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Typical LiDAR SLAM architectures feature a front-end for odometry estimation and a back-end for re�ning and

optimizing the trajectory and map, commonly through loop closures. However, loop closure detection in large-scale

missions presents signi�cant computational challenges due to the need to identify, verify, and process numerous

candidate pairs for pose graph optimization. Keyframe sampling bridges the front-end and back-end by selecting

frames for storing and processing during global optimization. This article proposes an online keyframe sampling

approach that constructs the pose graph using the most impactful keyframes for loop closure. We introduce the

Minimal Subset Approach (MSA), which optimizes two key objectives: redundancy minimization and information

preservation, implemented within a sliding window framework. By operating in the feature space rather than 3-D

space, MSA ef�ciently reduces redundant keyframes while retaining essential information. In sum, evaluations on

diverse public datasets show that the proposed approach outperforms naive methods in reducing false positive rates

in place recognition, while delivering superior ATE and RPE in metric localization, without the need for manual

parameter tuning. Additionally, MSA demonstrates ef�ciency and scalability by reducing memory usage and

computational overhead during loop closure detection and pose graph optimization.

Corresponding author: Nikolaos Stathoulopoulos, niksta@ltu.se

I. Introduction

Simultaneous Localization and Mapping (SLAM) in large-scale missions presents signi�cant challenges, particularly in

maintaining accuracy and ef�ciency as the environment grows over time. A key component of back-end SLAM is Pose

Graph Optimization (PGO), which ensures consistent mapping by optimizing the global trajectory. However, this process

relies heavily on loop closure detection, to reduce accumulated drift, which is computationally expensive, especially in

large-scale environments, due to the vast number of candidate pairs that need to be identi�ed, veri�ed, and processed to

establish node connections in the pose graph. As the mission progresses, the number of loop closure candidates grows

rapidly, leading to signi�cant delays in processing times, with some datasets generating over 150,000 candidates,

requiring four and a half hours to process, exceeding that of the mission time[1]. This complexity is further compounded

by the computational intensity of data association and sequence matching during map optimization, where the
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processing time can range from seconds to several minutes, depending on the size of the data[2][3]. Due to these

computational challenges, many SLAM systems in large-scale environments have opted to either avoid or minimize loop

closure detection to reduce the burden on limited computational resources. Some approaches, particularly in expansive

environments, forego loop closures entirely, as the growing number of candidates becomes increasingly dif�cult to

handle in real-time applications, as highlighted recently in[4]. While loop closure detection is critical for correcting drift

and ensuring map consistency, the computational complexity can overwhelm systems if not managed effectively, often

leading to false positives that degrade the overall quality of the map[5].

Figure 1. An example on KITTI 06. Comparison of two trajectories from KISS-ICP, after Pose

Graph Optimization (PGO). In the top �gure, keyframes are sampled using an entropy-based

approach, while in the bottom �gure, keyframes are sampled with the proposed Minimal Subset

Approach (MSA)[6] which achieves a lower Relative Pose Error (RPE).

A. Related Work

Ef�cient implementations of pose graph optimization have signi�cantly enhanced its scalability by leveraging factor

graphs and incremental optimization techniques. In more detail, GTSAM[7] models probabilistic relationships using factor

graphs and solves large-scale problems ef�ciently with solvers like iSAM2[8], which incrementally updates the SLAM

solution in real-time through a Bayes tree representation. Similarly, g2o[9]  provides a versatile graph optimization

framework, leveraging sparse pose graph connectivity for ef�ciency while supporting various parameterizations and

loss functions. Furthermore, sparsi�cation methods[10][11][12]  and hierarchical approaches[13][14]  have further improved

ef�ciency by reducing the number of active nodes in the optimization process. However, despite these advances, loop

closure detection remains a major bottleneck due to the large number of candidate pairs that must be checked and

processed to add meaningful constraints to the pose graph.
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Keyframe sampling helps reduce the computational demands of loop closure detection by limiting the number of frames

stored and processed in SLAM pipelines. In LiDAR-(Inertial) Odometry, systems such as LIO-SAM[15]  and DiSCo-

SLAM[16]  or back-end global optimization systems like LAMP[17], use �xed Euclidean distance intervals (1–2 meters) for

keyframe generation to maintain local maps and optimize global poses. Although effective, these methods lack

adaptability in dynamic environments with varying densities of loop closure candidates. Recent advancements have

introduced adaptive keyframe sampling techniques, adjusting intervals based on environmental spaciousness[18][19],

although manual threshold adjustment is still required. Entropy-based methods, like the one proposed by Zeng et al.[20],

use information theory to select keyframes, but face similar adaptability issues. Other approaches, such as the one

proposed by Ou et al.[21], focus on displacement vector similarity to balance computational cost and map completeness

while managing keyframes in a sliding window.

In contrast to the above that focus solely on back-end optimization, reducing the number of nodes in pose graph

optimization, or generating keyframes for submap creation, our work centers on sampling keyframes online to reduce

memory allocation and loop closure query times while preserving retrieval performance during place recognition and

maintaining localization accuracy after pose graph optimization. In this work, we evaluate the impact of our previously

introduced optimized keyframe sampling method[6] on critical back-end tasks, including loop closure detection and pose

graph optimization, with a glimpse of the results illustrated in Fig.  1. The proposed Minimal Subset Approach (MSA)

employs two key criteria, redundancy minimization and information preservation, within a sliding window optimization

framework to streamline keyframe selection. By reducing redundant information while preserving essential data, MSA

enhances scalability and computational ef�ciency for both place recognition and pose graph optimization. Unlike

traditional methods that rely on spatial heuristics and 3-D space, MSA utilizes the feature space, making it inherently

environment-agnostic. Its reliance on the descriptor extraction framework used for loop closure detection eliminates the

need for manual parameter tuning, ensuring consistent performance across diverse scenarios.

B. Contributions

Based on the aforementioned, the main contributions of this article can be summarized as follows: (a) To the best of our

knowledge, this is the �rst paper to present the pose graph optimization (PGO) problem with an emphasis on the

interplay between place recognition, keyframe sampling and loop closure detection. We highlight the importance of

addressing these interconnected problems jointly to achieve a more comprehensive solution and provide further insights

on the inherent challenges. (b) This paper signi�cantly extends our previous work[6]  by demonstrating the impact of

keyframe sampling not only in place recognition but on pose graph optimization and metric localization as well. This

provides valuable insights into the interconnection between the front-end and back-end SLAM, showcasing how

sampling intervals in�uence the performance of the latter. (c) Through our results we demonstrate that MSA enhances

scalability and ef�ciency by reducing computational demands. It consistently achieves lower false positive rates in place

recognition and superior ATE and RPE in metric localization across diverse environments, without manual parameter

tuning. By minimizing loop closure query times, memory usage, and the overall time required for pose graph

optimization, MSA is well-suited for large-scale missions.
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II. Problem Formulation

A. Pose Graph Optimization

The objective of PGO is to �nd the most likely con�guration of a robot’s trajectory by minimizing the error in a graph-

based representation of the poses. The pose graph is represented as a set of nodes and edges, where each node represents

a robot pose and each edge encodes a spatial constraint between two poses[22]. Let    be the set of 

 robot poses, where,  ,   be the observed spatial constraint between a pair of poses   and 

 be the predicted value of that constraint. The error   quanti�es the difference between the observed

relative transformation and the predicted transformation between poses   and   and is denoted as: 

We can then de�ne the set of edges  , that contains all the pairs in which a relative constraint exists.

The goal of pose graph optimization is to �nd the optimal con�guration of poses    that minimizes the overall error

function  , denoted as: 

where   is the information matrix that re�ects the certainty of the relative pose measurement for each pair.

B. Odometry and Loop Closure Edges

Pose graph optimization is widely used as a global optimization method to mitigate accumulated pose drift during large-

scale and long-term missions. This would not be possible without loop closures. Relying solely on pose-to-pose

odometry constraints is insuf�cient to maintain global consistency, hence, loop closures are essential. Given this, it is

reasonable to assume that the set of edges    in the pose graph can be partitioned into two distinct subsets. The �rst

subset,  , consists of odometry edges, which represent consecutive movements of the robot based on local motion

estimates, while the second subset,  , consists of loop closure edges, which correspond to observations of previously

visited locations. Thus, the overall error function can be decomposed into two components: 

where the edge sets satisfy the following two relationships:   and  .

C. Loop Closure Detection

Detecting loop closures is challenging, particularly in large-scale missions, where accumulated drift can cause traditional

radius-based searches to fail by missing nearby candidates. A common solution is place recognition, which compares

current sensory data (e.g., images or LiDAR scans) against a database of past observations to identify matches. To

formalize this, we de�ne a keyframe set  , where    is the pose of keyframe  , 
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 represents its descriptor which encodes distinct features[23][24], and    is the set of associated measurements.

The goal is to �nd loop closure candidates   by comparing descriptors: 

where    is a similarity function (e.g., cosine similarity, Euclidean distance) and    is a threshold for considering

two keyframes representing the same place. This approach generalizes to various scenarios, such as comparing a current

keyframe with the   nearest past keyframes in single-robot detection or comparing keyframes across multiple robots.

D. Reducing Search Space in Place Recognition

The detection and veri�cation of loop closure edges    is computationally demanding due to the large number of

potential keyframe pairs, which scales quadratically as  , where   is the number of keyframes. While using

descriptors and methods like k-nearest neighbor (k-NN) search[25]  can accelerate the process, additional steps are still

required to remove outliers, mitigate false positives, or prioritize certain nodes[1], while extracting the relative pose

transformation between loop closure nodes also involves computationally intensive techniques such as General Iterative

Closest Point (GICP)[26]. This pipeline does not scale well for extensive missions, often resulting in processing times of 3-

4 hours or more[4][17], and the challenge becomes even greater in multi-robot systems[3].

To address this computational complexity, we propose a sampling strategy to reduce the number of keyframes considered

for matching, while maintaining minimal impact on the loop closure set  . Let   represent a subset of keyframes

selected through a sampling process   such that  . Our objective is to reduce the search space by

con�ning the loop closure detection process to only the selected keyframes in  . The goal is to identify a reduced set 

 that minimizes redundant keyframes while preserving the set of loop closures  , a process denoted as: 

In this approach, the overall pose graph optimization is reformulated as follows: 

where   represents the poses corresponding to the optimally sampled keyframe set  , and   denote the

odometry and loop closure edge pairs between the sampled keyframe poses  , respectively.

E. Underlying Challenges

Addressing the combined problem of pose graph optimization and loop closure detection through place recognition

presents several underlying challenges that affect both the ef�ciency and accuracy of the solution.
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1. Impact of Sampling

While the sampling strategy    aims to preserve key loop closure candidates, in practice it must retain a subset 

  that still ensures an effective solution for pose graph optimization. Redundant loop closure edges can lead to

issues, such as over�tting, increased computational burden, and numerical instability in the optimization process.

Moreover, because the sampling process reduces the set of poses, the odometry edge set   is also reduced, which

can affect the overall accuracy of the optimization[27], with an example illustrated on Fig. 2.

2. Combined Problem

Combining loop closure detection through place recognition with pose graph optimization presents challenges due to

their differing characteristics. Loop closure detection relies on matching high-dimensional feature descriptors, which is

computationally expensive and sensitive to environmental factors. Conversely, pose graph optimization relies on

geometric consistency and is affected by noise and outliers in loop closures. Balancing these require careful consideration

of both feature reliability and constraint robustness to prevent false positives and reduced ef�ciency from degrading

optimization performance.

3. Dynamic Keyframe Selection

To minimize the keyframe set size in real-time, we must consider the entire set  ; however, this is impractical for

maintaining computational feasibility in loop closure detection. The challenge is to determine the contribution of each

keyframe, which requires anticipating future keyframes and introduces a lack of causality. Moreover, �nding the optimal

subset    is an NP-hard problem, involving an exhaustive search of all keyframe combinations, which becomes

computationally infeasible for sets larger than 15–20 keyframes.

The goal of this research is to show that reducing the number of keyframes through an informed sampling strategy can

signi�cantly decrease the search space for loop closure detection, improving computational ef�ciency by reducing

memory usage and query time without compromising SLAM accuracy. The proposed approach seeks to balance

computational complexity and optimization precision, ensuring scalability and robustness.

III. Minimal Subset Approach

To address these challenges, we propose the Minimal Subset Approach (MSA) to approximate a solution to the problems

in Eq.(5)-(6). Unlike our previous work[6], which focuses solely on place recognition retrieval performance, in this article

we extend the analysis to assess its impact on the subsequent step described in Eq.(7) and its comparison to the original

Eq.(2). The proposed MSA identi�es and eliminates redundancy within a keyframe set while preserving essential data.

Designed for real-time use, it employs a sliding window combinatorial optimization with dual objectives: balancing

information preservation and redundancy minimization.

S
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A. Redundancy in Keyframes

The frequency of a sensor, the platform’s speed, and the environmental characteristics can cause keyframe samples to

capture redundant information if they are too closely spaced. To address this, we de�ne redundancy within a keyframe

set and propose a metric to quantify it based on the descriptor space. A keyframe    is redundant within a set    if its

removal does not affect the loop closure edge set   and does not create discontinuities in the map representation: 

where  . The spatial constraint in Eq.  (8) ensures comprehensive map coverage and that consecutive

odometry edges can be computed safely. The lower and upper pose distances,    and  , usually range from 1 to 5

meters[23]. We quantify redundancy in a keyframe set using a metric that captures the similarity between consecutive

keyframes, utilizing any similarity function  , provided by the corresponding descriptor extraction framework: 

where   and   is the number of keyframes in  . Higher values indicate greater redundancy.

B. Information Preservation in Keyframes

Let  , represent the descriptor extraction function, either learning-based[23][28] or handcrafted[24][29], which

maps each observation from 3-D space to an  -dimensional representation. This function does not directly depend on

the pose  , but rather on the input observation   (e.g. LiDAR scan), which itself depends on the pose through the sensor

model  , where   represents the world. To understand how the descriptors are sensitive to pose changes,

we can compute the Jacobian   of   with respect to poses   through the chain rule  . Explicitly deriving

the Jacobian can be impractical because of the intricate nature of functions like deep neural networks. Consequently, we

employ numerical approximations to estimate the rate of change. Moreover, since poses are encompassed within  ,

we reduce the dimensional complexity by using the Euclidean norm for distance measurement instead of individual axis

derivatives. It is essential to use yaw-invariant descriptors, as suggested in[23][24], to ensure the Jacobian calculations are

meaningful by preventing orientation changes. For a comprehensive discussion of these assumptions and derivations, we

refer the reader to our previous work[6], which provides detailed explanations. Considering the descriptors    as

random variables and poses   as samples, the product   estimates the covariance matrix:

where    is the diagonal matrix of eigenvalues and    is the matrix of eigenvectors from the decomposition. The

eigenvectors represent the principal directions of variation, and the eigenvalues represent their magnitudes. The

descriptors are transformed using the eigenvectors and scaled by the square root of the eigenvalues,  ,
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aligning them with the main directions of variability. Therefore, we can de�ne the information preservation term for a

keyframe set as:

where  ,    is the distance function between descriptors, and   are the transformed descriptors.

Higher values of   indicate that the poses better preserve the variability in the descriptor space. Eigenvectors   denote

directions of maximal variability, and the  -th eigenvalue    quanti�es the variance described by each eigenvector.

Larger eigenvalues indicate more signi�cant patterns of variability.

In summary, while both   and   utilize a similarity or distance function, they differ in objectives: the redundancy term

focuses on local redundancy within the keyframe set, while the information preservation term evaluates the preservation

of information structure with respect to pose changes. The distinct goals lead to different interpretations of relationships

between descriptive vectors within the keyframe set.

Figure 2. Redundant keyframes effect. Example of removing redundant keyframes (light blue). The

updated odometry edge set,  , in�uences the pose graph optimization, while the sparsi�ed loop

closure edges,  , can further reduce the computational complexity.

C. Sliding Window Optimization

To manage the computational complexity of optimizing a large keyframe set and proactively selecting keyframes for

future queries, we introduce a sliding window optimization method. This approach continuously optimizes keyframe

sets   over the mission duration  , approximating the optimal keyframe set as: 

where    is the minimal subset of    that retains maximum information. To compute this subset, we use the

redundancy and information preservation terms de�ned earlier.
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The process begins by initializing a window keyframe set   containing   keyframes. The time step   advances once 

  new keyframes are available, and the optimization converges to the optimal window keyframe set  . To �nd this

optimum, we generate all possible subsets of  , forming the power set   with cardinality  . To reduce

computational complexity, we apply constraints on the power set, retaining only subsets that satisfy minimum and

maximum distances between consecutive poses, as per Eq. (8), reducing the power set by 5–10 times. The constrained

power set can be denoted as: 

where   and   are the lower and upper limits for the distance between poses. The window optimization problem can be

formulated as: 

The minimization problem is solved through an exhaustive search, evaluating each subset’s information matrix 

 and quantifying its effectiveness using the information preservation and redundancy terms, selecting the subset

with the best combined score.

IV. Experimental Setup and Results

To support the claims of our second contribution, on how the sampling interval affects performance, we conducted a

series of experiments with the following setup. Descriptor extraction was performed using two approaches: the learning-

based OverlapTransformer (OT)[23], which generates a   feature vector, and the hand-crafted Scan Context (SC)

[24], which produces a   feature representation. These choices demonstrate the descriptor-agnostic nature of our

method and its compatibility with both learned and hand-crafted descriptors. We benchmark our approach against

constant sampling intervals of 1, 2, and 3 meters[15][16][17][30], as well as adaptive sampling strategies based on LiDAR

spaciousness[18] and entropy[20]. All experiments were conducted on a 14th Gen Intel Core i9 system with 128GB of RAM,

where the sampling window optimization ( ) is solved in approximately 5–15 milliseconds, making it suitable for

real-time sampling.
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Figure 3. Box plot comparisons. Translational (t) and Rotational (R) Absolute Trajectory Error

(ATE) difference of every method compared to the baseline of All Samples, as well as the Memory

Allocation in Gigabytes (GB) and the total Execution Time in seconds (s).

A. Quantitative and Qualitative Analysis

For the batch experiments in Table I, we evaluate our approach on three datasets: KITTI Odometry[31], MulRan[32], and

Apollo-SouthBay[33], representing diverse environments, including urban areas, rural landscapes, and complex

structures like bridges and tunnels. Keyframes are sampled for all methods, and the pose graph is constructed using

GTSAM[7] with odometry provided from KISS-ICP[34]. Loop closure candidates are identi�ed using OT or SC descriptors

with a similarity threshold of 0.8. Candidates within a 3-meter radius of the ground truth are classi�ed as true positives

and processed with small_gicp[35]  to estimate relative transformations. Matches with registration residuals below 0.3

meters are veri�ed and added as edges to the pose graph, which is optimized using the Levenberg-Marquardt algorithm.
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Datasets KITTI Odometry (Seq. 05/06) MulRan (DCC/KAIST) Apollo-SB (SanJose/Columbia)

Metrics t. ATE [%] R. ATE [%] FPR [%]
t. ATE

[%]
R. ATE [%] FPR [%]

t. ATE

[%]
R. ATE [%] FPR [%]

ScanContext

All Samples 72.7/76.1 94.4/49.0 06.6/06.4 30.2/69.4 24.1/56.3 08.8/20.8 92.0/93.7 93.7/92.3 29.4/06.8

Const. 1.0m 90.5/76.2 95.9/52.6 04.3/04.1 63.2/88.6 55.2/70.7 11.6/24.0 84.3/92.5 87.4/92.0 26.1/05.5

Const. 2.0m 86.2/62.3 94.0/46.4 06.0/05.9 72.1/83.3 69.4/72.0 12.1/13.3 66.7/79.2 59.5/78.6 25.9/03.3

Const. 3.0m 79.8/60.1 77.4/42.3 10.5/09.9 58.7/79.5 60.6/69.2 19.6/11.7 54.4/77.1 40.9/69.8 24.0/03.1

Entropy-

based
66.9/46.7 93.4/48.3 09.1/05.5 68.7/71.8 69.0/66.8 14.2/15.6 90.1/80.3 89.8/82.9 24.5/03.2

Spaciousness 77.8/55.6 87.6/46.7 09.3/05.9 67.9/70.7 68.5/66.1 10.0/16.5 79.7/79.6 84.2/82.1 25.2/06.0

MSA (Ours) 90.3/76.4 96.1/53.0 03.3/03.4 71.9/91.9 70.1/76.6 06.8/12.3 89.9/87.5 91.4/80.3 23.3/02.7

OverlapTrans

All Samples 75.7/78.6 95.9/51.1 05.1/05.6 29.8/67.4 24.9/59.5 08.0/21.2 96.2/98.1 95.3/97.5 30.7/07.5

Const. 1.0m 94.6/78.7 97.3/55.3 06.2/07.0 59.3/87.1 56.4/71.0 20.2/23.8 85.8/97.1 84.1/97.2 25.1/04.1

Const. 2.0m 84.4/44.9 97.2/23.7 04.3/03.1 70.0/80.9 68.4/73.7 07.6/11.6 06.8/75.9 06.8/77.2 25.3/02.3

Const. 3.0m 90.5/22.6 87.9/13.8 06.0/09.5 63.6/87.7 64.6/79.1 04.4/07.7 00.0/83.6 00.0/84.4 16.6/02.4

Entropy-

based
67.9/24.1 93.0/09.1 06.1/05.4 69.2/68.7 69.5/63.1 16.4/14.6 77.6/69.4 76.2/72.6 21.0/03.1

Spaciousness 85.8/35.5 97.2/39.1 06.8/06.9 68.4/68.6 68.1/63.1 08.5/16.1 03.5/67.9 03.5/71.7 24.1/04.9

MSA (Ours) 93.2/78.8 97.5/55.5 04.0/04.9 70.1/91.4 69.7/77.8 08.2/11.4 88.7/84.0 88.3/85.1 21.5/01.6

Table I. Translational (t) and Rotational (R) Absolute Trajectory Error Improvement after PGO and the False Positive Rate

(FPR)∗

*The underlined results correspond to the best performing constant sampling interval, while the bold results correspond to the

best adaptive sampling method.

Table  I summarizes the results for all datasets, descriptors, and methods. The metrics include the Absolute Trajectory

Error (ATE) for both translation and rotation, presented as the percent improvement in the KISS-ICP trajectory after

pose graph optimization with each method. Additionally, the False Positive Ratio (FPR) for descriptor matching is

reported, as sampling impacts place recognition performance[6]. The results demonstrate that the proposed MSA

consistently delivers the best performance, while constant intervals yield varying results across different environments,

highlighting the absence of a universal �xed sampling interval. In Fig. 3, the data from Table I are presented as box plots,
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illustrating the deviation of each method’s ATE performance compared to using all samples, alongside variations in

memory usage and total pipeline execution time. The proposed approach sustains overall improvements with minimal

performance loss in both translation and rotation, while signi�cantly reducing memory usage and execution time.

Although other methods also reduce memory and processing overhead, their performance lacks robustness and varies

considerably. Finally, Figs. 1 and 4 compare ground truth poses, raw KISS-ICP poses, and corrected trajectories for MSA

and the entropy-based method post optimization. Across all illustrated trajectories, the proposed approach achieves

consistently lower translation and rotation RPE than other methods, with loop closure segments closely aligning with

the ground truth, demonstrating its ability to retain essential edges.

Figure 4. Trajectory comparisons. Comparison of the ground truth, raw KISS-ICP, and the sampled

poses after the pose graph optimization for the proposed Minimal Subset Approach (MSA) and the

entropy-based approach on the KAIST sequence of the MulRan dataset and the SanJoseDowntown

sequence of the Apollo-SouthBay dataset.

B. Larger-Scale Evaluations

To support our last contribution, we conduct more realistic, larger-scale, online experiments. Poses are processed

sequentially, simulating real-time operation. Keyframes are sampled online using the previously mentioned methods,

appended to the pose graph, and optimized at each step with iSAM2[8]. Simultaneously, OT descriptors are queried against

past keyframes to detect loop closures, which are veri�ed with small_gicp and integrated into the graph.

1. Urban Driving Scenario

For this scenario we use one of the datasets from the batch experiments, Apollo-SouthBay, focusing on the

SunnyvaleBig- loop sequence, which spans over 100 kilometers. Table II reports the translation and rotation ATE, FPR,

total allocated memory, and processing time. Notably, when using all samples, the system exhausts memory,

approximately 70% into the sequence, preventing the calculation of the metrics. The other sampling methods reduce

memory usage while maintaining excellent performance. This is likely due to the sequence revisiting the same locations
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multiple times, enabling frequent loop closure edges that mitigate accumulated drift. In Fig. 5, the optimized trajectory of

the entropy-based method is compared to MSA, with a color gradient representing translational RPE. The visualization

highlights MSA’s superior performance, achieved with lower memory allocation and a reduced false positive rate. Lastly,

Fig.  6 shows the memory usage over time, illustrating how sampling methods scale more ef�ciently compared to

retaining all samples or using a constant 1-meter interval.

Figure 5. Trajectory comparisons. The ground truth and raw KISS-ICP poses compared against the sampled and optimized

poses using the proposed Minimal Subset Approach (MSA) and the entropy-based method for the Sunnyvale and the constant

1-meter approach for the Park. The color gradient represents the Relative Pose Error (RPE). Grid spacing corresponds to 0.5x0.5

km2 for the left �gure and 50x50 m2 for the right �gure.
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Metrics t. ATE R. ATE FPR MEM. TIME

Apollo-SB Sunnyvale

All Samples nan nan nan >128GB nan

Constant 1.0m 98.5% 98.4% 12% 90.9GB 7340s

Constant 2.0m 98.1% 97.3% 17% 47.2GB 2264s

Constant 3.0m 97.9% 97.0% 28% 35.4GB 1515s

Entropy-based 95.5% 93.4% 15% 51.0GB 4945s

Spaciousness 94.9% 97.5% 24% 38.3GB 1752s

MSA (default) 98.3% 94.1% 12% 41.2GB 1951s

MSA (w/o  ) 94.7% 93.2% 13% 32.4GB 1438s

MSA (w/o  ) 98.9% 96.4% 12% 43.7GB 2022s

MSA ( ) 96.5% 93.9% 12% 37.6GB 1764s

MSA ( ) 98.6% 95.8% 12% 42.0GB 2004s

Newer-College Park

All Samples 93.9% 78.9% 02% 65.8GB 6742s

Constant 0.1m 89.7% 71.4% 03% 63.2GB 4987s

Constant 0.3m 79.9% 58.5% 08% 28.9GB 1262s

Constant 1.0m 60.7% 43.1% 23% 09.2GB 165s

Entropy-based 87.3% 65.8% 05% 26.3GB 1401s

Spaciousness 72.5% 52.5% 14% 27.2GB 1096s

MSA (default) 90.1% 67.0% 02% 38.7GB 1884s

MSA (w/o  ) 81.7% 41.4% 03% 12.8GB 346s

MSA (w/o  ) 97.7% 81.4% 02% 64.7GB 6226s

MSA ( ) 86.9% 64.4% 02% 29.2GB 1498s

MSA ( ) 93.2% 69.4% 02% 42.5GB 2791s

Table II. Results for the Larger-Scale Evaluations and the Ablation Study for the proposed approach

2. Campus Scenario

To provide additional insights, we evaluate a different dataset, the Newer-College[36], and more speci�cally the Park

sequence, a 30-minute mapping session with multiple loops. This scenario, resembling a mobile ground robot, differs

πτ

ρτ

α = 10

β = 10

πτ

ρτ

α = 10

β = 10
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signi�cantly from Apollo-SouthBay due to its more con�ned environment and denser frame sampling, approximately

0.1 meters compared to 1 meter. These differences highlight how distinct missions impose unique requirements.

From Table II, constant intervals show that, a 1-meter sampling, severely underperforms in this scenario, retaining only

7% of the frames. This leads to signi�cant performance losses in both ATE and FPR. To address this, we include lower

constant intervals of 0.1 and 0.3 meters for comparison. While these improve performance, our proposed MSA

outperforms them by prioritizing informative sampling, providing more valuable nodes to the pose graph. The entropy-

based method closely follows, emphasizing the importance of spatial features in sampling. Here, we note that both the

spaciousness- and entropy-based methods required additional tuning for this scenario. As in the previous experiment,

Fig. 5 compares the optimized trajectory of MSA with the 1-meter approach, using a color gradient to depict translational

RPE, which highlights MSA’s superior metric localization performance. Figs 6 and 7 further compare memory allocation

over time and processing times. Fig. 7 presents box plots for incremental PGO (left) and Loop Closure Detection (right)

processing times per step. Notably, both tasks exhibit signi�cantly high processing times, potentially causing delays in

real-world missions. While lower �xed intervals (0.1 and 0.3 meters) reduce processing time, 0.3-meter and 1-meter

intervals show subpar performance, and the 0.1-meter interval demands substantial memory allocation since it is very

close to the native sampling of the dataset. Interestingly, methods achieving good ATE performance, such as the entropy-

based and MSA, demonstrate higher outliers in the incremental PGO, suggesting that valuable edges are added to the

pose graph, contributing to their better performance.

Figure 6. Memory allocation. Memory against each acquired frame for the different sampling

methods. Retaining all samples exceeds system memory of 128GB, demonstrating the need for

ef�cient and scalable algorithms.
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Figure 7. Processing times. The distributions of the incremental pose graph optimization

convergence (left), and the loop closure detection (right) time, per new frame, for the Park sequence

of the Newer-College dataset.

C. Ablation Study

In all experiments, we maintained constant hyperparameters ( ), demonstrating that the proposed method

adapts seamlessly to different environments and descriptors without requiring manual tuning. To further analyze the

impact of each optimization term, we conducted an ablation study, with results shown in Table II. Speci�cally, we tested

scenarios where only one term,   or  , was used, and scenarios where the weight of one term was increased to 10 while

keeping the other at 1. The results indicate that emphasizing the information preservation term or using it exclusively

improves performance but leading to increased number of keyframes sampled. Conversely, prioritizing redundancy

minimization signi�cantly reduces memory usage but negatively impacts performance. Based on these, practitioners can

decide whether to prioritize memory or performance, depending on their speci�c application requirements.

V. Discussion

The results highlight that no universal constant sampling interval is suitable for all scenarios. While a constant 1-meter

interval performs well in datasets similar to the Urban Driving Scenario, showing minimal deviations in Fig.  3, it

performed poorly in the mobile robotics Campus Scenario. This reinforces our core argument: adaptive methods that

account for both place recognition performance and pose graph optimization are essential. Naive methods that rely on

spatial heuristics, such as spaciousness- and entropy-based approaches, require extensive tuning and prior

environmental knowledge, limiting their applicability. Our proposed MSA consistently excels across all scenarios without

the need for parameter tuning, demonstrating robustness in this traditional loop closure setup. It is effective with both

widely used handcrafted and learning-based descriptors, showcasing adaptability to different datasets and descriptors.

As future work, we aim to test our method with full global localization pipelines, such as RING++[37] or LCDNet[38].

VI. Conclusions

In conclusion, as the robotics community advances towards larger-scale and long-term missions, addressing system

limitations with ef�cient and scalable solutions becomes crucial. This article introduced the Minimal Subset Approach

α = β = 1

ρτ πτ
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(MSA) to address the combined challenges of loop closure detection and pose graph optimization by reducing redundant

samples while maintaining robust performance. Experimental evaluations across multiple datasets show that MSA excels

in terms of FPR, as well as in achieving superior ATE and RPE after pose graph optimization. Unlike other adaptive

sampling methods, MSA requires minimal to no parameter tuning, while using a fraction of the system’s memory and

maintaining comparable computational times.

Data Availability

This paper is supported by code and demonstration �les, available at https://github.com/LTU-RAI/opt-key.git
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