length, as well as the speed of light, we need
to look more closely at the mass.

As discussed in our review paper [31], there is more to the story than just the Composite constant of G and the
Planck units. We need to consider the role of mass in relation to the gravitational constant and how it affects our
understanding of gravity. So, while the composite view of the gravitational constant is an important step forward,
it is just one of two steps to get to a quantum gravity theory.

Compton [32] formulated the Compton wavelength formula in 1923 as λ = h
mc . We can solve this formula for

the mass m in kilograms, giving us:

m =
h

λ

1
c

=
~
λ̄

1
c

(10)

In fact, any kilogram mass can be expressed in this form. Even if a composite mass does not have a single
physical reduced Compton wavelength, it has what we can call an aggregated reduced Compton wavelength see
[29, 33], given by:

λ̄ =
1∑n
i

1
λ̄i

=
1

1
λ̄1

+ 1
λ̄2

+ 1
λ̄3

+ 1
λ̄4
· · · 1

λ̄n

(11)

Even energy, when looked at as mass, can be described with a Compton wavelength, because:

E

c2
= m

h c
λγ

c2
=

~
λ̄

1
c

~ c
λ̄γ

c2
=

~
λ̄

1
c

λ̄γ = λ̄

λγ = λ (12)

Here, λ̄γ is what we can call the reduced photon wavelength, which must be equal to the reduced Compton
wavelength for the mass equivalent of the energy, for E

c2 = m to be true. It simply means the photon wavelength
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can be seen as the Compton wavelength of the photon. Therefore, even such things as binding energy [34] can be
treated within this framework of aggregating Compton wavelengths to get the Compton wavelength of the mass in
question. So assume, for example, we have a mass consisting of three elementary particles and two types of binding
energy; then, we have

m = m1 +m2 +m3 +
E1

c2
+
E2

c2

~
λ̄

1
c

=
~
λ̄1

1
c

+
~
λ̄2

1
c

+
~
λ̄3

1
c

+
~ c
λ̄4

c2
+

~ c
λ̄5

c2

λ̄ =
1

1
λ̄1

+ 1
λ̄2

+ 1
λ̄3

+ 1
λ̄4

+ 1
λ̄5

(13)

The important point here is simply that we indeed can express any kilogram mass in the form of m = ~
λ̄

1
c . Next,

let’s get back to gravity.
If we examine the modern Newtonian gravity force formula, we can observe that any formula used to predict

observable gravitational phenomena includes GM and not GMm. In two-body problems where m is not much
smaller than M (i.e., m is also significantly large and important for gravitational predictions), the gravitational
parameter is µ = G(M + m) = GM + Gm. Even in such cases, we do not encounter GMm in any formula that
predicts observable gravitational phenomena.

However, when m � M , the smaller mass m is necessary only during derivations, as it cancels out before we
arrive at a formula that can be utilized to predict gravity phenomena that can be verified through observations.
The gravitational force itself is not directly observable.

If we substitute G with G = l2pc
3

~ and M with M = ~
λ̄M

1
c , we obtain:

GM =
l2pc

3

~
~
λ̄M

1
c

= c3
lp
c

lp
λ̄M

(14)

Here, λ̄M represents the reduced Compton wavelength of the larger mass M in the Newton formula, while lp
denotes the Planck length and c represents the speed of light. Several important points related to Eq. (14) deserve
attention. The composite gravitational constant contains the embedded Planck constant, which cancels out with
the Planck constant present in the kilogram mass. Of the components lp, λ̄M , c, and ~, only the Planck constant
has kilogram units embedded in it. Therefore, everything related to kilogram units cancels out when predicting
gravitational phenomena.

This outcome should not surprise those familiar with pre-1873 Newtonian theory, which did not include anything
about kilograms. In our view, multiplying G with the kilogram mass M replaces the Planck constant with the Planck
length, converting an incomplete kilogram mass into a complete gravitational mass. We have in multiple papers
[35, 36] claimed that the last part of Eq. (14):

lp
c

lp
λ̄M

= tp
lp
λ̄M

(15)

can be described as the real gravitational mass, or what we have also called collision-time mass (Mt), as it has
dimension time [T ]. If we multiply the collision-time mass by c3 and call that mass, we arrive back at the original
Newton mass that also Maxwell described with units [L3 · T−2]. Therefore, from a deeper perspective, the Newton
mass is equal to

Mn = GM = c3Mt = c3tp
lp
λ̄M

(16)

One can therefore argue the Newton mass as a mass where G is embedded. However, it is important to be
aware that finding GM requires less information than finding G and M separately. This is because GM contains
no Planck constant, i.e., no information about the kilogram, while both G and M separately contain information
about the kilogram. For example, we can find GM by measuring the gravitational acceleration at the surface of
Earth. We have GM = R2g, and we can find g by dropping a ball from height H and measuring how long time it
took before it hit the ground, we have g = 2H

T 2
d

where Td is the time it took for the ball from it was dropped to it
hit the ground. This is why the mass of the Earth (Mn) can be directly calculated from gravitational acceleration
or any other gravitational observation, and GM can also be directly calculated from a gravitational acceleration
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or another gravitational observation. However, finding the kilogram mass (M) of the Earth requires finding the
gravitational constant G, for example, from a Cavendish apparatus.

The collision-time mass can be derived by dividing the Newton mass by c3, which in this model acts as a
gravitational constant. Thus, we have GM = Mn = c3Mt. However, a deeper understanding of these values reveals
that they are all linked to the Planck scale through the expression c3tp

lp
λ̄M

. This implies that even Newton’s gravity
is linked to the Planck scale since the Planck length can be extracted from a Cavendish apparatus without knowing
G. Newton naturally did not assume this; however, the Planck scale gets embedded in the mass by measuring the
mass from gravitational phenomena.

Quantum gravity theory assumes that gravity is quantized, and since quantization in quantum mechanics is
associated with the Planck constant, it is reasonable to expect that the Planck constant would also play a role in
quantum gravity. Some experiments involving gravity have even claimed to be linked to the Planck constant, but
as we will see in Section 4, this is not correct.

The Planck constant is not present in Mn or c3Mt and even cancels out when multiplying G with M . Neverthe-
less, we assert that quantization still exists within the expression lp

λ̄
, which is equivalent to the reduced Compton

frequency per Planck time. The reduced Compton frequency per second is f = c
λ̄

, but the reduced Compton
frequency for the Planck time must be f = c

λ̄
tp = lp

λ̄
. This can also be understood by considering how far light

travels per Planck time. In other words, we can measure the speed of light in meters per Planck time instead of
per second. Since light can travel the Planck length per Planck time, we can conclude that the reduced Compton
frequency per Planck time is as described above.

This indicates a connection between quantization in gravity, the reduced Compton wavelength, and the Planck
length. For a particle with mass equal to the Planck mass, the reduced Compton frequency per Planck time is
equal to one f = lp

λ̄
= lp

lp
= 1, as the reduced Compton wavelength of the Planck mass particle is the Planck length:

~
mpc

= lp. It is natural to assume that the minimum frequency that can be observed in an observational time
window is one. If the shortest possible time window is the Planck time, then the minimum observation in terms of
reduced Compton frequency in such a time window is also one. Particles with a mass smaller than the Planck mass
will have a frequency of less than one in the Planck time window. For instance, an electron will have a reduced
Compton frequency per Planck time of only fe = lp

λ̄e
≈ 4.19× 10−23. We have suggested in multiple papers [35, 37]

that this can also be interpreted as a frequency probability when it is below one, which we will discuss further later.
In summary, we make the bold claim that even Newton’s gravity is quantized and linked to the Planck scale and

the Compton frequency when understood from a deeper perspective. We are naturally not suggesting that Newton
himself hid quantization in his formula since the Planck length and the Compton wavelength were unknown during
his time. Rather, we assert that this is what even Newton’s gravity represents when the gravitational mass is
understood at a deeper level. Moreover, it should be possible to determine the reduced Compton frequency per
Planck time from gravitational observations. For instance, by measuring the gravitational acceleration on Earth, we
can determine the reduced Compton frequency of the Earth per Planck time. Equation 17 shows that the reduced
Compton frequency per Planck time of the Earth can be determined by knowing the gravitational acceleration, the
Planck length, the speed of light, and the radius of the Earth.

lp
λ̄

=
gR2

lpc2
(17)

By comparing the value obtained from this formula with traditional methods for finding the Compton wavelength
and frequency, we can verify its accuracy. Additionally, we can determine the reduced Compton wavelength of the
Earth by knowing its kilogram mass, which requires knowledge of the gravitational constant in standard theory.
However, once we have the Earth’s mass, we can use λ̄E = ~

Mc to find the reduced Compton frequency per Planck
time, given by f = c

λ̄e
tp = lp

λ̄e
. Equation 17 works for any astronomical object and provides the correct prediction

for the reduced Compton frequency per Planck time.
The key point to understand so far is that, at a deeper level, Newton’s gravity exhibits quantization of gravity

and a link to the Planck scale and what we could call the Compton scale or Compton frequency. Next, we will try
to see how this fits in with Einstein’s general relativity theory.

Table 1 shows that both the original Newtonian gravitational force formula with mass Mn and no gravitational
constant, as well as the modern 1873 Newtonian gravitational force formula, predict the same results. From a
deeper perspective, they are exactly the same formulas.

2 General relativity theory

Moving on to the theory of general relativity, Einstein’s [1] field equation is given by
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Prediction Formula:

Gravity acceleration g = GM
R2 = Mn

R2 =
c2lp
R2

lp
λ̄M

Orbital velocity vo =
√
GM
R

=
√
Mn
R

= c

√
lp
R

lp
λ̄M

Orbital time T = 2πR√
GM
R

= 2πR√
Mn
R

= 2πR

c

√
lp
R

lp
λ̄M

Velocity ball Newton cradle vout =
√

2GM
R2 H =

√
2Mn
R2 H = c

R

√
2Hlp

lp
λ̄M

Frequency Newton spring f = 1
2πR

√
GM
x

= 1
2πR

√
Mn
x

= c
2πR

√
lp
x

lp
λ̄M

Table 1: The table shows a series of gravity predictions that typically are linked to Newton’s gravity theory, which is
the weak field approximation of general relativity theory.

Rµv −
1
2
gµvR+ Λgµv =

8πG
c4

Tµv (18)

In 2016, our study [38] replaced the gravitational constant G with its composite form G = l2pc
3

~ and obtained
the following equation2 (see also [39]):

Rµv −
1
2
gµvR+ Λgµv =

8πl2p
~c

Tµv (19)

However, at the time, we did not discuss the potential implications of this result, as we had not yet determined the
validity of the equation. Furthermore, in 2016, we had not found a way to calculate the Planck length independently
of G, which could lead to a circular problem, as previously noted by Cohen in 1987, but as discussed in the section
above, the circular problem here has been resolved in recent years. We believe that the rewritten field equation is
fully valid; it does not alter any prediction from general relativity at the macroscopic scale, but as we will see, it
gives a new interesting quantized quantum gravity theory that is consistent with general relativity theory.

One could take different stances on it and argue that it is just a trivial creative rewriting of G that provides no
new insights and is not even valid. We believe that such a view would be a mistake and would stem from a prejudice
against looking at general relativity from a new perspective. Alternatively, one could speculate on the implications
of changing G to its composite. The Planck constant is now visible in the field equation, but one should not
conclude that general relativity theory based on getting the Planck constant into the formula implies quantization.
The Planck constant we obtain from the composite view of G will cancel out with the Planck constant embedded in
the stress-energy tensor. The stress-energy tensor contains the energy density, and the Planck constant is therefore
embedded there and will cancel out with the Planck constant now visible in the rewritten field equation.

That the Planck constant in the rewritten field equation cancels out can be best seen if we study one of the
solutions of the field equation that can actually be used to predict observable gravity phenomena. The most famous
and widely used solution to Einstein’s field equation is the Schwarzschild metric [40, 41], which is given by:

c2dτ2 =
(

1− 2GM
c2R

)
c2dt2 −

(
1− 2GM

c2R

)−1

dR2 −R2(dθ2 + sin2 θdφ2) (20)

Now by replacing G with its composite form G = l2pc
3

~ and the kilogram mass with its composite form M = ~
λ̄M

1
c

and this gives

c2dτ2 =

1−
2 l

2
pc

3

~
~
λ̄M

1
c

c2R

 c2dt2 −

1−
2 l

2
pc

3

~
~
λ̄M

1
c

c2R

−1

dR2 −R2(dθ2 + sin2 θdφ2)

c2dτ2 =
(

1− 2lp
R

lp
λ̄M

)
c2dt2 −

(
1− 2lp

R

lp
λ̄M

)−1

dR2 −R2(dθ2 + sin2 θdφ2) (21)

That is, there is no Planck constant in the Schwarzschild metric, but the Planck length and the reduced Compton
wavelength are there. Again, the term lp

λ̄M
is the reduced Compton frequency per Planck time, so this can indeed be
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Prediction Formula:

Gravity acceleration g = GM
R2 =

c2lp
R2

lp
λ̄M

Orbital velocity vo =
√
GM
R

= c

√
lp
R

lp
λ̄M

Orbital time T = 2πR√
GM
R

= 2πR

c

√
lp
R

lp
λ̄M

Velocity ball Newton cradle vout =
√

2GM
R2 H = c

R

√
2Hlp

lp
λ̄M

Frequency Newton spring f = 1
2πR

√
GM
x

= c
2πR

√
lp
x

lp
λ̄M

Gravitational red shift z =

√
1− 2GM

R1c2√
1− 2GM

R2c2

− 1 =

√
1− 2lp

R1

lp
λ̄M√

1− 2lp
R2

lp
λ̄M

− 1

Time dilation TR = Tf

√
1− 2GM

Rc2
= Tf

√
1− 2lp

R

lp
λ̄M

Gravitational deflection (GR) θ = 4GM
c2R

= 4
lp
R

lp
λ̄M

Advance of perihelion σ = 6πGM
a(1−e2)c2

=
6πlp

a(1−e2)

lp
λ̄M

Schwarzschild radius Rs = 2GM
c2

= 2lp
lp
λ̄

Table 2: The table shows a series of gravity predictions given by general relativity theory, not only on their traditional
form but also from their deeper level, when G is replaced by its composite form and the mass is understood from a
deeper level. All the predicted gravity phenomena contain the factor

lp
λ̄

, which is the reduced Compton frequency of the
mass M per Planck time. We will boldly claim that this gives both the link to the Planck scale and the quantization of
gravity without altering general relativity theory.

seen as the quantization of gravity. The appendix shows a few more coordinate systems where the same methodology
is applied. Table 2 shows the prediction from general relativity for a series of gravity phenomena.

Our approach has led to a quantized theory of gravity that is consistent with both Newton’s theory and general
relativity. However, this does not amount to a complete unification of quantum gravity and quantum mechanics.
We suspect that the necessary modification lies within quantum mechanics itself, which relies on the kilogram as a
unit of mass and the Joule as a unit of energy. These units, also Joule energy, are inadequate for describing gravity,
just as a kilogram of mass without being multiplied by the gravitational constant G is insufficient for the task.

We have achieved a type of quantization within general relativity. This was done by simply replacing G and
M with their composite forms, which were obtained by solving the Planck length formula for G and the Compton
wavelength formula for M . This method is fully mathematically valid. Additionally, the obstacle that was previously
pointed out, which stated that we had to know G to find the Planck length and that the composite of G was therefore
not valid, has been resolved in recent years.

We could have ended the paper at this point and left it to other researchers to interpret our findings, just
as there are various interpretations in standard quantum mechanics. However, we are intrigued by the deeper
question of why the reduced Compton frequency per Planck time is embedded in general relativity theory. There
could be multiple interpretations of this, ranging from it being a coincidence that provides no deeper insight to it
being the key to quantum gravity. We personally believe that the latter is more likely. Below, we will provide our
interpretation. However, we are open to other interpretations as well. The most important point of this paper has
already been made: there is a very simple and easy method to quantize the general relativity theory and also get in
the Planck scale that has not been discussed before. This method has been addressed to some extent in our other
papers, but only with a focus on Newtonian gravity and only briefly in relation to the general relativity theory.

3 Possible interpretation

Pure photon energy is given by

E = hf = h
c

λγ
= ~

c

λ̄γ
(22)

It is an arbitrary choice that the frequency typically is given per second. If we change the frequency per Planck
time rather than per second, then we have that

2In that paper, we had also set the cosmological constant to zero.
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E = ~
c

λ̄γ
tp = ~

lp
λ̄γ

(23)

This looks somewhat similar to lpf = lp
lp
λ̄

that we have in the rewritten Schwarzschild metric and also in all the
formulas derived to predict gravitational phenomena that can be observed (Table 2). The main difference is that
~ is swapped with the Planck length. Is there any good interpretation of this? We think so. Let’s go back to the
Newtonian mass; it is equal to

Mn = GM = c3tp
lp
λ̄M

(24)

We have, in a series of papers, argued to define mass only as the last part of this, namely tp
lp
λ̄

, and called it
collision-time mass that we can use the symbol Mt for. Then, we again have a gravity constant, but it is c3. We
have also argued that energy then is a collision length of the form

Eg = lp
lp
λ̄

(25)

This energy we have called collision-length energy and also quantized gravitational energy [35, 36]. This is exactly
the term we observe in the rewritten Schwarzschild metric and in all formulas we can use to predict observable
gravity phenomena. However, the relation between collision-length energy and collision-time mass must then be

Eg = Mtc = lpf = lp
lp
λ̄M

(26)

One might mistakenly think that this is inconsistent with E = Mc2, but in fact, it is fully consistent with Einstein’s
energy-mass relation. The standard unit for energy is the Joule, and for mass, it’s the kilogram. There is nothing
mathematically wrong with introducing a new quantity, which we could call ”energy type-two,” equal to the Joule
energy divided by c. We could then write E2 = E/c, which gives us E2 = Mc. This doesn’t violate any mathematical
or logical principles, although it would require us to adjust other formulas. Essentially, it’s just a matter of choosing
units.

However, this particular unit of energy, E2, doesn’t provide any new insight. It’s simply Joules times meters
divided by seconds. To introduce a new terminology for energy or mass, it should give us a better understanding of
the underlying physics. In contrast, we claim that “collision-length energy” and “collision-time mass” provide new
and deeper insights. These concepts tie space and time together more closely than the standard interpretation in
general relativity does, because now even mass and energy are related to time and space. So, curving of space-time
is curving of mass and energy, and curving of mass and energy is curving of space-time at the deepest level?

In the standard relativistic energy-momentum relation, we have

E =
√
p2c2 +M2c4

E =
√

(Mvγ)2c2 +M2c4 (27)

We can always divide or multiply by a constant on each side. If we multiply by G
c4 = l2p

~c on each side we get

G

c4
E =

G

c4
[
(Mvγ)2c2 +M2c4

]
Eg =

√
M2
g v

2γ2 +M2
g c

2 (28)

When working with photons, the result is slightly different as the momentum then is the photon momentum, except
that the same procedure can be used. We think that there is no coincidence that there is G

c4 as a part of Einstein’s
gravitational constant that needs to be multiplied by the stress-energy tensor. Einstein indirectly converts energy
to collision-length energy, but unknowingly so, as he likely never thought of G as a composite constant. Therefore,
our new energy and mass definition, which contains both the Planck scale and quantization, is fully consistent with
the standard relativistic energy-momentum relation. It is, however, more than a simple change of notation. Because
if we do not multiply M or E with G, then we are not getting the Planck length into the mass and energy and the
Planck constant out, which is needed for gravity. Therefore, we believe that it is the mass and energy in quantum
mechanics that require modification. In the case of mass in gravity, it is already modified by multiplication with
G, or the Planck length was actually already embedded in the original Newton mass Mn, not by assumption, but
by calibration to gravity phenomena. Understanding that this leads to a deeper understanding is first seen when
we understand G is a composite constant and M can be written on the form M = ~

λ̄M

1
c .
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3.1 Schwarzschild radius

For masses smaller than half the Planck mass, the Schwarzschild radius becomes much smaller than the Planck
length, and it has been suggested that particles such as the proton or the electron, therefore, cannot have a
Schwarzschild radius. In our modified general relativity theory, the Schwarzschild radius can be expressed as:

Rs =
2GM
c2

= 2lp
lp
λ̄M

(29)

For macroscopic masses, the value of lp
λ̄

is a large integer number with a negligible fraction. This ratio can be
understood as the reduced Compton frequency per Planck time, and it quantizes the Schwarzschild radius.

In the case when lp
λ̄
< 1, we interpret this factor as a probability. This means that even protons and electrons

have a Schwarzschild radius of 2lp, but it comes in and out of existence with a frequency of c
λ̄

per second. Therefore,
masses smaller than the Planck mass (or half the Planck mass) will have a probabilistic Schwarzschild radius, rather
than having no Schwarzschild radius at all. This interpretation is also discussed in [35]. However, it is important
to note that this is just one possible interpretation, and we welcome other possible interpretations as well.

4 The claims that the Planck constant plays a role in some observed
gravity phenomena is likely wrong when understood from a deeper
perspective

Already in 1975, Colella, Overhauser and Werner [42] had observed what is known as gravitationally induced
quantum interference using neutrons. They claimed this was related to both g and the Planck constant. The
observational study was repeated and done more precisely [43, 44]. Abele and Leeb [45] have done a similar
experiment with neutrons that they claim “the outcome depends upon both the gravitational acceleration g and the
Planck constant ~”. Further, they claim that the Colella, Overhausser and Werner experiment

“First of all, they demonstrate the validity of quantum theory in a gravitational potential on the
1% level. The gravity-induced interference is purely quantum mechanical, because the phase shift is
proportional to the wavelength λ and depends explicitly on Planck’s constant ~ , but the interference
pattern disappears as ~ → 0. The effect depends on (mn/~)2 and the experiments test the equivalence
principle.”

The authors claim that both papers present accurately derived formulas that predict gravitationally induced
quantum interference, which closely aligns with observations. However, they argue that the interpretation that this
effect is related to the Planck constant is likely wrong. The researchers failed to recognize that the kilogram mass
in their formula is, at a deeper level, simply m = ~

λ̄
1
c . The formulas they used contain m2

n/~2, meaning the Planck
constant is necessary to cancel out with the Planck constant embedded in the neutron mass. To approach ~ close
to zero, they must also modify the Planck constant in the mass. Since the two Planck constants cancel out, this has
no effect on the predictions. The formula for gravitationally induced quantum interference also includes g, which
we have already discussed at a deeper level, containing both the Planck length and quantization in the form of the
reduced Compton frequency per Planck time. This is likely the cause of the observed interference pattern. Setting
the Planck length to zero would remove the predicted interference pattern. At the very least, we encourage the
gravity research community to investigate this possibility further.

So the effect is predicted by the following formula first suggested by Colella and Overhauser and Werner [42]

qgrav = 4πλgh−2m2
Nd(d+ a cos θ) tan θ (30)

When we replace G with its composite form G = l2pc
3

~ and the neutron mass mN with mN = h
λn

1
c (where λ̄n is

the Compton wavelength of the neutron), we can rewrite Eq. (30) as:
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qgrav = 4πλngh−2m2
Nd(d+ a cos θ) tan θ

qgrav = 4πλn
GM

R2
h−2

(
h

λn

1
c

)2

d(d+ a cos θ) tan θ

qgrav = 4πλn
c2l2p
λ̄ER2

(
1

λ2
nc

2

)
d(d+ a cos θ) tan θ

qgrav =
4π

λ̄ER2

l2p
λn
d(d+ a cos θ) tan θ

qgrav =
2
R2

lp
λ̄E

lp
λ̄n
d(d+ a cos θ) tan θ (31)

Here, λ̄E represents the aggregated reduced Compton wavelength of the Earth. This formula predicts the same
results as the original one. At the deepest level, the gravitationally induced quantum interference is related to the
reduced Compton wavelength of the neutron, the Earth, and the Planck length, as well as the radius of the Earth.
The Planck constant does not play a role. This is consistent with our quantized form of general relativity theory,
where quantization is related to the reduced Compton wavelength and the Planck length.

5 Conclusion

We have demonstrated a straightforward way to connect Newton’s theory and general relativity to the Planck
scale and how this approach leads to the quantization of gravity through the reduced Compton frequency per
Planck time in the gravitational mass. Despite its extreme simplicity, we believe this potential path to quantum
gravity should be taken seriously. After all, the simplest solutions are often the best. However, before drawing
conclusions, a series of researchers should investigate this methodology over time. This new way of looking at both
Newton’s theory and general relativity from a deeper, more fundamental level may reveal the need for other small
changes to the general relativity theory. For example, how are singularities interpreted when we suddenly have the
Planck scale incorporated into general relativity theory? We have also suggested that standard quantum mechanics
needs modification to achieve unification of quantum gravity and quantum mechanics. The Planck length must be
somehow incorporated into standard quantum mechanics.
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[15] B. Thüring. The gravitational constant. Ann. Acad. Sci. Fennicae A, page 269, 1961.

[16] S. Hossenfelder. Existential Physics: A Scientist’s Guide to Life’s Biggest Questions. Viking books, 2022.

[17] M. Planck. Natuerliche Masseinheiten. Der Königlich Preussischen Akademie Der Wissenschaften, 1899. URL
https://www.biodiversitylibrary.org/item/93034#page/7/mode/1up.
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Appendix

In this appendix, we quickly show that our methodology can also be used for a series of coordinate systems described
in the literature for general relativity theory.

The Eddington–Finkelstein Coordinates

The Eddington–Finkelstein coordinates are typically given as (see, for example, [46]):

−c2dτ2 =
(

1− 2GM
c2R

)
c2du2 − 2dudr −R2(dθ2 + sin2 θdφ2) (32)

The Schwarzschild metric expressed in this coordinate form avoids singularity when R = 2GM
c2 . To incorporate

the Planck scale and achieve quantization, we need only replace G with G = l2pc
3

~ and M with M = ~
λ̄M

1
c , yielding:

−c2dτ2 =
(

1− 2lp
R

lp
λ̄M

)
c2du2 − 2dudr −R2(dθ2 + sin2 θdφ2) (33)

Once again, the term lp
λ̄

represents the reduced Compton frequency per Planck time, and therefore provides
quantization of gravity. The fact that the Planck length can be easily incorporated without any knowledge of G
also indicates a direct link between gravity and the Planck scale.

The Lemâıtre Coordinates

The Lemâıtre coordinates consist of a transformation of the Schwarzschild coordinate system from {t, r} to the new
coordinates {τ, ρ}, and are typically given as:

ds2 = c2dτ2 − Rs
R
dρ2 −R2(dθ2 − sin2 θdφ2) (34)

The Planck-quantized version is:

ds2 = c2dτ2 − 2lp
R

lp
λ̄M

dρ2 −R2(dθ2 − sin2 θdφ2) (35)

Note that the Lemâıtre coordinates transform the time and radial distance coordinates into τ and ρ, respectively.
The metric tensor in these coordinates is expressed in terms of the Schwarzschild radius Rs, the radial coordinate
R, and the angular coordinates θ and φ. The Planck-quantized version includes the reduced Compton frequency
per Planck time, lp

λ̄
, to provide quantization of gravity.
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