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The kinetic stability of collisionless, sloshing beam-ion (  pitch angle) plasma is studied in a 3D

simple magnetic mirror, mimicking the Wisconsin High-temperature superconductor

Axisymmetric Mirror (WHAM) experiment. The collisional Fokker-Planck code CQL3D-m provides a

slowing-down beam-ion distribution to initialize the kinetic-ion/�uid-electron code Hybrid-VPIC,

which then simulates free plasma decay without external heating or fueling. Over  – , drift-

cyclotron loss-cone (DCLC) modes grow and saturate in amplitude. DCLC scatters ions to a

marginally-stable distribution with gas-dynamic rather than classical-mirror con�nement.

Sloshing ions can trap cool (low-energy) ions in an electrostatic potential well to stabilize DCLC, but

DCLC itself does not scatter sloshing beam-ions into said well. Instead, cool ions must come from

external sources such as charge-exchange collisions with a low-density neutral population.

Manually adding cool   ions improves beam-ion con�nement  –  in Hybrid-VPIC

simulations, which qualitatively corroborates measurements from real mirror devices with sloshing

ions.
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1. Introduction

The Wisconsin High-temperature superconductor Axisymmetric Mirror (WHAM) is a new laboratory

experiment that con�nes hot plasmas in a magnetic mirror with a maximum �eld of    on axis,

generated by high-temperature superconductors (HTS)[1]. For WHAM and future mirror devices[2][3]

[4] to succeed, both �uid and kinetic plasma instabilities must be quelled.

A kinetic instability of particular concern is the drift-cyclotron loss-cone (DCLC) instability[5][6].

DCLC comprises a spectrum of ion Bernstein waves, coupled to a collisionless drift wave, that is

excited by a spatial density gradient    and a loss-cone ion velocity distribution. In a magnetized

plasma column, DCLC appears as an electrostatic wave that propagates around the column’s azimuth

in the ion diamagnetic drift direction, perpendicular to both   and  . DCLC can be unstable solely

due to    when the gradient length scale    is of order the ion Larmor radius  , even for

distributions without a loss cone (e.g., Maxwellians), in which case it may be called drift-cyclotron

instability[7]. In this manuscript, we call both drift-cyclotron and drift-cyclotron loss-cone modes by

“DCLC” for simplicity.

Many mirror devices have measured electric and/or magnetic �uctuations at discrete ion cyclotron

harmonics having properties consistent with DCLC. These devices include PR-6[8][9], PR-8[10],

2XIIB[11], TMX and TMX-U[12][13][14], LAMEX[15], MIX-1[16][17][18][19], GAMMA-6A[20], and GDT[21]

[22]. Experiments on these devices showed that DCLC may be partly or wholly stabilized by �lling the

ions’ velocity-space loss cone via axial plasma stream injection[9][11][12][13][14][23][24], �lling the loss

cone via angled neutral beam injection, which creates a non-monotonic axial potential that traps cool

ions[22][25][26][27][28][29], decreasing    with respect to the ion Larmor radius  [15], and bounce-

resonant electron Landau damping[16]. Other e�ects theoretically calculated to modify and/or help

stabilize DCLC include �nite plasma beta[30], radial ambipolar electric �elds[31][32], and low-

frequency external electric �elds[33][34].

WHAM’s plasma column is a few to several ion Larmor radii ( ) in width and so may excite DCLC. How

will DCLC appear in WHAM; i.e., what will be its azimuthal mode number, oscillation frequency, and

amplitude? Sloshing ions, injected at    pitch-angle, helped to suppress DCLC in TMX-U endplugs

and will also be deployed on WHAM; to what extent can sloshing ions similarly suppress DCLC in

WHAM? In general, how should WHAM’s plasma properties be tuned to suppress DCLC? These
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questions have been addressed to varying degrees, for previous devices, via linear theory[5][6][30][35]

[36][37][38][39][40][41], quasi-linear theory[42][43], non-linear theory[33][44][45], and 1D and 2D kinetic

computer simulations[37][38][46][47][48][49].

Here, we address the aforementioned questions using 3D full-device computer simulations of DCLC

growth and saturation in a hybrid (kinetic ion, �uid electron) plasma model. Our simulation accounts

for many physical e�ects relevant to WHAM—magnetic geometry, beam-ion distributions, both

radial and axial electrostatic potentials, and diamagnetic �eld response—to obtain a fuller and more

integrated kinetic model than was possible decades ago.

In §2 we describe our simulation methods and parameters; of note is the coupling of a collisional

Fokker-Planck transport model to a collisionless hybrid kinetic-ion simulation model. In §3.1 to §3.3,

we characterize three �ducial simulations evolved to   that have reached a steady-state decay. The

main instability in all simulations is described and identi�ed as DCLC, with the aid of an approximate

linear dispersion relation for electrostatic waves in an inhomogeneous, low-  planar-slab plasma. In

§3.4, particle con�nement is shown to obey a “gas dynamic” rather than “collisionless mirror”

scaling with mirror ratio and device length. In §4 we survey well-known ways to stabilize DCLC that

may be relevant to WHAM and next-step mirror devices. We particularly focus on the experimentally-

tested method of DCLC stabilization via trapped cool ions, and we show that adding cool ions can

improve beam-ion con�nement by a factor of  –  in our simulations. Finally, §5 concludes.

2. Methods

2.1. Simulation Overview

We simulate freely-decaying plasma in a 3D magnetic mirror made of one central cell and two

expanders (Figure 1, left column). Three magnetic-�eld con�gurations are used, labeled by vacuum

mirror ratio  , to span WHAM’s operating range. WHAM’s magnetic �eld is created

by two HTS coils at    and two copper coils at  [1]. When both HTS and copper

coils are fully powered, the magnetic �eld on axis varies between   at the mirror throats to 

 at the device’s center ( ). When the copper coils are partly powered,   on axis ranges

between   to   ( ). When the copper coils are unpowered,   on axis ranges between 

 to   ( ).
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Figure 1. 2D images of ion density and electric �eld �uctuations at  , for three simulations

with varying vacuum mirror ratio   (top row),   (middle row),   (bottom row). (a): ion density 

 in units of  , 2D slice at   in   coordinates. White lines trace vacuum magnetic �elds;

dashed cyan lines trace hyperresistive dampers and conducting   regions (see text). (b): like (a), but

2D slice at the mirror's mid-plane   showing coherent �ute-like �uctuations at the plasma edge. (c):

azimuthal electric �eld �uctuation   in kV/cm; magenta dotted line traces radial conducting boundary.

(d): like (c), but radial �uctuation  . Middle row (e)-(h) and bottom row (i)-(l) are organized like panels

(a)-(d). Aspect ratio is distorted in left column (a),(e),(i); aspect ratio is to scale in all other panels.

Our simulations are performed with the code Hybrid-VPIC1[50][51], which models ion kinetics using

the particle-in-cell (PIC) method and models electrons as a neutralizing �uid. Ions are advanced

using a Boris pusher[51]. Electric and magnetic �elds  ,    are evolved on a rectilinear Cartesian (

) mesh. Particle-mesh interpolation uses a quadratic-sum shape[50]. The magnetic �eld is

advanced using Faraday’s Law,  , with a 4th-order Runge-Kutta scheme. The

electric �eld is passively set by a generalized Ohm’s law without electron inertia: 

 assuming both   and  . Here   and   are ion and electron number densities, 

 is bulk ion velocity,   is scalar electron presure,   is current density,   is resistivity,   is hyper-

resistivity,   is the speed of light, and   is the elementary charge. Gaussian CGS units are used in this

manuscript unless otherwise stated.

Coulomb collisions are neglected because the ion-ion de�ection and ion-electron drag timescales in

WHAM are of order  , longer than our simulation durations  – .
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A density �oor of  , for the   simulations respectively, is

applied in the Hall and ambipolar (pressure gradient) terms of Equation 2.1 to prevent division-by-

zero in vacuum and low-density regions surrounding the plasma. The density �oor is set low enough

to obtain the electrostatic potential drop from   out to the mirror throats at  , but the

remaining potential drop from throat into expanders is not captured.

We set the resistivity    and the hyper-resistivity  . Hyper-resistivity is

used solely to damp high-frequency whistler noise at the grid scale  ;   does not represent

any sub-grid physics of interest to us. The hyper-resistive   is included in the ion push, since it is not

used to model electron-ion friction.2

2.2. Simulation Geometry

The simulation domain for the   case is a rectangular box with extent   and 

. The box is decomposed into a   Cartesian   mesh with cell dimensions 

  and  . For analysis and discussion, we project data into usual

cylindrical coordinates  . For the    and    cases, the domain is enlarged to 

 and   while preserving the mesh cell shape, so the number of mesh points is 

 and   respectively. The domain extent truncates the expanders at  ,

unlike the real experiment, wherein a set of staggered biasable rings collects escaping plasma at 

– [1][52].

The overall simulation timestep  . The magnetic-�eld advance is sub-cycled 

  times within  , for    respectively, to satisfy the whistler wave’s

sti� CFL criterion in high-�eld, low-density regions near the mirror throats.

Hyper-resistivity    acts like smoothing and removes grid-scale numerical noise on the whistler-

wave dispersion branch, which would otherwise be undamped in the absence of resistivity or hyper-

resistivity. The value of    must be kept small enough to not arti�cially smooth real physical

phenomena. The hyper-resistive di�usion timescale estimated as    for an arbitrary

lengthscale   is   for the transverse grid scale  ; it is   for the ion skin depth 

  with  . We cannot make    much larger because the scale

separation between grid noise and physical phenomena is small; high-  kinetic modes lie below the

ion skin depth. In Appendix A, we present density �uctuation properties from a three-point scan of 
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; some details (e.g., spectral bandwidth) are altered, but the main conclusions regarding DCLC are

not too sensitive to our chosen value of  .

Particle and �eld boundary conditions are imposed as follows. A conducting radial sidewall is placed

at  , which is in physical units    for    respectively. A

conducting axial sidewall is placed at  . The HTS coils are also surrounded by

both conducting and hyper-resistive wrapper layers (Figure  1, left column, dashed cyan curves).

Within the wrapper layer (between nested dashed cyan curves), the grid-local value of    used in

Ohm’s Law (Equation  2.1) is increased    to help suppress numerical noise in high-�eld, low-

density regions. The “conducting” boundary is enforced by setting    on the mesh, which

disables    �eld evolution. Bound charge and image currents within conducting surfaces are not

explicitly modeled. Particles crossing the Cartesian domain boundaries ( ,  , 

) are removed from the simulation. Boundary conditions are applied to   at cell centers in a

nearest-grid-point manner, which may contribute to mesh imprinting; boundaries might be

improved with a cut-cell algorithm or simply higher grid resolution in future work.

ηH

ηH
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Figure 2. (a) Density on axis, at  , extending from   (mid-plane) to

expander end-walls  , measured at  . Blue, orange,

green curves show simulations with vacuum   respectively.

Horizontal dashes near   show density �oor for Ohm’s law

calculation of  . (b) Electrostatic potential   in units of electron temperature

for the same three simulations (color). Vertical dotted line at   marks

location of HTS mirror throats. The potential falls to zero near  ,

which corresponds to the location of the density �oor marked by dashes in (a).

2.3. Plasma Parameters

We model a fully-ionized deuteron-electron plasma ( ) with typical ion density 

 to   and temperature   to   in the mirror’s central cell. The ion velocity

distribution is a beam slowing-down distribution with pitch angle    at the mirror

mid-plane ( ) to mimic WHAM’s angled neutral beam injection (NBI). The beam path is centered

on axis ( ).
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The ions’ spatial and velocity distributions are obtained from the bounce-averaged, zero-orbit-width,

collisional Fokker-Planck code CQL3D-m[4][53]. We initialize the CQL3D-m simulations with a 

  plasma at low temperature  , mimicking the initial electron-

cyclotron heating (ECH) breakdown of a gas pu� in WHAM.3 The plasma is simulated by CQL3D-m on

32 �ux surfaces spanning normalized square root poloidal �ux,  – , as it is fueled and

heated with a realistic   neutral beam operating at the experimental parameters. No heating or

fueling sources other than the neutral beam are included. The velocity-space grid has 300 points in

total momentum-per-rest-mass  , and either 256 or 300 points in pitch angle. The total-

momentum grid is not linearly spaced, but instead geometrically scaled at low energies to cover the

ion distribution function. The pitch-angle grid is uniformly spaced. CQL3D-m uses a timestep of 

, advancing ions and electrons simultaneously. The neutral beam deposition pro�le is

updated after each timestep using CQL3D-m’s internal FREYA neutral-beam Monte-Carlo solver. To

include the diamagnetic  -�eld response to the plasma pressure, the CQL3D-m solve is iterated with

the MHD equilibrium solver Pleiades4[54], with improvements to treat pressure-anisotropic

equilibria[55]. CQL3D-m and Pleiades are coupled using a customized version of the Integrated Plasma

Simulator framework[56]. The diamagnetic �eld is updated in CQL3D-m every  .

We perform separate CQL3D-m runs for each of the    cases. In each case, the NBI

power is adjusted in   increments, until the   maximum input power of the experiment is

reached or a mirror instability driven   limit occurs[57]. The   cases operate with NBI

power    respectively. The CQL3D-m/Pleiades loop is run for the duration of a

laboratory shot, to   (which is   for Hybrid-VPIC). At each end of the CQL3D-m run, all three

cases have plasma  . The low    (high  -�eld) case achieves the highest plasma

density  –   on axis in the central cell (Figure  2(a)). The ions have 

 at the origin    in the   cases respectively. Of note,

the    case has a cooler ion plasma temperature    at the plasma’s radial edge,

whereas the lower    (higher �eld) CQL3D-m simulations maintain    from the axis 

  to the edge. This is a result of the larger cool thermal ion population that is trapped by the

sloshing-ion distribution in the   case.

The CQL3D-m bounce-averaged distribution function at the mirror’s mid-plane ( ) is mapped on

Liouville characteristics to all ( ) and read into Hybrid-VPIC as an initial condition for both real-
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and velocity-space ion distributions. The CQL3D-m ion radial density pro�le   is extrapolated from 

 to   as 

where  ,  , and  . This sets the plasma’s initial

extent. No limiter boundary condition is implemented in the Hybrid-VPIC simulation.

Electron velocity distributions and the electrostatic potential    are also solved in CQL3D-m via an

iterative technique[55], but neither are directly input to Hybrid-VPIC’s more-approximate �uid

electron model. Instead, we set the Hybrid-VPIC electron temperature   in the 

  cases respectively, with    values taken from the CQL3D-m simulation at 

. All simulations use an isothermal equation of state, so   is constant in space and time.

We use    ion macroparticles per cell, pinned to a reference density  , so the

initial number of particles is highest at the beam-ion turning points and lower elsewhere; all particles

have equal weight (or charge) in the PIC algorithm.

We initialize particles on their gyro-orbits with random gyrophase; this spatially smooths the initial

radial distribution of plasma density and pressure, as compared to the CQL3D-m density distribution

which places particles at their gyrocenters. The initial plasma in Hybrid-VPIC thus has non-zero

initial azimuthal diamagnetic drift and hence net angular momentum. We also initialize the

diamagnetic �eld from Pleiades in the Hybrid-VPIC simulation, though our initial plasma does not

satisfy this equilibrium due to the Larmor radius o�sets from particle gyrocenters. Thus, the Hybrid-

VPIC simulation evolves towards a new pressure equilibrium as the plasma settles into steady state.

With the ion distributions speci�ed, let us de�ne thermal length and time normalizations. The angular

ion cyclotron frequency    at the mirror mid-plane. The ion bounce (or, axial-

crossing) time   using the mirror’s half length   and a reference ion

thermal velocity  , with    and    the speed of

light. Though the CQL3D-m initialized ions have  , our chosen    approximates 

 for the beam-ion distribution’s primary and secondary peaks. We also de�ne

a reference ion Larmor radius    at the mirror mid-plane. Tables 1 and 2 summarize

physical and numerical parameters, respectively, for our three �ducial simulations.

n

= 0.9ψn
−−

√ 1

n( ) = [ ( )] .ψn cos2 π

2

− 0.81ψn

1 − 0.81
(2.2)

= ψ/ψn ψlimiter ψ = ∫ 2πBrdr = 2.32 × G cψlimiter 106 m2

ϕ
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= eB(z = 0)/( c)Ωi0 mi
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Core   at  Edge   at  Edge   at 

20

41

64

Table 1. Physical parameters for �ducial simulations, labeled by vacuum mirror ratio  . The ion

cyclotron frequency   is   and ion Larmor radius   is  . Ions are deuterons. Core   at 

 is measured at the origin  .

Subcycles

20

41

64

Table 2. Numerical parameters for �ducial simulations, labeled by vacuum mirror ratio  .

3. Results

3.1. Space, Velocity Structure of Steady-State Decay

At the start of each simulation, the plasma relaxes from its initial state over  – ; the

diamagnetic �eld response is changed, short-wavelength electrostatic �uctuations occur at the

plasma edge, and plasma escapes from the central cell into the expanders. The plasma reaches a

steady-state decay by    for all    simulations. At this time, (i) the particle loss time 

  is roughly constant and exceeds the ion bounce time ( ), (ii) the plasma

beta    to within a factor of two at the origin  , with    the total ion

Rm Lp
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pressure, (iii) the combined vacuum and diamagnetic �elds attain a mirror ratio 

 somewhat higher than the respective vacuum values  .

Figure  1 shows the plasma’s overall structure at    for each of the vacuum 

  simulations. Flute-like, electrostatic �uctuations at the plasma’s radial edge are

visible in    slices of ion density and electric �elds, with the strongest and most coherent

�uctuations for the    case. In the left-most panels (a), (e), (i), the axial out�ow at 

  is split about  , so more plasma escapes from the radial edge    than the core 

. In the right-most panels (d), (h), (l), the radial electric �eld �uctuation  ,

where   represents an average over the azimuthal coordinate to subtract the plasma’s net radial

potential. The azimuthal �uctuation    in panels (c), (g), (k) is de�ned similarly. The transverse

magnetic �uctuations    and    have small amplitudes  , whereas the electric

�uctuations   and   are of order  , corresponding to motional �ows at thermal

speeds. We therefore neglect electromagnetic �uctuations and focus solely on the azimuthal,

electrostatic mode visible in Figure 1.

Figure 2a shows the ion density on axis, with horizontal dashes marking the density �oor imposed in

Ohm’s Law (Equation 2.1). Figure 2b shows that the density �oor truncates the axial electrostatic

potential at  , so the full potential drop from the mirror throat to the domain’s   boundary

is not captured in our simulation. In any case, plasma out�ow in the expanders is not well modeled by

our electron closure, as the out�ow is far from thermal equilibrium[58]. In this manuscript, we restrict

our attention to central-cell plasma behavior that we suppose to be una�ected by the expanders.

Figure 3 shows initial ion velocity distributions, as imported into Hybrid-VPIC from CQL3D-m, at the

center of the mirror cell:   for all simulations. Panels (a)–(d) sample ions from the

plasma’s radial edge:    for  ;    for  ; 

  for  . Panel (e) samples ions from the plasma’s core:    for 

;    for  ;    for  . Panels (f)-(j) shows ion

distributions, selected from the same axial and radial regions as the top row, after the simulation has

reached  . Ions di�use mostly in  ; their distribution is continuous and nearly �at

across the velocity-space loss-cone boundary. The reduced distribution   has relaxed to

a monotonically decreasing shape,  , at the plasma edge (Figure  3f); however, the core

plasma maintains   at low   (Figure 3j). Some distribution function moments will be used

in later discussion. We de�ne  -perpendicular and parallel temperatures   and 
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= 20Rm
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  so that  ; temperature values for the edge ion distributions at 

 Figure 3(f-i) are given in Table 1.

Figure 3. Initial (top row) and relaxed (bottom row) ion velocity distributions at the plasma edge, in three

simulations. Edge ion distributions smooth and �atten in   as the simulation evolves, with a stronger

e�ect for edge plasma as compared to core plasma. The loss cone is �lled, and the distribution varies little

across the loss-cone boundary. (a): reduced distribution   for simulations with vacuum 

 (blue),   (orange), and   (green). Distribution is normalized so that  . (b)-

(d): 2D distributions   for each of the three simulations shown in (a), normalized so that 

. Red curves plot loss-cone boundary, with the e�ect of electrostatic trapping

approximated using the on-axis Yushmanov potential well depth, measured to range between   to 

 in Hybrid-VPIC. (e): Like (a), but a “core” distribution centered on   for comparison to the

“edge”. (f)-(j): like top row, but at later time   in the simulation. In all panels, velocities  ,   are

normalized to the speed of light  .

Figure 4 shows a 3D render of ion density in the    simulation at  . The �ute-like (

) nature of the edge �uctuations is apparent. An accompanying movie of the full time evolution

from   to   is available in the online journal.

≡ ∫ fdvTi∥ miv
2
∥ = (2 + )/3Ti Ti⊥ Ti∥

t = 6 τbounce

v⊥

F( )v⊥

= 20Rm 41 64 ∫ F( )2π d = 1v⊥ v⊥ v⊥

f( , )v⊥ v||

∫ f2π d d = 1v⊥ v⊥ v||
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Figure 4. 3D rendering of ion density in   simulation at  ; colormap is ion density in

units of  . An animated movie is available in the online journal. While the article is in review,

the movie is also available at the corresponding author's website.

To summarize, Figures  1–4 show that at the plasma’s radial edge, (i) �ute-like electrostatic

�uctuations appear, (ii) axial out�ow and hence losses are enhanced relative to the plasma’s core at 

, and (iii) ions di�use in    to drive  . It is already natural to suspect that the

electrostatic �uctuations di�use ions into the loss cone and hence cause plasma to escape the mirror.

3.2. Drift Cyclotron Mode Identi�cation

To establish the electrostatic mode’s nature, we need to know plasma properties at the radial edge and

the mode’s wavenumber and frequency spectrum.

Figure 5 (left three columns) presents the radial structure of the ion density  , and the electrostatic

�uctuation energy  , at the mirror mid-plane  . Figure 5 (right two columns)

also presents Fourier spectra of density    and electric component    as a function of

azimuthal mode number   and radius  .

= 20Rm t = 6μs

cm−3

r ∼ 0 v⊥ dF/d < 0v⊥

ni

δ = ⟨ − ⟨E2
θ

E2
θ
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Figure 5. Radial structure of plasma at mid-plane   and at  , for simulations with

vacuum   (top row),   (middle row),   (bottom row). Left three columns show azimuth-

averaged radial pro�les of (a) ion density  , (b) ion density gradient  , (c) azimuthal electrostatic

�uctuation energy  , normalized to a reference �eld  . Horizontal shaded bars contain

the “edge” ion distributions from Figure 3. Vertical dashes in left-most column mark density �oor for

Equation 2.1. Right two columns (d)-(e) show azimuthal Fourier spectra of density   and azimuthal

electric �eld  ; Fourier transform maps  , but radius   is not transformed. White rays mark

azimuthal wavenumber  , with  . Dashed pink ray is the maximum 

 resolved by the spatial grid, taking  . Panels (f)-(j) and (k)-(o) are organized

similarly.

The density gradient  , in units of inverse ion Larmor radius  , is of order unity and

increases with   (Figure 5(b),(g),(l)); equivalently, the plasma column radius is smaller in units of 

 for larger   (despite the column’s larger physical extent).

The mode spectra of    and    suggest a partial decoupling of density and electric �uctuations

(Figure  5, right two columns). In all simulations, low  –   density �uctuations are not

accompanied by a strong    signal (Figure  5, right two columns). The    simulation shows a

strong mode in both density and    �uctuations at  –   and equivalent angular wavenumber 

–  (Figure 5(d)-(e)). We identify this Fourier signal with phase-coherent �uting at the same 

 visible to the eye in Figure 1(b),(c). In contrast, the   simulations show a decoupling of

z = 0 t = 6 ≈ 6μsτbounce

= 20Rm 41 64

ni ϵρi0

δE2
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density and    �uctuations. The strongest density �uctuations reside at  – ,  – , and 

–  (Figure 5(i),(n)), whereas the electrostatic �uctuations reside at larger  – , 

– , and  –  (Figure 5(j),(o)).

The �uctuations have    and are thus �ute-like, which we checked by plotting    in

approximate �ux-surface coordinates (not shown). Electric-�eld �uctuations terminate at the mirror

throats and do not extend into the expanders; �uctuations may be arti�cially truncated by the density

�oor in Equation 2.1.

Joint time-frequency and azimuthal-mode spectra of density and electric �eld �uctuations, 

  and  , are presented in Figure  6(a)-(f). Fluctuations are sampled at radii 

  respectively, over    to  ;    is angular frequency. Positive 

 corresponds to the ion diamagnetic drift direction. We interpret Fourier power at   as high-

  signal that is aliased in frequency space and would otherwise be contiguous in physical  .

Assuming so, both   and   show a mode spectrum with a phase speed   comparable to the ion

diamagnetic drift speed   (white dotted lines, Figure 6(a)-(f)). We compute 

using    and    measured at    (values reported in §3.1). The spectra

align with   within a factor of  .

A fundamental mode appears at    in all simulations. Fluctuation power extends to 

 in all simulations, perhaps up to   in the   simulation, but by eye we do not

discern discrete harmonics above  . A low-frequency    mode with non-zero    appears

chie�y in    and weakly in  ; we identify this slower motion as �uid interchange and discuss it

further in §4.4.

To help interpret Figure 6(a)-(f), we compute the linearly unstable    for DCLC in a planar-slab

plasma with a spatial density gradient   and uniform background magnetic �eld ( ). In such a

plasma, a dispersion relation for exactly-perpendicular electrostatic waves can be obtained by

integrating over unperturbed orbits and Taylor expanding    in particle guiding-center coordinate,

following[51]. The dispersion relation is then 

where the perpendicular ( ) susceptibility of species   reads: 

Eθ r ∼ 1 2ρi0 m ∼ 7 8

k ≈ 2ρi0 6 r ∼ 2 4ρi0 m ∼ 15

30 k ∼ 4ρi0 12
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In Equation 3.3, variables are written in a species-speci�c dimensionless form:  ,  , 

, and  , where   is signed (i.e.,  ) and  . The decision of how to

de�ne    (with or without  ) is given to the user. The plasma frequency    for

each species. The Bessel functions    as usual, with  . Equations (3.2)-(3.3)

simplify for cold �uid electrons to yield: 

the variables  ,  , and    are now in dimension-ful units. Equation 3.4 is the slab DCLC dispersion

relation also used by[36][39], and[40]. In our sign convention,   obtains DCLC with   in the

ion diamagnetic drift direction. Equation 3.4 also hosts normal modes with    and high phase

velocity in the electron diamagnetic drift direction[36], which do not appear in our simulations and so

are omitted from our discussion.

The unstable- and normal-mode solutions to Equation 3.4, presented in Figure 6(g)-(l), are computed

as follows. First, we take  ,  , and   as de�ned in §2.3 to normalize all variables in Equation 3.4.

Plasma parameters used for the    simulations respectively, are: 

;  ; and  . Both    and 

 describe the plasma edge at the mid-plane   (Figure 5). We take   at   to match the

variable normalization throughout this manuscript;   at the plasma edge di�ers by  . Reduced

ion distributions    are measured directly from the plasma edge (Figure 3). Bessel

function sums are computed using all terms with index  . The waves and particles at hand have 

  and  , so the Bessel function argument  . Terms with 

 contribute little to   because the �rst positive oscillation of   peaks at  , where 

 is the smallest positive zero of  [59], and   quickly as   for  .

We then compute    on a discrete mesh of  ; for each  , we identify normal modes

(whether stable, damped, or growing) by seeking local minima of    with respect to the complex 

 mesh. Our   solutions are not exact. To test our solution scheme, we re�ned our solutions to 

 by applying a manual root-�nder to each   normal mode for one set of plasma parameters,

and we saw no signi�cant di�erence.
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Figure 6(g)-(i) uses    measured from the plasma edge at  , showing DCLC

modes at marginal instability (more precisely, drift-cyclotron modes since the loss cone is �lled).

Figure 6(j)-(l) uses    measured at    instead to show that initial distributions with empty

loss-cones and spatial gradient   drive strongly unstable, broad-band electrostatic modes

with fastest growth towards high   and  . The   simulation (Figure 6(l)) is an

exception, because its CQL3D-m model predicts a larger population of trapped cool ions that helps

stabilize DCLC. Figure 6(l) also reveals three branches of unstable modes, each with distinct  , that

we speculate may be drift waves associated with distinct hot and cool plasma populations (Figure 3(a),

(d)). The slowest branch is visible with   between   to  ; the corresponding   are plotted

in green. The faster phase speed branches have unstable   extending to at least  ; the

corresponding   are plotted in light red.

What is learned from comparing the simulation spectra versus linear theory in Figure 6? First,

marginally-stable DCLC mode growth may explain high    �uctuations residing in the device

during steady-state decay. How do we explain the fundamental mode between   and    for

simulations with  , since that mode is predicted to be linearly stable at late times? It may

be an initially excited mode that did not damp and so persists to late times; this appears possible for

the    simulation, where the fundamental is unstable at  . Or, it may be excited by non-

linear �ow of wave energy from unstable to stable modes; such an explanation may be needed for the 

  simulation, in which cool plasma at the radial edge should quench DCLC growth of the

fundamental mode at both    and  . We have interpreted the    and    as most-

and least-unstable scenarios for DCLC growth, but the plasma may also transition through other

states that destabilize the fundamental mode.

F( )v⊥ t = 6 ≈ 6 μsτbounce

F( )v⊥ t = 0

ϵ ∼ O(1)ρi0
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Figure 6. Time-azimuth Fourier spectra of density   (panels (a)-(c)) and electric �eld 

 (panels (d)-(f)) for simulations with   (left to right). Bottom rows show

corresponding   of unstable DCLC modes predicted by Equation 3.4 for edge   at   (panels

(g)-(i)) or   (panels(j)-(l)). In panels (a)-(f), the full   range within Nyquist-sampling limits is

shown; signals with   alias in frequency. White dotted lines plot ion diamagnetic drift velocity 

. Shaded vertical bar in (a),(d) marks grid resolution limit   with  . In panels

(g)-(l), we plot both stable- and unstable-mode frequencies   (black, blue), and also the

corresponding unstable-mode growth rates   (green). In panel (l) only, red curves plot   for

higher-  modes with   beyond the plot extent. Black dotted lines plot  .

3.3. Ion Scattering

To establish a causal link between   �uctuations and axial ion losses, we quantify ion scattering in

the    simulation as follows. We measure velocity jumps over a short time interval 

 for   PIC macro-particles sampled from  . Our approach is

(ω,mn~ )2
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~
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similar to many other PIC simulation studies; see[60]  for a recent discussion of nuances in

constructing and interpreting such velocity jump moments. Figure 7(a) shows the probability

distribution of the  -perpendicular and parallel velocity jumps,    and 

. The distributions are not Gaussian and have long tails. The perpendicular jumps 

 are much larger than  , as expected for �ute-like ( ) electrostatic modes and as evident

in Figure 3.

Ion velocities may jump due to both adiabatic and non-adiabatic motion. To separate these motions,

introduce an energy  , where   is an average over both azimuth angle   and

time from   to  . We expect   to be conserved by particles gyrating in slowly-varying   and   �elds,

at lowest order in a Larmor-radius expansion. Therefore, we attribute jumps in   to a non-adiabatic

kick in perpendicular velocity that we call  . We use 

 to compute: 

Equation 3.5 requires   to not exceed the particle’s �nal perpendicular energy: 

Figure 7(a) shows that the probability distribution of  , computed only for those particles

satisfying Equation 3.6, is marginally narrower than that of  , as expected if non-adiabatic kicks are

the main contribution to  .5

The ion di�usion   as a function of radius is shown in Figure 7(b); its value is normalized

to    in all of Figure 7(b)-(g), where    with    is a reference

Alfvén velocity. Here,    is a velocity-distribution moment computed in radial bins. The use of 

 decreases the measured di�usion as compared to  , as expected.

The ion di�usion due to �uctuating �elds   can be described by a di�usion coe�cient similar to

those used in quasi-linear models: 

where   is a yet-unknown wave-particle correlation time. Equation 3.7 assumes (i) weak but coherent

kicks  ; (ii) a uniform random distribution of angles between   and   to obtain
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a factor of    accounting for kicks in gyrophase instead of    magnitude. For a scattering-

measurement time  , we expect 

also replacing   in  .

Choosing   is unusual for studies of particle di�usion, as the resulting Equation 3.8 describes a

more “ballistic” than di�usive process. But, a short   helps us. When using a longer  , at least

two issues arise. First, ions gyrate in and out of the scattering zone, as the zone’s radial width is

similar to an ion Larmor radius. A typical ion may get one or a few kicks, gyrate out of the scattering

zone and drift adiabatically, re-enter the scattering zone to be kicked again, and so on, resulting in a

random walk with intermittent large time gaps. The scattering zone’s �nite radial width may also

introduce bias in the correlation time  , because a typical inboard (small  ) ion gyrating in and out of

the scattering zone sees a redshift  , whereas a typical outboard (large  ) ion instead sees a

blueshift  . Second, a longer    needed to sample multiple gyration periods    will

introduce axial bounce e�ects. In the    simulation,  , and even fewer ion

gyrations are executed within   for the higher   cases.

In Figure 7(c) we compare Equation 3.8 to the ion di�usion measured from individual particles. The

�uctuating energy density is azimuth averaged as  , and similarly for  ; the

sum  . The di�usion due to    agrees especially well with the particle

measurement, whereas the di�usion due to   agrees less well.

Numerical noise might drive axial losses from the plasma edge in the same way that we are attributing

to DCLC, because PIC particle count decreases at the plasma edge. To check this possibility, Figure 7(d)

shows that the measured ion scattering is converged in the number of particles per cell used. We are

con�dent that ion scattering is not due to numerical noise because (i) the DCLC electric �elds have

much larger energy density than numerical noise at the grid scale, and Figure 7(c) shows good

agreement in radial pro�les of electric �elds and scattering, (ii) we see weak to no   dependence of

scattering rates, whereas if scattering were due to noise, we might expect either an outwards shift in 

  as    increases (for �xed DCLC amplitude), or a decrease in scattering rate if noise suppresses

DCLC amplitude; (iii) ion scattering is clearly anisotropic (Figure 7(a)), whereas numerical scattering

should be insensitive to    versus    because the grid scale is much smaller than the ion Larmor

radius.
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In Figure 7(e) we show the e�ect of   upon the radial pro�les of measured ion di�usion. Figure 7(f)

then samples the ion scattering at its radial peak    (blue curve) and shows its dependence

upon many more values of  . We see that the di�usion moment scales linearly with small    as

expected from Equation 3.8; for comparison, the black dotted line shows an exactly linear correlation

with  . As   becomes  , waves and particles decorrelate and the di�usion rate begins to fall. We

perform a similar calculation at   (Figure 7(f), orange curve) to conclude that   is

shorter near the fast ion turning point. If    (where    varies with  , unlike  ), the lower 

 can be easily explained by the   increase in   magnitude.

Finally, Figure 7(g) shows    as a function of    in the mirror’s central cell. The ion

scattering at all    is well localized to the same �ux surfaces between beam-ion turning points.

Scattering is strongest towards  , where the central-cell �eld is relatively uniform.

We conclude from Figure 7(e)-(f) that particle scattering has longer correlation time   and reaches

larger amplitude at the mirror mid-plane  , as compared to near the beam-ion turning points.

Ions at  , and throughout the central cell where  , should be more important for

regulating DCLC growth and saturation than ions at the turning points.
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Figure 7. Ion scattering measurements in   simulation, at mid-plane 

 unless said otherwise. (a): Probability distribution of ion velocity jumps,

normalized to   and  , for particles at all radii. (b): Radial pro�le of ion di�usion 

 (solid black) compared to   (dotted blue). (c): Predicted radial pro�le of

ion di�usion due to �uctuating �elds   (dotted blue),   (thin solid blue), and 

 (thick solid blue), compared to   (solid black). (d): Numerical

convergence in particles per cell for radial pro�le of  . (e): E�ect of scattering
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measurement time   upon radial pro�le of  . (f): E�ect of scattering measurement

time   upon di�usion measured at the mid-plane   (blue curve), and near the

beam-ion turning point at   (orange curve). (g) 2D map of di�usion 

 computed in discrete   bins (pixels); only bins with   particles are shown.

Light blue and orange boxes mark measurement locations used in panel (f). In panels (b)-(g), all

values of   are normalized to  .

3.4. Particle Con�nement Time

Because the loss cone is full—i.e.,    is roughly constant within the loss cone (Figure  3)—our

simulated mirrors are a collisionless analog of the Gas Dynamic Trap (GDT) at the Budker Institute[61].

Ions scatter across the loss-cone boundary as fast as (or faster than) untrapped ions can stream out of

the mirror, implying an e�ective mean free path shorter than the device’s length. The particle

con�nement time  , where    is the total number of ions, then scales like the

eponymous “gas dynamic” time: 

adapted from[1] with   a characteristic parallel thermal velocity.

To test the relation  , we measure    between    to  , and    at 

, in each of the   simulations with   on axis. We also measure 

  and    in additional    simulations with varying    keV and longer central

cells (larger  ); the latter are constructed as follows. Split the “original” mirror device in half at 

. Between the mirror halves, insert a cylindrical plasma of length    or    cm, thereby

increasing the entire mirror’s half-length   by   or  . The cylinder has, at all  , the same velocity

distribution and magnetic �eld   as in the original mirror at  . The simulation domain is made

larger; mesh voxel dimensions ( ,  ,  ) are the same as in §2. The cylinder’s magnetic �eld is

unphysical because it has    and  , implying non-zero current  , so we

exclude this current from the   term in Ohm’s Law (Equation 2.1).

The con�nement time  , and   scales linearly with   as expected (Figure 8(a)). Gas-

dynamic con�nement explains losses from the    and    simulations very well. Raising

electron temperature    from    to    lowers    from    to    for the    simulations.

The   shows 20% better particle con�nement than predicted by Equation 3.9. Why? The larger
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plasma radius and hence longer �ux-tube length   between mirror throats only explains   of

the disagreement. We speculate that electrostatic potential e�ects may explain the remaining

disagreement. In the   cases, beam ions di�use in   and escape with high  ; electrostatic

e�ects are weak since  , so Equation 3.9 accurately describes the beam ion con�nement. The 

 case has more cool, low-temperature ions (Figure 3(i)) that can be trapped by the sloshing-

ions’ potential peak at  , also called a Yushmanov potential; con�nement is thus improved.

Instabilities in many settings are self regulating; i.e., unstable waves drive phase-space �ow that

quenches the waves’ own energy source, driving the system to equilibrium[62]. If DCLC self regulates,

then we may expect its amplitude to grow in time until the di�usion rate into the loss cone balances

the axial out�ow rate:  . We test this by computing a di�usion rate into the loss cone as: 

which is a density-weighted average of    (Equation  3.7) over a cylindrical kernel of axial length 

  and radial pro�le  , normalized to  . We take    to

approximate the ions’   at the loss cone boundary, we take   centered at  , and we take 

. Given these assumptions, and given that Equation 3.7 is not from a self-consistent quasi-

linear theory, we interpret Equation 3.10 as no more accurate than an order-of-magnitude scaling. In

Figure  8(b) we compute the di�usion timescale    using either    or    as de�ned as in

Figure 7(c). We observe that   has similar magnitude as  , as expected. But, no trend is obvious

from the scatter and few data points.
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Figure 8. (a): Particle con�nement time measured between   to  , for mirrors of varying 

 (blue, orange, green) and device length   (circle, triangle, star markers) as a function of 

 (Equation 3.9). Small blue markers vary   for  ; large blue marker is �ducial  .

(b): Di�usion timescale   (Equation 3.10) modeled from   (solid markers) and   (hollow

markers), as a function of  . In both panels, dotted black line is  .

4. Discussion

4.1. Cool Plasma E�ects

How much cool plasma, and at what temperature, suppresses DCLC for the peaked beam-ion

distributions injected into WHAM? To answer this, Figure  9 computes DCLC linear stability with

distinct “hot” and “cool” ion populations. The hot ions are a beam distribution at    in our 

  simulation, taken from the mid-plane    (Figure  3(b)), with  . The

cool ions are a Maxwellian of the same species (deuterium), with density   and temperature  .

We solve Equation  3.4 using the same procedure as in §3.2, within a �nite domain  , 

, and  .

Figure  9(a) predicts that DCLC is suppressed when cool and hot ion densities are nearly equal, and 

  to  . In cases where DCLC is not fully stabilized, panel (b) shows that dense-enough

cold plasma will at least stabilize low harmonics (compare Figure 9(g)), pushing the unstable DCLC

modes towards higher harmonics of  , which should weaken DCLC’s scattering rate. The Figure 9(b)
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prediction qualitatively concurs with recent measurements on the GDT device: DCLC at high

harmonics was observed when a relatively high gas density is pu�ed into GDT’s central chamber

before neutral-beam injection[21][22]; critically, this form of DCLC did not impede build-up of plasma

pressure. Panels (c)-(h) show the e�ect of varying   (with  ) on the corresponding DCLC

modes. As   rises, quenching of low harmonics proceeds to total stabilization. When   is close to

the beam ions’ e�ective temperature, the “cool” plasma is less able to reduce the velocity-space

gradient  , and DCLC become unstable at all ion-cyclotron harmonics.

To test the predictions of Figure  9, we repeat the    Hybrid-VPIC simulation with varying

amounts of cool plasma added to the radial edge:   within radii   to 

  (Figure  10(a)), with  . The cool plasma quenches DCLC losses and improves the

hot-plasma con�nement by a factor of    to    (Figure  10(b)). The simulation with lowest 

  shows that cool ions are better con�ned than the hot ions, qualitatively

consistent with trapping by the sloshing ions’ axial potential and lower out�ow speed    in

Equation  3.9. At higher  , the cool-ion con�nement degrades, which may be due to �attening of

ion density  , and hence also electric potential  , along  .

Comparing Figures  9 and 10, we see some discrepancy. The Hybrid-VPIC simulations quench DCLC

losses at higher    than predicted by the linear theory. We also performed simulations with

varying  ; the hot-ion con�nement is poorer with    as compared to

lower  , which also contrasts with the linear-theory prediction that    with 

  fully stabilizes DCLC within the    domain used in Figure  9, and so

should be more stabilizing than  . But, we emphasize that for all values of 

  considered, with  , the hot-ion con�nement is better than in the �ducial

simulation without any cool plasma.

The aforementioned discrepancy between Figures 9 and 10 may be explained by some combination of

(i) weaker electrostatic trapping and faster out�ow    as    increases, and (ii) quasi-linear

di�usion of beam ions towards the loss cone, which shifts the unstable drive   to lower   so

that lower   becomes stabilizing. Let us expand on point (ii). For a quasi-linearly di�used  ,

the relevant    is set not by the injected beam distribution, but instead by the loss-cone’s 

 boundary value at the injected beam’s characteristic  . For WHAM’s   pitch-angle beam, DCLC-

scattered ions escape at the loss-cone boundary value  , which

corresponds to perpendicular energy    for primary beam energy  , 
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, and  . For 2XIIB and other mirrors with    pitch-angle beams, the loss cone

boundary at   is instead set by the axial electric potential,  [6] where 

  is the axial potential drop from mid-plane to throat. We conclude that   can quench

DCLC with marginally-stable ion distributions in WHAM, which helps reconcile Figures 9 and 10. We

further observe that there is no con�ict between 2XIIB’s empirical stabilization of DCLC with 

  streaming plasma[63]  and our work showing that WHAM may stabilize DCLC with 

 plasma; the appropriate   for each device is mediated by the beam injection angle.

Cool ions also drive faster growing MHD interchange-like modes in our Hybrid-VPIC simulations; if

our simulations were run longer than  , these interchanges might eventually cause large ion

losses. In laboratory devices, interchange motions can be stabilized by shear �ow; such �ows can be

driven by either external voltage biasing[64][65]  or electron cyclotron heating[66]. We thus remain

optimistic that cold plasma stabilization can work in WHAM, especially given the method’s success in

real laboratory experiments[11][22].
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Figure 9. E�ect of cool plasma on DCLC linear stability in WHAM with   and a hot beam-ion

distribution. (a): 2D regime map of maximum growth rate   as a function of   and  .

(b): Like (a), but showing minimum   that is DCLC unstable. As cool plasma density is raised,

low harmonics are stabilized. White pixels at top of panel (  and  )

mean that no linearly-unstable modes were found. (c): Example ion distribution   with   cool

plasma (dotted blue) added to initial   distribution. (d): Dispersion relation solutions

corresponding to (c), showing normal modes (black), unstable mode   (blue), and unstable mode 

 (green). (e-f): like (c-d), but with   cool plasma. (g-h): like (c-d), but with   cool

plasma.

Figure 10. E�ect of cool ( ) plasma on particle losses in Hybrid-VPIC simulations with  .

(a) Initial density radial pro�les for hot ions (black solid curve) and cool ions (colored dotted curve),

(b) Total number of hot ions within simulation domain, normalized to initial value, for simulations

with varying  . (c) Like panel (b), but showing the total number of cool ions.

4.2. Spatial Gradient E�ects

A smaller spatial gradient   also helps to stabilize DCLC[6][15][24]. Figure 11 shows this for plasma

parameters similar to the physically-larger, Break-Even Axisymmetric Mirror (BEAM) design concept

of[4]. We re-compute DCLC linear stability for BEAM’s radial edge comprising (i) hot
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deuterium/tritium (D/T) beam ions, with equal densities of D/T and temperature  [4], and

(ii) cool Maxwellian ions with varying  ,  , and isotope choice of hydrogen, deuterium, tritium,

or a D/T mixture (equal densities of D/T). The stability calculation assumes  ,  ,

and   counting both D/T species. The value   approximately matches

the DCLC design constraint    used by both[4][55]. For normalization, we take 

 and  . We solve Equation 3.4 using the same procedure as in §3.2, within a

�nite domain  ,  , and  . The domain is larger than before

because DCLC appears at larger  ; the relevant   may be estimated for the  -th cyclotron harmonic

as  , from requiring that the ion diamagnetic drift   intersects the

harmonics  . The Bessel sums retain all terms with index   to ensure convergence.

Figure 11 predicts that a larger region of the parameter space   becomes available

to help stabilize DCLC in a BEAM-like concept. Complete stabilization    occurs when the

cool plasma is a D/T mixture like the hot plasma, following the empirical “spectral rule” of[41]. For

cool plasma of pure hydrogen, deuterium, or tritium, we �nd that    is reduced but generally

remains non-zero; the remaining unstable modes have    at the hot-ion cyclotron harmonics not

overlapped by the cool-ion harmonics, as previously shown by[41].

Both[30] and[6] also computed the maximum radial gradient   for DCLC to be stable, as a function of

the density-proxy parameter  . For WHAM,   is DCLC unstable for nearly all values of 

  anyways. For the model BEAM plasma in Figure 11, we �nd    requires

low    for stability, so it is reasonable that our model with    remains DCLC

unstable in the absence of cool plasma.

Though Figure  11 suggests that a BEAM-like concept may be DCLC unstable, we note that many

mitigating factors remain. First, BEAM-sized plasmas need much lower    to stabilize DCLC as

compared to WHAM, as expected from previous work[6]; there are many ways to craft such cool

plasma in the laboratory. Second, the peaked beam-ion distributions used here may be viewed as

“maximally” unstable; quasi-linear di�usion will smooth ion distributions towards marginal

stability, as discussed in §3.4 and §4.1. Third, our calculation neglects physical e�ects such as �nite

plasma   (i.e.,   along  ) and both radial and axial geometry; these e�ects are generally thought to

aid stability[30]. Fourth, recall from Figure 9 that even if DCLC remains unstable, it can be rendered

less harmful by pushing    to high harmonics of    and so reducing DCLC’s scattering rate, as
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shown on the GDT device[22]. Fifth, the plasma parameters in Figure  11 are only an example; no

attempt was made, for this manuscript, to optimize parameter scan beyond what was discussed in[4].

Lastly, we recall that DCLC has been successfully mitigated in past and current mirror devices,

including two that used WHAM/BEAM-like sloshing-ion injection: TMX-U and GDT. We will brie�y

discuss these real mirrors in §4.5.

As an aside: the 2D parameter-regime maps of Figures 9(a) and 11 show interesting structure that has

been studied in detail by[35]; Gerver used a subtracted-Maxwellian distribution for hot ions, unlike our

arbitrary beam-ion distributions, but his results agree qualitatively with ours. For example, Figure 11

shows that at low  , a distinct instability occurs even at large  ; it is called

double-humped instability by[6][40] or ion two-temperature instability by[35]. The interested reader

may consult[6][35][40][67] for more thorough treatments and reviews of DCLC linear-stability physics.

Figure 11. E�ect of cool plasma on DCLC linear stability in a physically-larger next-step mirror, similar to

the BEAM concept described in [4], with spatial gradient   smaller than in WHAM. Each panel

shows varying cool plasma composition. For the cool D+T case,   counts both D/T species, and the cool

D and cool T have equal densities. Total stabilization   is achieved when the cool ions' isotopes

are matched to that of the hot ions. Colormap range in   is reduced from Figure 9(a).

4.3. Kinetic Electron E�ects

Our linear dispersion relation assumed  , neglecting both ion and electron parallel responses.

But,    is imposed by the mirror geometry for the lowest possible axial harmonic. In

WHAM with  , electrons with    have thermal velocity    similar to DCLC parallel

phase velocity  , so DCLC modes may be Landau damped by electrons.

/Tcool Thot / ≳ncool nhot 10−1

|ϵ| = 0.04ρi0

ncool

Im(ω) → 0

Im(ω)

k = k⊥

∼ π/(2 )k∥ Lp

= 20Rm ∼ 1 keVTe vte

ω/ ∼ /k∥ Ωi0 k∥

qeios.com doi.org/10.32388/6MKS9W 31

https://www.qeios.com/
https://doi.org/10.32388/6MKS9W


We qualitatively assess the e�ect of parallel electron kinetics in Equation  3.4 by replacing the

perpendicular, cold-�uid electron susceptibility: 

with a more general form for oblique electrostatic waves that includes a  -parallel kinetic response: 

Here    is the plasma dispersion function,  , and  . We �x 

 to mimic a fundamental-harmonic mode along the device axis. Both Equations 4.1 and

4.2 are dimensionful. The derivation is brie�y sketched in Appendix B.

Figure 12 re-computes DCLC linear stability, using Equation 4.2 to show the e�ect of parallel electron

kinetics, for the ion distributions from our WHAM    simulation at    and 

. Figure 12(a) shows that the  , peaked beam-ion distribution with empty loss

cone remains unstable for a broad range of  ; electron kinetics do not stabilize a strongly-peaked and

hence strongly-unstable  . In contrast, Figure  12(b) shows that the marginally-unstable 

 distribution with �lled loss cone has DCLC growth rates reduced by electron kinetics.

In the limit  ,   suppresses the electron parallel susceptibility; i.e., the    term in

Equation 4.2 asymptotes to  , where   is the electron Debye length, and its magnitude and

contribution to    is negligible. More importantly, hot electrons and �nite    suppress the

perpendicular drift term in Equation 4.2 by driving  ; this disables the coupling between

ion Bernstein waves and the drift wave. In Figure  12(b), at    the electrostatic mode

structure appears similar to the “pure” ion Bernstein waves in a homogeneous plasma, but with a

non-zero growth rate that we speculate may arise from negative-energy wave destabilization in the

presence of a Landau damping term[6][68][69].

In the limit of low  , the perpendicular drift term in Equation 4.2 reverts to its �uid form

because  . The parallel term, which asymptotes to  , is the main new

in�uence on DCLC mode structure. Figure  6(a) shows that the    beam-ion distribution is not

much a�ected at low    when compared to Figure  6(j). But, Figure  12(b) shows that the 

  distribution has low harmonics of DCLC suppressed, and the growth rates of higher

harmonics somewhat reduced, by electron kinetics when compared to Figure 6(g).
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Equation 4.2 is less accurate than bounce averaging of unperturbed particle orbits within a speci�ed

axial mirror geometry, as has been performed and studied by, e.g.,[16][38], and others. A signi�cant

unknown is the e�ect of the non-monotonic axial electric potential  ; since    and    can trap

electrons at sloshing-ion turning points, electron orbits may be signi�cantly modi�ed. None of this is

captured in our Hybrid-VPIC simulations given the simple electron closure. Our goal is only to show

qualitatively how parallel electron kinetics, including electron Landau damping, may impact DCLC. We

conclude that saturated DCLC amplitude and frequency in WHAM may be tunable via    or other

device parameters, as was done on the MIX-1 device previously[16][70].

Figure 12. E�ect of parallel-kinetic electron response upon DCLC linear stability, using ion distributions

from the WHAM   simulation at either   to obtain a beam-ion distribution (left), or at 

 to obtain a saturated distribution with   (right).

4.4. Other Modes

Our simulations mostly grow DCLC, but other kinetic and �uid modes can appear in mirror devices[67].

The modes relevant to WHAM were surveyed by[1]; here we add a few remarks.

Interchange modes should be stabilized by the e�ect of �nite ion Larmor radius (FLR), speci�cally

collisionless gyroviscosity[71], when 

ϕ ϕ ∼ Te ϕ

Te

= 20Rm t = 0

t = 6 μs dF/d < 0v⊥

> 4 ≈ 1.3 ,k⊥ρi0
a

Lp

−−−
√ (4.3)
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 with   the plasma column radius and assuming a curvature-driven growth rate 

[72]. In Figure 13, we present new simulations of Maxwellian ions with varying temperature   to 

  in the WHAM   geometry. As   decreases, DCLC weakens in amplitude and spectral

width, and a lower-  mode grows in amplitude and spectral width. We identify the lower-  mode as

interchange because (i) its phase velocity is half the ion diamagnetic drift and in the same direction

(neglecting gravitational drift, which is    smaller), consistent with the planar-slab

derivation[71][73], (ii) its   bandwidth qualitatively scales with   following Equation 4.3. Note that in

this paragraph and Figure  13, we rede�ne    with a factor of  , which also a�ects 

. We caution that our simulated interchange has relatively strong    and 

 modes compared to, e.g., the odd   mode; this e�ect may be unphysical, and we suspect

mesh imprinting.

Alfvén ion cyclotron (AIC) modes do not appear at signi�cant amplitude in our simulations; recall that

both    and    are small (§3.1), and pitch-angle scattering is weak compared to DCLC’s 

  scattering (Figure  3). Does our non-observation agree with theory and prior experiments? An

empirical criterion for AIC growth, obtained from experiments on the tandem mirror GAMMA-10[74]

[75], is 

based on data with  . One linear-instability criterion, derived for a homogeneous bi-

Maxwellian plasma[76] and with a form commonly used in solar-wind literature[77], is: 

At    in our    simulation, the sloshing-ion turning points have 

  and  , with corresponding anisotropy 

; our simulations with larger   have similar anisotropy and lower plasma beta at the

turning points. Both Equations 4.4 and 4.5 indicate that AIC may be unstable at the turning points.

So, why does AIC not appear? First, since AIC is driven by gradients of    on resonant surfaces in

velocity space, Equations 4.4 and 4.5 will not be so precise when applied to di�erent ion distributions;

e.g.,[78]  noted that subtle modi�cations to    at marginal AIC stability can modify anisotropy

thresholds based on bi-Maxwellian temperatures by a factor of  . Second, AIC is stabilized by the

inhomogeneous plasma in WHAM. Sloshing ions put perpendicular pressure anisotropy at turning

points, so instability drive weakens towards the mirror cell’s center. A small plasma column radius

a ≈ 10 cm /vti0 aLp
− −−

√

= 5Ti0

20 keV = 20Rm Ti0

m m

∼(a/ )×Lp

k Ti

=vti0 2 /Ti0 mi
− −−−−−

√ 2–√

= /ρi0 vti0 Ωi0 m = 2

m = 4 m = 3

δBr δBθ

v⊥

/ > 0.55/ ,Ti⊥ Ti∥ β0.5
⊥ (4.4)

< 0.03β⊥

/ > 1 + 0.43/ .Ti⊥ Ti∥ β0.42
∥

(4.5)

t = 0 = 20Rm

= 8πn / = 0.17β⊥ kBTi⊥ B2 = 8πn / = 0.068β∥ kBTi∥ B2

/ = 2.5Ti⊥ Ti∥ Rm

f

f

∼2
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with respect to the ion Larmor radius also aids stability[79]. And, AIC is suppressed if the mirror’s axial

length is shorter than a critical length[80][81][82]: 

The critical length    is very close to WHAM’s length  , again taking 

  and assuming    for density    at sloshing-ion turning

points. Third, DCLC simply has a faster growth rate and decreases plasma beta before AIC can be

triggered.

To summarize: AIC with low axial mode number may be marginally unstable for WHAM, based on the

highest possible    and density    at sloshing-ion turning points. But multiple e�ects weaken AIC

drive and so may explain why it does not appear in our simulations.

Figure 13. Interchange modes appear and DCLC weakens as   decreases (left to right) in simulations of

Maxwellian ions in WHAM's   magnetic-�eld geometry. Fourier spectra computed as in Figure 6.

The dot-dashed cyan line plots the interchange mode's expected phase velocity,  , assuming

spatial gradient  .

4.5. Comparison to Real Mirrors

In the TMX-U end-plugs with sloshing ion injection, it was possible to stabilize DCLC �uctuations and

obtain “classical mirror con�nement”, i.e., an ideal mirror performance regime wherein particle

losses are due solely to Coulomb collisions[13][14]. Such DCLC stabilization may be attributed to cool

ions trapped by the sloshing ions’ non-monotonic axial electrostatic potential[27]. But, DCLC-

= 2 ( ) .Lc π
2 Ti∥

β⊥Ti⊥

− −−−−−

√
c

ωpi
(4.6)

≈ 182 cmLc 2 = 196 cmLp

= 0.17β⊥ c/ = 5.9 cmωpi n = 3 × c1013 m−3

β⊥ n

Ti

= 20Rm

ω/k = /2vDi

ϵ = (10cm)−1
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scattered beam ions enter the loss cone with large   and are not trapped; therefore, trapped cool ions

must come from other sources. In a tandem mirror like TMX-U, central-cell out�ow into end-plugs

can provide cool ions. In any real laboratory experiment, charge exchange of beam ions upon a neutral

background population will also provide a population of cool ions. Both TMX-U and GDT found

operating parameters where DCLC �uctuations were quelled by the (inferred) presence of cold plasma;

we especially call attention to recent GDT measurements in Figure 4(b,d) of[22]. A combination of (i)

future full-device kinetic-ion simulations with better models of fueling and collisions, e.g. via two-

way coupling between Hybrid-VPIC and CQL3D-m over a   laboratory shot duration, and (ii) real

experimental data from WHAM, can more de�nitively test the e�cacy of DCLC stabilization by cool

ion populations.

In real mirror devices, discrete DCLC modes can persist stably for  [22], but DCLC can also

appear as discrete bursts of enhanced �uctuations with duration    to  [11][20][22]. Our

simulations do not show bursting, nor did previous simulations by[38].[20] explained bursty DCLC in

the GAMMA-6A experiment using a quasi-linear model with bounce-averaged electron Landau

damping; they appealed to (i) separation between DCLC scattering and axial out�ow timescales (i.e., 

), and (ii) fast time variation in DCLC growth rate with slower variation in electron-

Landau damping rate. More broadly, bursting behavior should be sensitive to any mirror parameters

that alter DCLC growth/damping rates with respect to   (e.g.,  ,  , external particle fueling or

heating). In our simulations,    at order of magnitude (Figure  8(b)), and DCLC appears

marginally stable and does not damp on a timescale  .

TMX-U and GDT saw that DCLC could be driven at sloshing-ion turning points instead of at the mirror

mid-plane  [14][22]; Why does DCLC have strongest drive at  , versus at the turning points, in

our simulations of WHAM? In TMX-U, the end-plug could be stabilized on one side and not the other

due to a combination of axial �ows from the central cell and localized ECH at the end-plug outer-

turning point. As for GDT versus WHAM, we cannot answer de�nitively, but we note that WHAM’s

axial length   may constrain DCLC’s unstable axial eigenmodes as compared to the longer GDT (

).

WHAM began operating in July 2024[83]. A comparison between experimental data and our

simulations is not yet available. We anticipate that WHAM plasmas and diagnostics may be tuned to

create and measure DCLC modes in future experimental campaigns.

v∥

20 ms

∼O(1 ms)

∼10 100 μs

1/ ≪ν⊥⊥ τGD

τGD Te /ωpi Ωi

1/ ∼ν⊥⊥ τGD

≪ τGD

z = 0 z = 0

≈ 2 m

7 m
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5. Conclusions

We have performed 3D kinetic-ion simulations of WHAM, initialized with a neutral-beam-injected

deuteron population with   and cool, isothermal-�uid electrons with  , to assess

kinetic plasma stability in a high-performance, collisionless-ion regime. We �nd that WHAM’s beam-

ion distribution is unstable to an electrostatic, �ute-like ( ) mode that grows on 

 timescales; it propagates azimuthally around the column in the ion diamagnetic direction and

has angular frequency between    and  . We identify it as the drift-cyclotron loss cone (DCLC)

mode, well known from prior mirror experiments[11]  and previously anticipated to be a possible

concern for WHAM[1].

The plasma column and DCLC �uctuations settle into a steady-state decay by  . Particles

escape axially with con�nement time    in a “gas dynamic” regime, wherein

the scattering rate into the loss cone equals or exceeds the free-streaming axial transit time out of the

mirror. Particle losses are due to collisionless   scattering upon the DCLC modes; the particle-wave

correlation time is approximately    at the mirror mid-plane. Particle losses and velocity-space

di�usion are strongest at the plasma’s radial edge, whereas the plasma column’s core can maintain 

  at low velocities. We review well-known and experimentally-tested methods for

stabilizing DCLC: addition of cool plasma to �ll the loss cone, larger plasma extent (smaller gradient),

and parallel electron kinetics including Landau damping. In 3D simulations with cool ions initialized

at the plasma’s radial edge, the particle con�nement time can be raised by a factor of   to  , though

an order-unity ratio of cool/hot ion number density is needed. In a real experiment, the cool ions must

be provided by external sources because DCLC does not scatter beam ions into the axial electrostatic

potential well (aka Yushmanov potential) where they could be trapped to help stabilize DCLC. DCLC-

scattered beam ions are lost because they retain large parallel speeds and so never enter the trapped

region of phase space.

Our simulations are limited, primarily in the electric �eld model and isothermal-�uid electron

closure. Future work may incorporate electron inertia, an electron energy equation, drift-kinetic

electrons, or more to help model (i) bounce-averaged electron Landau damping, and (ii) the plasmas’

axial and radial potential structure, which dictate out�ows and rotation. And, the initial condition of a

hot, beam-ion plasma with only mild slowing-down upon electrons is somewhat idealized. Other

subsystems on WHAM are not modeled, e.g., heating of ions and electrons via RF and microwave

∼ 10 keVTi ∼ 1 keVTe

k ≈ k⊥

≲ 1 μs

Ωi0 2Ωi0

t = 6 μs

= n/(dn/dt) ∼ μsτp 102

v⊥

Ωi0
−1

dF/d > 0v⊥

2 5×
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radiation respectively, or biased end-rings within the expanders used to drive rotation and shear �ow.

Collisions with neutral atoms can also generate cool plasma. Future work may also consider a wider

range of fueling and heating scenarios in WHAM and next-step mirror devices.

Appendix A. Hyper-Resistivity Scan

Hyper-resistivity, although intended to suppress grid-scale numerical noise, may also alter DCLC

mode structure as discussed in §2.2. Figure  14 shows that raising or decreasing    by a factor of 

  alters the spectrum of density �uctuations at the plasma edge; with higher  , the spectrum

broadens and is less coherent.

Figure 14. E�ect of hyper-resistivity, increasing left to right, upon density-�uctuation Fourier spectra in

WHAM   simulations; center panel is same data as Figure 6(c). Fourier spectra and annotations

constructed like in Figure 6, at same   over   to  , but the colormap range and 2D plot

domain/range are changed.

Appendix B. Electron Parallel Response

To obtain the electrons’ parallel response in §4.3, we start again from[84], §14-3, Eq. (8), neglecting

spatial derivatives of order    or higher in Stix’s notation, where    is the guiding-center

distribution. For a Maxwellian guiding-center distribution, the susceptibility is: 

ηH

3 ηH

= 64Rm

r = 2.69ρi0 t = 3 6 τbounce

g/∂∂ 2 y2 g

= (λ){χs ( )
ωps

Ωs

2

∑
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∞

e−λIn [ (1 − )+ ]( )
k⊥

k

2 2n

k2
⊥

nϵ

k⊥

ϵ

k⊥

Z( )ζn

k∥

+ (1 − ) [1 + Z( )]} ,( )
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2
2
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nϵ
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where the modi�ed Bessel function    has argument  , the plasma dispersion function 

 has argument  , and the variables   are all dimensionless following

the same species-speci�c scheme used for Equation 3.3. Equation B1 is valid for any   angle. The limit 

  and    recovers the perpendicular susceptibility given by Equation  3.3. The limit 

 recovers the standard[85] dispersion relation[86].

Let us simplify Equation B1 by taking the limits   and  , and further keep only the   and 

  Bessel terms. In the ensuing expansion, it follows that  , but we

make no assumptions on the magnitude of  . The result is: 

which yields Equation 3.2 after putting in dimensions. The limit   recovers the familiar cold-

�uid result, written below in dimension-ful variables: 

A subtlety appears when expanding Equation  B1 into EquationB2. Consider the susceptibility tensor

components   and   for a hot homogeneous plasma[84]. The perpendicular response simpli�es in

the cold-�uid limit: 

But,   is cancelled by the analogous expansion of   when (i) both   and   are �nite, (ii)   is kept

�nite, and (iii) terms of order   are kept in expanding  . Said expansion gives: 

with   dimensionless as before. Then, in the combined electrostatic susceptibility 

we see that Equations  B4 and B5 partly cancel, and only a parallel contribution 

  remains. This remainder term can be seen in Equation  B2. When the 

  limit is taken, it is this parallel remainder that provides the usual perpendicular response 

(λ)In λ = /2k2
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. This is to some extent a semantic quibble; we can also say that the remainder term 

  cancels the parallel term    to leave only the

perpendicular term    in Equation  B6. But, the overall point stands that the

perpendicular term in Equation B2 can be signi�cantly modi�ed by the parallel response, even when 

; the regulating parameter is  .
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Footnotes

1 Publicly available at https://github.com/lanl/vpic-kokkos/tree/hybridVPIC.

2 If hyper-resistivity were used to model electron-ion friction, and no explicit collision operator for

ions is used, only the frictionless   should be used in the ion push[[91], Appendix A].

3 The   temperature is higher than in experiments so that we can use coarser velocity-space grid

resolution. The �nal evolved solution varies little with initial temperature.

4 https://github.com/eepeterson/pleiades

5 We checked that Equation  3.6 does not cause noticeable selection bias for short  ; radial

pro�les of   and  , computed with and without particles excluded by Equation 3.6, appear

identical to the eye. For larger  , particles accumulate order-unity kicks in    and selection bias

appears.
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