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Abstract: This paper presents two simple yet powerful optimization algorithms named Best-
Mean-Random (BMR) and Best-Worst-Randam (BWR) algorithms to handle both constrained 
and unconstrained optimization problems. These algorithms are free of metaphors and 
algorithm-specific parameters. The BMR algorithm is based on the best, mean, and random 
solutions of the population generated for solving a given problem; and the BWR algorithm is 
based on the best, worst, and random solutions. The performances of the proposed two 
algorithms are investigated on 12 constrained engineering problems and the results are 
compared with the very recent algorithms (in some cases compared with more than 30 
algorithms). Furthermore, computational experiments are conducted on 30 unconstrained 
standard benchmark optimization problems including 5 recently developed benchmark 
problems having distinct characteristics. The results proved the better competitiveness and 
superiority of the proposed simple algorithms. The optimization research community may gain 
an advantage by adapting these algorithms to solve various constrained and unconstrained real-
life optimization problems across various scientific and engineering disciplines.   
 
Keywords: Optimization; BMR algorithm; BWR algorithm; Constrained engineering 
problems; Unconstrained problems; New benchmarks.   
1. Introduction 
 
Population-based metaheuristic algorithms are very adaptable and are used to solve complex 
optimization problems in a variety of domains. They are especially helpful in situations when 
traditional optimization techniques—such as deterministic techniques or gradient-based 
methods—prove inappropriate because of certain factors like large search spaces, non-
linearity, multimodality, or complex problem domains. Through a series of iterative 
procedures, the metaheuristic algorithms methodically investigate the solution space, 
improving the initial solution or solution population over time. Metaheuristics offer several 
advantages such as versatility, gradient independence, global search capability, multi-objective 
problem-solving capability, exploration and exploitation capability, configurability, practical 
applicability, etc. On the other hand, there are certain limitations of metaheuristics such as the 
absence of the global optimum guarantee, difficulty in achieving convergence in the case of 
high-dimensional or complex solution spaces, the requirement of tuning of common control 
parameters, and the algorithm-specific parameters, black-box nature, etc.  

Nearly all algorithms that rely on population are probabilistic in nature and necessitate 
common parameters such as the number of generations and size of the population. With a few 
exceptions (e.g., Jaya algorithm, and Rao algorithms), each algorithm needs its own set of 
control parameters apart from common parameters. Inadequate adjustment of algorithm-
specific parameters results in the local optimal solution or escalates the computing effort. 
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The body of literature on metaheuristics has expanded significantly in recent years. The 
recent review papers on metaheuristics give a clear idea to the readers about various 
metaheuristics, their working principles, applications, limitations, future directions, etc. To 
date, more than 600 metaheuristic algorithms have been developed, with over 400 of them 
being developed during the past ten years. Many new optimization algorithms based on 
metaphors are released each month, with the authors claiming that their algorithms are “novel” 
and are better than those of the other algorithms.  

A profusion of "novel" population-based metaheuristic algorithms, inspired by 
metaphors based on diverse natural phenomena including floods, disasters, animals (animals 
on earth as well as in the ocean), birds, insects, reptiles, fishes, viruses, diseases, matings, 
humans, human activities, societies, cultures, planets, heavenly bodies, plants, trees, swamps, 
deserts, musical instruments, sports, household items, physics, chemistry, mathematics, etc. 
have emerged in the last 15 years. The developers of these algorithms make an analogy of the 
equations proposed by them with any of the metaphors related to the phenomena mentioned 
above and try to justify the analogy. It is ironic that in almost all such algorithms there is no 
such real relation between the phenomena and the equations shown by them. This kind of 
research may be seen as risky and detrimental to the development of the optimization field. 
Several researchers have questioned the contentious subject of the exponential increase in new 
algorithms. Regretfully, a sizeable portion of the scientific community resorted to believing 
that the development of so-called “novel” optimization algorithms based on ever more bizarre 
analogies (in the name of metaphors) can advance science. Arguably the most dubious features 
of these techniques can be found in the literature such as meaningless and unfair metaphors, 
poor experimental validation, comparison, and lack of novelty.  

Regretfully, over the past 10 years, we have seen the emergence of a new trend in which 
hundreds of metaphor-based metaheuristics have been proposed. These metaheuristics 
incorporate the greatest variety of natural, man-made, social, and sometimes even paranormal 
occurrences and actions, and their authors have not provided a clear rationale for their proposals 
other than the desire to get their papers published. Sörensen [1]  opined that the current research 
trajectory in metaheuristics threatens to deviate from a rigorous scientific approach, and it 
appears that no concept is too ridiculous to serve as motivation to launch yet another 
metaheuristic algorithm. Sörensen et al. [2] described the development of metaheuristics over 
the course of five separate eras, beginning well before the name was coined and concluding far 
into the future. They commented that a sizable portion of the research community has fooled 
itself into believing that the development of so-called "novel" approaches that rely on ever-
more bizarre analogies may advance science. By the time these metaphor-based ideas are 
suppressed, they expect that the scientific community will have suffered great injury, even 
though science will ultimately win out. 

Campelo and Aranha [3] compiled a long list of "novel" algorithms and showed that 
developing a metaheuristic that just approximates a real-world process is a fruitless exercise 
and should not be added to the corpus of scientific literature. Moreover, when metaheuristics 
are used, the mathematical models obtained from the metaphors are often modified or omitted 
since they result in subpar implementations. Aranha et al. [4] opined that the emergence of 
publications that suggest metaphor-based algorithms that are influenced by often absurd 
processes that are not optimized at all, show poor scientific housekeeping, and reflect poorly 
on the metaheuristics research community. 

The concerning thing is that a large number of metaphor-based metaheuristics include 
three (nearly wholly) distinct entities: the metaphor, the mathematical model "derived" from 
the metaphor, and the algorithm itself [5,6]. Rao [7] expressed concern that the flood of 
metaphor-based metaheuristics might threaten the optimization field's scientific viability and 
suggested that rather than concentrating on creating metaphor-based algorithms, researchers 



should concentrate on creating simple optimization strategies that can solve complex 
optimization problems.  

The primary metaheuristic techniques and their diversification mechanisms were 
explained by Sarhani et al. [8]. They suggested a new classification for the current initialization 
techniques after reviewing and analyzing them. Rajwar et al. [9 ] reviewed about 540 
metaheuristics and provided statistical information. The authors raised an important question: 
If the search properties of an optimization algorithm are altered or almost identical to those of 
current methods, can it still be considered "novel"? The authors categorized metaheuristics 
based on the number of control parameters, which is a new taxonomy in the field. They also 
presented a few limitations and open challenges. 

Salgotra et al. [10] classified the metaheuristics as physics-based, human-based, 
swarm-based, and evolutionary-based. A large number of metaphor-based algorithms 
including some bizarre metaphors were mentioned in the classification. Different benchmark 
test functions related to existing metaheuristics were reviewed. It can be observed from the 
metaheuristics listed under each category of classification that the researchers have touched on 
almost all the “nature inspirations” and trying to make analogies irrespective of whether that 
metaphor has anything to do with the equations shown by them. Sharma and Raju [11] 
presented a comprehensive overview of metaheuristic optimization algorithms and the 
classification of benchmark test functions 

Velasco et al. [12] examined 111 recent articles which proposed "new, hybrid, or 
improved optimization algorithms". A significant observation that was mostly ignored by the 
academics developing new algorithms was that only 43% of the reviewed articles referenced 
the No Free Lunch (NFL) theorem. The Black Widow Optimization and Coral Reef 
Optimization metaheuristics were examined to show how algorithms with little innovation can 
mistakenly be regarded as novel frameworks. These algorithms were found to be nothing more 
than inadequate combinations of various evolutionary operators.  

Benaissa et al. [13] explained the core ideas and elements of metaheuristics, focusing 
on the utilization of search references and the careful balancing act between exploration and 
exploitation. They opined that, although intuitively appealing, metaphor-based optimization 
algorithms have generated controversy because of possible oversimplification and inflated 
expectations, and the names of the algorithms don't always correspond to the guiding ideas or 
methods they use. Sometimes, researchers use names that are fashionable or catchy, but these 
names cannot accurately represent the algorithm's originality or uniqueness. 

It is clarified here that the objective of this paper is NOT to insult the researchers who 
have developed (and who are developing) metaphor-based optimization algorithms till now. 
The objective is to prove that there is no need to depend on metaphors to develop new 
optimization algorithms. The equations developed by the researchers in their papers may be 
able to solve the benchmark functions and other problems, but the analogies made with some 
natural or synthetic phenomena are not at all necessary. Developing straightforward 
optimization approaches that can solve complex optimization problems more effectively would 
be a better course of action for researchers than trying to develop metaphor-based algorithms. 
In light of this, the objectives of the work presented in this paper are listed below. 

 
1. To prove that there is no need to depend on metaphors to develop optimization 

algorithms. 
2. To develop two simple basic metaphor-free and algorithm-specific parameter-free 

optimization algorithms. 
3. To test the performance of the proposed algorithms on 12 constrained engineering 

problems that have been recently attempted by many latest algorithms (in some cases 
more than 30 algorithms).  



4. To demonstrate how well the proposed algorithms perform on a range of standard 
unconstrained optimization problems, including the most recent benchmark functions, 
each with unique characteristics. 

 
The next section explains the proposed optimization algorithms. 
 

2. Proposed best-mean-random (BMR) and best-worst-random (BWR) algorithms 
 
2.1 BMR algorithm 
 
Let f(x), the objective function, be the function to be minimized or maximized. Assume that 
there are 'm' design variables and 'n' candidate solutions (i.e., population size, k=1,2,...,n) for 
every iteration i. The candidate with the best overall performance gets the best value of f(x) 
(i.e., f(x)best), while the candidate with the poorest overall performance gets the worst value of 
f(x) (i.e., f(x)worst) in all candidate solutions. Let r1, r2, r3, and r4 be four random numbers and 
each can take any value randomly from 0 to 1 and Uj and Lj be the upper and lower values of 
jth variable. Additionally, let Vj,k,i represent the jth variable's value for the kth candidate in the ith 
iteration and T is a factor that randomly takes either 1 or 2 during an iteration. 
 
r1, r2, r3, r4 ∼ Uniform(0, 1) 
T ∼ Choice({1, 2}) 
if r4 > 0.5, the value of Vj,k,i  is changed as per Eq. (1).   
V'j,k,i = Vj,k,i + r1,j,i (Vj,best,i -  T*Vj.mean,i) + r2,j,i (Vj,best,i -  Vj,random,i)          (1) 
Else, V'j,k,i = R = Uj – (Uj - Lj)r3                     (2) 
 
The modified value of Vj,k,i is V'j,k,i. The best value of f(x) during the ith iteration is Vj,best,i for the 
jth variable. The mean value of jth variable is Vj.mean,i during the ith iteration. The randomly 
picked up value, during the ith iteration, for the jth variable is Vj,random,i. The BMR algorithm's 
exploitation and exploration capabilities are explained in Eqs. (1) and (2).  
 
2.2 BWR algorithm 
  
With the same description of the terms given in sub-section 2.1, the BWR algorithm 
is described below. 
 
r1, r2, r3, r4 ∼ Uniform(0, 1) 
T ∼ Choice({1, 2}) 
if r4 > 0.5, the value of Vj,k,i  is changed as per Eq. (3).    
V'j,k,i = Vj,k,i + r1,j,i (Vj,best,i -  T* Vj,random,i) - r2,j,i (Vj,worst,i -  Vj,random,i)          (3) 
Else, V'j,k,i = R = Uj – (Uj - Lj)r3                   (4) 
 
The modified value of Vj,k,i is V'j,k,i. The best value of f(x) during the ith iteration is Vj,best,i for the 
jth variable. The worst value of f(x) during the ith iteration for the jth variable is Vj,worst,i. The 
randomly picked up value of jth variable during the ith iteration is Vj,random,i. The BWR 
algorithm's exploitation and exploration capabilities are explained in Eqs. (3) and (4). It can be 
noted that both BMR and BWR algorithms are not based on any metaphors. Fig. 1 shows the 
flow diagram of the proposed BMR and BWR optimization algorithms. 
 



 
 
Fig. 1. Flow diagram of the BMR and BWR algorithms. 

 
3.   Illustration of the functionality of the proposed algorithms 
 
3.1.   Illustration of the functionality of the BMR algorithm 
 
To illustrate the functionality of the BMR algorithm, we explore an unconstrained standard 
benchmark function of Sphere. The objective function is to determine the values of xi that 
minimize the Sphere function.  
 
Minimize,  

       
(5) 

Bounds of the variables: -100≤ xi≤ 100 
 
This benchmark function's known solution is 0 for all xi values of 0. To illustrate the BMR 
algorithm, let us use the following: two design variables, x1 and x2; an iteration serving as the 
termination criterion; and a population size of five (i.e., five solutions). Table 1 shows the 
values of the objective function corresponding to the initial population, which is created at 
random within the bounds of the variables. Since f(x) is a minimization function, the best 
solution is defined as having the lowest value, and the worst solution as having the greatest 
value.  
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Table 1 
Randomly generated initial solutions. 
Solution x1 x2 f(x) Status 
1 -5 18 349  
2 14 33 1285 worst 
3 30 -6 936  
4 7 -12 193 best 
5 -18 8 388  
 Mean of x1 = 5.6 Mean of x2 = 8.2   

 
It is evident from Table 1 that solution 4 offers the best solution, while solution 2 offers 

the worst solution. Eq. (1) is used to determine the new values of the variables for x1 and x2 and 
are included in Table 2, considering random numbers r1 = 0.30 and r2 = 0.10 for x1 and r1 = 
0.60 and r2 = 0.30 for x2. Assuming T=1 and random interaction with solution 5, the new values 
of x1 and x2 for solution 1 are computed as follows during the first iteration. 
 
V'1,1,1 = V1,1,1 + r1,1,1 (V1,4,1 -  1*Mean of x1) + r2,1,1 (V1,4,1 - V1,5,1)  

= -5 + 0.30 (7- 1*5.6) + 0.10 (7- (-18)) = -2.08 
V'2,1,1 = V2,1,1 + r1,2,1 (V2,4,1 – 1*Mean of x2) + r2,2,1 (V2,4,1 - V2,5,1)  

= 18 + 0.60 (-12- 1*8.2) +0.30 (-12-8) = -0.12 
 

The new values of x1 and x2 for the remaining solutions are determined similarly. The 
new values of x1 and x2, along with the corresponding values of the objective function, are 
displayed in Table 2. For illustration purposes, solutions 2, 3, 4, and 5 are taken into 
consideration for their random interactions with 4, 2, 1, and 3, respectively. 
 
Table 2 
New values of x1 and x2 and f(x) during the first iteration of the BMR algorithm.  
Solution x1 x2 f(x) 
1 -2.08 -0.12 4.3408 
2 14.42 20.88 643.9108 
3 29.72 -31.62 1883.103 
4 8.62 -33.12 1171.239 
5 -19.88 -5.92 430.2608 

 
After comparing the values of f(x) in Tables 1 and 2, Table 3 is prepared and it contains 

the updated values of f(x) based on fitness comparison. The first iteration of the BMR algorithm 
is now complete.  
 
Table 3 
Updated values of x1 and x2, and f(x) after the first iteration of BMR algorithm. 
Solution x1 x2 f(x) Status 
1 -2.08 -0.12 4.3408 best 
2 14.42 20.88 643.9108  
3 30 -6 936 worst 
4 7 -12 193  
5 -18 8 388  

 



Table 3 illustrates that solution 1 is the best, while solution 3 is the worst. Additionally, it is 
evident that in just one iteration, the objective function's value drops from 193 to 4.3408. If the 
number of iterations is increased, the known value of the objective function, or 0, can be 
obtained in a few iterations. It is important to keep in mind that in cases of maximization 
problems, the highest value of the objective function is referred to as the best value, and 
calculations must be done accordingly. This means that problems involving either 
minimization or maximization can be handled using the proposed BMR algorithm.  
 
3.2.   Illustration of the functionality of the BWR algorithm 
 
To illustrate the functioning of the BWR algorithm, the same Sphere function is considered. 
For a fair comparison, the same values of random numbers, the same values of T, and the same 
random interactions are considered. The values are calculated accordingly. Assuming T=1 and 
random interaction with solution 5, the new values of x1 and x2 for solution 1 are computed as 
follows during the first iteration. 
 
V'1,1,1 = V1,1,1 + r1,1,1 (V1,4,1 -  1* V1,5,1) - r2,1,1 (V1,2,1 - V1,5,1)  

= -5 + 0.30 (7- 1*(-18)) - 0.10 (14- (-18)) = -0.70 
V'2,1,1 = V2,1,1 + r1,2,1 (V2,4,1 – 1* V2,5,1) + r2,2,1 (V2,4,1 - V2,5,1)  

= 18 + 0.60 (-12- 1*8) -0.30 (33-8) = -1.50 
 

The new values of x1 and x2 for the remaining solutions are determined similarly. The 
new values of x1 and x2, along with the corresponding values of the objective function, are 
displayed in Table 4.   
 
Table 4 
New values of x1 and x2, and f(x) during the first iteration of the BWR algorithm.  
Solution x1 x2 f(x) 
1 -0.7 -1.5 2.74 
2 13.3 19.5 557.14 
3 27.9 -33 1867.41 
4 8.7 -34.5 1265.94 
5 -23.3 -7.3 596.18 

 
After comparing the values of (x) in Tables 1 and 4, Table 5 is prepared and it contains 

the updated values of f(x) based on fitness comparison. The first iteration of BWR algorithm is 
now complete.  
 
Table 5 
Updated values of x1 and x2, and f(x) after the first iteration of BWR algorithm. 
Solution x1 x2 f(x) Status 
1 -0.7 -1.5 2.74 best 
2 13.3 19.5 557.14  
3 30 -6 936 worst 
4 7 -12 193  
5 -18 8 388  

 
Table 5 illustrates that solution 1 is the best solution, while solution 3 is the worst. 

Additionally, it is evident that in just one iteration, the objective function's value drops from 
193 to 2.74. The known value of the objective function, or 0, can be reached in a few iterations 



if the number of iterations is increased. Problems involving either minimization or 
maximization can be handled by the BWR.  

This illustration pertains to an unconstrained optimization problem. Nonetheless, the 
same procedures can be employed when dealing with constrained optimization problems. The 
primary distinction is that in the constrained optimization problem, each violation of a 
constraint is handled by a penalty function that is applied to the objective function.  

The experimentation of the proposed algorithms on 12 constrained benchmark 
problems given in [21] is explained in the following section. In the present work, MATLAB 
r2024a has been used to implement the BMR and BWR algorithms. A laptop with Microsoft 
Windows 10 operating system with AMD Ryzen 7  CPU and 24 GB RAM has been used for 
doing the computational experiments. 

 
4. Experiments on 12 constrained engineering optimization problems  
 
Very recently in June 2024, Ghasemi et al. [21] proposed a metaphor-based algorithm named 
“Flood Algorithm (FLA)” and compared its performance with so many optimization algorithms 
(more than 30 algorithms in some cases) in solving certain Congress on Evolutionary 
Computation (CEC) 2005 and 2014 functions along with 12 constrained engineering problems. 
The decision variables, objective functions, constraints, and the bounds of the decision 
variables are available in Ghasemi et al. [21] and hence are not reproduced here for space 
reasons and to avoid plagiarism issues. 

Now the proposed BMR and BWR algorithms are applied to the same 12 constrained 
engineering problems under the same conditions with 30 runs as those used by FLA [21] and 
other so many other optimization algorithms. A static penalty method is used to deal with 
constraint violations. For example, in the case of problem 1 (i.e., a minimization problem 
related to welded beam design) which has seven constraints g1(x),……, and g7(x), the penalized 
value of f(x) is calculated as, Penalized f(x)= f(x)+10*g1(x) 2+10*g2(x)2+………+10*g7(x)2. If 
there is no constraint violation, then there will not be any penalty, and the Penalized f(x)= f(x). 
It may be noted here that the user can decide which type of penalty can be imposed for 
constraint violation. Table 6 presents the so many optimization algorithms with which the FLA 
was compared by Ghasemi et al. [21]. 
 
Table 6 
List of the optimization algorithms* attempted previously on 12 constrained engineering 
problems. 

 
Problem numbers and the optimization algorithms used 

1 2 3 4 5 6 7 8 9 10 11 12 
CPO SCHO BLPS

O 
mGW
O 

SCHO YDSE WOA YDS
E 

AD-
IFA 

PSO AEF
A-C 

MPD
O 

IAS PSA MBW
O 

BES PSA VCO SSA SRS LS-
LF-
FA 

DE FPSA MGO 

SCHO AMO CCEO GOA KOA BP-
εMAg-
ES 

MBA CPA LF-
FA 

GA AD-
IFA 

RAO-
3 

LSO DSA IAS EBS DSA COLSH
A 

GWO SOS FA HPS
O 

LS-
LF-
FA 

PSA 

KOA ESOA MPDO UPSO EEFO DE−QL ER-
WCA 

 DO HPS
O-Q 

LF-
FA 

WOA 



SWO iLSHA
DEε 

PSA  VCO VMCH ALO  KO
A 

SNS FA SSA 

GSO RL-BA EEFO  GGO UPSO LFD  DB
B-
BC 

  MBA 

DSA AD-IFA AD-
IFA 

 ESOA G-
QPSO 

ACV
O 

    WCA 

VCO LS-LF-
FA 

LS-
LF-FA 

 WO CPSO EChO
A 

    ER-
WCA 

SAO LF-FA LF-FA  DE−Q
L 

mGWO I-
GWO 

    ALO 

OA FA FA  VMCH RFO HFPS
O 

    MFO 

MMLA SFO GCHH
O 

 EnMO
DE 

EO HEA
A 

    T-
CSS 

AD-
IFA 

mGWO GOA  QS CDE SHO     CSS 

LS-LF-
FA 

PSO-
HBF 

MFO  GCHH
O 

DHOA SETO     FACS
S 

LF-FA  WOA  SMA-
AGDE 

 LFD      

FA  SMA  COOT  SELO      
WCA  m-

SCA 
 SDO  AHA      

SFO    CPSO  AO      
EPSO    mGWO  MBW

O 
     

FSA    PFA  CCE
O 

     

CPSO    G-
QPSO 

 MPD
O 

     

TEO    WCA  SCHO      
CDE    DDAO  GAO      
UPSO    CDE  YDSE      
PFA    (l + λ)-

ES 
 LEA      

HGS    HPSO  CSA      
EO    EO  SCA      
GWO    INFO  MVO      
IPSO    NRBO  MFO      
HMS    IMSCS

O 
 RSA      

POA    LSO  hHHO
-SCA 

     

CPO    EBS  AOA      
    HGA        
    TDO        
    UPSO        
    CSA        
    SCA        
    MVO        
    MFO        
*The abbreviations of the optimization algorithms are available in Ghasemi et al. [21].  

Table 7 presents the results of BMR and BWR algorithms along with the results of 
FLA. The results of so many other algorithms are not included in Table 7, as FLA has already 
claimed its supremacy over those algorithms, and it is felt that comparison with FLA is 
sufficient to check the performance of BMR and BWR algorithms.  



       Table 7 
Statistical results obtained by BMR and BWR algorithms and FLA for 12 constrained 
engineering problems. 

No. Name of the 
problem 

Algorithm Best Mean Worst Std. dev. 

1 Welded beam 
optimization 

BMR 1.6981 1.7010 1.7032 1.5674E − 
03 

 BWR 1.6979 1.6979 1.6979 2.7043E − 
10 

FLA [21] 1.7248523 1.7248527 1.7248536 3.08E-06 
2 Three-bar truss 

optimization 
BMR 1.085211E+02 1.085211E+02 1.085211E+02 1.4504E − 

14 
 BWR 1.085211E+02 1.085211E+02 1.085211E+02 1.8346E − 

14 
FLA [21] 263.89584 263.89586 263.89665 7.10E-05 

3 Cantilever beam 
optimization 

BMR 1.3351 1.3351 1.3351 1.9342E − 
11 

 BWR 1.3351 1.3351 1.3351 1.5367E − 
14 

FLA [21] 1.339956 1.339958 1.339963 6.48E-07 
4 Optimal design of 

gear train 
BMR 4.287642E−22 3.4497E − 18 3.4131E − 17 8.21E − 18 

 BWR 7.3856E−25 7.1755E − 21 4.3061E − 20 1.121E − 20 
FLA [21] 2.700857E-12 8.7526E-10 1.4069E-09 2.76E-09 

5 Tension/compression 
spring optimization 

BMR 0.012648 0.012648 0.012648 8.0429E − 
14 

 BWR 0.012648 0.012648 0.012648 0.012648 
FLA [21] 0.0126652 0.012666 0.012667 6.29E-07 

6 Pressure vessel 
optimization 

BMR 4.840545E+02 4.840545E+02 4.840545E+02 1.6409E − 
13 

 BWR 4.840545E+02 4.840545E+02 4.840545E + 
02 

1.6409E − 
13 

FLA [21] 6.059714E+03 6.06021E+03 6.09052E+03 3.86 
7 Speed reducer 

optimization 
BMR 2.35748E+03 2.357481E+03 2.35748E+03 9.2825E−13 

 BWR 2.35748E+03 2.35748E+03 2.35748E+03 9.2825E−13 
FLA [21] 2.99447E+03 2.994471E+03 2.994473E+03 2.09E-04 

8 I-beam vertical 
deflection 

BMR 0.0016369 0.0016369 0.0016369 6.6394E − 
19 

 BWR 0.0016369 0.0016369 0.0016369 6.6394E − 
19 

FLA [21] 0.013074 0.01307445 0.01307579 6.91E-06 
9 Tubular column 

optimal design 
BMR 1.03168E+01 1.03168E+01 1.03168E+01 9.2825E−13 

 BWR 1.03168E+01 1.03168E+01 1.03168E+01 9.2825E−13 
FLA [21] 2.64995E+01 2.64995E+01 2.651003E+01 1.41E-04 

10 Piston lever 
optimal design 

BMR 7.585 7.585 7.5851 2.4052E−05 

 BWR 7.585 7.585 7.585 2.054E-14 
FLA [21] 8.412698 23.821251 167.232196 47.2 

11 Corrugated 
bulkhead optimal 
design 

BMR 6.5795 6.5795 6.5795 2.7195E − 
15 

 BWR 6.5795 6.5795 6.5795 2.7195E − 
15 

FLA [21] 6.842958 6.8429676 6.8432916 1.25E-05 



12 Car side impact 
optimization 

BMR 2.22857E+01 2.22857E+01 2.22857E+01 1.0534E − 
14 

 BWR 2.22857E+01 2.22857E+01 2.22857E+01 1.0534E − 
14 

FLA [21] 2.284297E+01 2.288914E+01 2.317638E+01 7.38E-03 
The bold numbers denote better values in comparison to the similar values provided by the FLA [21]. 

It can be noted that the BMR and BWR algorithms have outperformed the very recently 
published FLA [21]. It is very interesting to note that the FLA was shown by Ghasemi et 
al. [21] as superior to 32 other algorithms in the case of problem 1; 14 other algorithms 
in the case of problem 2;  17 other algorithms in the case of problem 3;  5 other algorithms 
in the case of problem 4;  39 other algorithms in the case of problem 5;  14 other 
algorithms in the case of problem 6;  32 other algorithms in the case of problem 7;  4 other 
algorithms in the case of problem 8;  7 other algorithms in the case of problem 9;  6 other 
algorithms in the case of problem 10;  6 other algorithms in the case of problem 11;  and 
14 other algorithms in the case of problem 12. Now the proposed BMR and BWR 
algorithms have shown better performance in all 12 engineering problems, compared to 
FLA [21] which was recently published in June 2024.     

The convergence behavior of the BMR and BWR algorithms is shown in Fig. 2. It may 
be noted that the 0e+00 shown at the origin of the graphs indicates the iteration during which 
the population is randomly generated. Complete convergence till the end is not clearly visible 
in the graphs in certain cases (because of the scale step size taken on x- and y-axes) but the 
readers may understand that the convergence occurred at the mean function values shown in 
Table 7. 

 



 

 

 



 

 

 

 



 

 

 



 

 

Fig. 2. Convergence graphs of the BMR and BWR algorithms for 12 engineering problems. 
  
5. Experiments on 30 unconstrained optimization problems 
 
5.1 Experiments on 25 unconstrained standard benchmark functions 
 
To test the performance of BMR and BWR algorithms on unconstrained optimization 
problems, 25 standard benchmark functions frequently used by the researchers are considered. 
These benchmark functions are separable, non-separable, multimodal, and unimodal. The 
algorithms are coded in Python 3.11.5. Thirty separate runs of each function and a maximum 
of 500000 function evaluations are used in the computational studies. Table 8 displays the 
"Best", "Mean", "Worst", "Standard Deviation (Std. dev.)", and "Mean function evaluations 
(MFE)" for the BMR and BWR algorithms.  
 
 
 
 
 



       Table 8 
Statistical results obtained by BMR and BWR algorithms for 25 unconstrained standard 
benchmark problems. 

No. Unconstrained  
function 

Optimum Algorithm  Best Mean Worst Std. dev. MFE 

F 1 Sphere  0 BMR 0 0 0 0 125018 

 BWR 0 0 0 0 68256 

F 2 SumSquares 0 BMR 0 0 0 0 124709 

 BWR 0 0 0 0 62936 

F 3 Beale 0 BMR 0 0 0 0 10317 

 BWR 0 0 0 0 4535 

F 4 Easom -1 BMR 0 0 0 0 5174 

 BWR 0 0 0 0 2891 

F 5 Matyas 0 BMR 0 0 0 0 13610 

 BWR 0 0 0 0 23663 

F 6 Colville 0 BMR 0 0 0 0 23195 

 BWR 0 0 0 0 14469 

F 7 Trid 6 -50 BMR -50 -50 -50 0 18496 

 BWR -50 -50 -50 0 13793 

F 8 Trid 10 -210 BMR -210 -210 -210 0 55635 

 BWR -210 -210 -210 0 52834 

F 9 Zakharov 0 BMR 0 0 0 0 128387 

 BWR 0 0 0 0 79267 

F 10 Schwefel 1.2 0 BMR 0 0 0 0 129580 

 BWR 0 0 0 0 80000 

F 11 Rosenbrock 0 BMR 0 4.62E-29 1.09E-
29 1.44E-29 434010 

 BWR 0 0 0 0 167089 
F 12 Dixon-Price 0 BMR 0.24906 0.24906 0.24906 0 19000 

 BWR 0.24906 0.24906 0.24906 0 14300 

F 13 Branin 0.397887 BMR 0.397887 0.397887 0.39788
7 0 22330 

 BWR 0.397887 0.397887 0.39788
7 0 11080 

F 14 Bohachevsky 1 0 BMR 0 0 0 0 2746 

 BWR 0 0 0 0 1788 

F 15 Bohachevsky 2 0 BMR 0 0 0 0 2738 

 BWR 0 0 0 0 1761 

F 16 Bohachevsky 3 0 BMR 0 0 0 0 2757 

 BWR 0 0 0 0 1749 

F 17 Booth 0 BMR 0 0 0 0 7862 

 BWR 0 0 0 0 3910 

F 18 Michalewicz 2 -1.8013 BMR -1.8013 -1.8013 -1.8013 0 1819 

 BWR -1.8013 -1.8013 -1.8013 0 1157 

F 19 Michalewicz 5 -4.6877 BMR -4.6877 -4.6877 -4.6877 5.76E-07 180120 

 BWR -4.6877 -4.6877 -4.6877 1.38E-15 23600 



F 20 GoldStein-
Price 

3 BMR 3 3 3 1.94E-14 12517 

 BWR 3 3 3 1.87E-14 4317 

F 21 Perm 0 BMR 0 0 0 0 55635 

 BWR 0 0 0 0 38393 

F 22 Ackley 0 BMR 4.44E-16 4.44E-16 4.44E-
16 0 11350 

 BWR 4.44E-16 4.44E-16 4.44E-
16 0 2300 

F 23 Foxholes 0.998004 BMR 0.998004 0.998004 0.99800
4 0 741 

 BWR 0.998004 0.998004 0.99800
4 0 600 

F 24 Hartmann 3 -3.86278 BMR -3.86278 -3.86278 -
3.86278 0 1784 

 BWR -3.86278 -3.86278 -
3.86278 0 780 

F 25 Penalized 2 0 BMR 1.50E-33 1.50E-33 1.50E-
33 0 402120 

 BWR 1.50E-33 1.50E-33 1.50E-
33 0 150000 

 
 Recently, Rao and Pawar [20] used I-Rao algorithm for solving the above 25 
unconstrained functions and proved that I-Rao performed better than the three Rao algorithms 
reported by Rao [7]. Hence, the results of BMR and BWR algorithms are compared now with 
those of the I-Rao. Table 9 presents the summary of the performance of BMR and BWR 
algorithms compared to the I-Rao algorithm. The comparison summary is in terms of how 
many times the BMR and BWR algorithms performed “Better” or “Similar or equal” or 
“Inferior” to the I-Rao algorithm. The “Success %” is calculated similarly as explained in 
section 4. 
 
Table 9 
Summary of the performance of BMR and BWR algorithms for 25 unconstrained problems. 
Criterion Best Mean Worst MFE 

BMR vs. I-Rao* 
Better 3 5 5 17 
Similar or equal 21 20 20 0 
Inferior 1 0 0 8 
Success % 96 100 100 68 

BWR vs. I-Rao* 
Better 3 5 5 22 
Similar or equal 21 20 20 0 
Inferior 1 0 0 3 
Success % 96 100 100 88 

BWR vs. BMR 
Better 0 1 1 24 
Similar or equal 25 24 24 0 
Inferior 0 0 0 1 
Success % 100 96 96 96 

*Results of I-Rao are taken from [20].  

 The convergence behavior of BMR and BWR algorithms for 4 selected unconstrained 
functions is shown in Fig. 3. These graphs give an idea about the convergence behavior. The 



convergence graphs for the remaining 21 unconstrained problems are not shown for space 
reasons. 
 

 



 

Fig. 3. Convergence graphs of the BMR and BWR algorithms for 4 unconstrained functions. 
 
5.2 Experiments on 5 new unconstrained standard benchmark functions 
 
To further demonstrate the potential of the proposed BMR and BWR algorithms on 
unconstrained optimization problems, 5 out of 10 latest benchmark functions recently proposed 
by Yang [23] are considered. Thirty separate runs of each function and a maximum of 500000 
function evaluations are used in the computational studies. The “Best”, “Mean”, “Worst”, 
“Standard deviation (std. dev.)”, and “Mean function evaluations (MFE)” corresponding to 
BMR and BWR algorithms are shown in Table 10. 
 
Table 10 
Statistical results of BMR and BWR algorithms for the latest benchmark functions of Yang 
[23]. 
 

S. 
No. 

New 
benchmark 
function 

Optimum Algorithm Best Mean Worst Std. 
dev. 

MFE 

1 Complex 
Noisy 
Function 

-1 BMR -1 -1 -1 0 2787 

 BWR -1 -1 -1 0 2772 
2 Non-

differentiable 
function 

0 BMR 3.21228E-
06 

3.21228E-
06 

3.21228E-
06 

0 250380 



 BWR 1.8488E-
07 

1.8488E-
07 

1.8488E-
07 

0 221840 

3 Hyperboloid 
Function 

1 BMR 1 1 1 0 471400 

 BWR 1 1 1 0 222030 
4 Non-Smooth 

Multi-Layered 
Function 
(D=1) 

0 BMR 0 0 0 0 155 

 BWR 0 0 0 0 232 
5 Shortest-Path 

Problem 
1 BMR 1 1 1 0 400 

 BWR 1 1 1 0 209 

To understand the convergence behavior, the convergence graph for “non-smooth 
multi-layered function” is shown in Fig. 4.   

 

Fig. 4. Convergence graph for the non-smooth multi-layered function. 
 
 
6. Discussion on the results obtained for constrained engineering problems, and 
unconstrained problems 
 
6.1 Constrained engineering problems 
 
In the case of constrained engineering problems, it is evident from Table 7 that when compared 
to the FLA [21] and many more algorithms which FLA had outperformed, the BMR and BWR 
algorithms performed much better in terms of "Best," "Mean," and "Worst". Both BMR and 
BWR algorithms performed equally well on these 12 problems. The convergence graphs shown 
in Fig. 4 indicate the better convergence behavior of BMR and BWR algorithms.  
 In another preprint [22], the results of the application of BMR and BWR algorithms on 
26 real-life non-convex constrained optimization problems of CEC 2020 [14] were presented. 
The proposed algorithms were found better than the IUDE,  εMAgES, iLSHADEε, 
COLSHADE, EnMODE, and I-Rao algorithms in terms of “Best”, “Median”, “Mean”, 
“Feasibility Rate (FR)”, “Mean Constraint Violation (MV)”, and “Success Rate (SR)”. 
However, the performance of BWR was found slightly better than the BMR algorithm.    
     
 



6.2 Unconstrained optimization problems 
 
6.2.1 Standard unconstrained optimization problems 
 
In the case of 25 standard unconstrained optimization problems, the selected convergence 
graphs shown in Fig. 5 for Beale, Easom, Bohachevsky 2, and Bohachevsky 2 indicate the 
better convergence behavior of BMR and BWR algorithms. In the case of other unconstrained 
problems also, the convergence behavior is found appreciable (however, those graphs are not 
shown in this paper for space reasons). 
 Table 8 shows the summary of the performance of BMR and BWR algorithms for 25 
problems compared to the recently published I-Rao algorithm of Rao and Pawar [20]. The 
comparison summary is in terms of how many times the BMR and BWR algorithms performed 
“Better” or “Similar or equal” or “Inferior” to the other algorithms. It is clear from Table 10 
that the success % of BMR and BWR algorithms is very high such as more than 90% (i.e., 
100% and 96%). In the case of MFE, compared to the I-Rao algorithm, the BMR and BWR 
algorithms’ success % are 68 and 88 respectively. Further, it can be noted that both BMR and 
BWR algorithms performed well on these 25 unconstrained problems. However, the 
performance of BWR may be found somewhat better than the BMR algorithm.    
 
6.2.2 New unconstrained optimization problems of Yang [23] 
 
Statistical results of BMR and BWR algorithms for the 5 latest benchmark functions of Yang 
[23] presented in Table 12 show that the proposed BMR and BWR algorithms produced the 
optimum results. It can be noted that the MFE required by BWR is less than the BMR 
algorithm. The convergence behavior is also found good.  

Normally statistical tests such as the Friedman test, Home-Sidak test, etc. are conducted 
to find the significance and to rank the competing optimization algorithms. However, these 
tests are not necessary here, as for the constrained and unconstrained problems presented in 
this paper, the BMR and BWR algorithms have well established their competitiveness by 
providing better Best, Median, Mean, and MFE values (with the performance of BWR 
algorithm slightly better than BMR algorithm in some problems).       
 
7. Conclusions 
 
The proposed BMR algorithm is based on “Best”, “Mean”, and “Random” values in the 
population of a given iteration, and the proposed BWR algorithm is based on “Best”, “Worst”, 
and “Random” values. These two algorithms are developed in the present work without using 
any metaphors (as explained in section 1) and proved that there is no need to depend on 
metaphors to develop the new optimization algorithms. The metaphor-free and algorithm-
specific parameter-free BMR and BWR algorithms are simple to understand and easy to 
implement. The efficiency of the proposed algorithms is demonstrated in terms of convergence 
and results on 12 constrained engineering problems, and a range of standard unconstrained 
optimization problems, including the most recent benchmark functions, each with unique 
characteristics. Thus, the objectives mentioned in Section 1 are met.  

Once again it is clarified here that the objective of this paper is NOT to insult the 
researchers who have developed (and who are developing) metaphor-based optimization 
algorithms till now. The objective is to prove that there is no need to depend on metaphors to 
develop new optimization algorithms.      

It is important to understand that the proposed BMR and BWR algorithms are not 
claimed as the "best" optimization algorithms available from all of the algorithms published in 



the optimization literature. It is plausible that an "optimal" algorithm may not exist for every 
type of optimization problem! However, the BMR and BWR algorithms demonstrate a great 
deal of potential for tackling optimization problems that are both constrained and 
unconstrained. As of right now, we can say that the BMR and BWR algorithms produce the 
best results in a comparatively small number of function evaluations, are simple to comprehend 
and apply, and have no algorithm-specific parameters. The codes of BMR and BWR algorithms 
are available at https://sites.google.com/view/bmr-bwr-optimization-algorithm/home.  

The preliminary investigations serve as the foundation for the proposed algorithms' 
outcomes, that are given in this work. In-depth investigations are planned to be conducted in 
the upcoming days on more real-life constrained and unconstrained engineering problems. 
Testing the effectiveness of the proposed algorithms on a range of intricate and computationally 
demanding problems involving high dimensions as well as investigating the convergence 
behavior will be part of these investigations. The results will be compared with those of other 
well-known and well-established optimization algorithms, and statistical analyses will also be 
carried out. The application of BMR and  BWR algorithms for fine-tuning and training deep 
neural networks in machine learning will also be investigated.  

The optimization community researchers may attempt to enhance these two algorithms 
to make them significantly more potent. We hope that researchers from various technical and 
scientific fields—including the physical, biological, and social sciences—will find the BMR 
and BWR algorithms to be effective instruments for optimizing systems and processes. If 
certain flaws in these algorithms are found, the researchers may offer suggestions to get around 
the drawbacks. 
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