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Abstract

This paper is devoted to a strange looking question: is it possible to deduce the shape of a smooth convex
set by measuring at each point the distance of the horizon standing at a fixed height h? The question is
surprisingly difficult and we only have partial results.
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1 Introduction

It is well known that a smooth planar curve with constant non-zero curvature is a circle. An
analogous property can be stated for a surface in R?. The property of constant curvature can
be used to verify the spherical shape of the Earth by measurements made on Earth itself. Such
measurements are in a sense more convincing than arguments relying on exterior objects such
as the direction of sunlight, used by Erathostenes to prove at least locally the curved character
of the planet. They can at least theoretically be made global.

A simple calculation, detailed in section 2 below, shows a direct relationship between the radius
of the Earth and the distance of the horizon. But what if we do not know in advance that the
planet is approximately spherical? Can we really estimate (locally or globally) the curvature by
measuring the distance of the horizon? The present paper is devoted to some partial results and
one basic question in this direction.

Recovering the shape from horizon measurements enters the category of so called “inverse prob-
lems” and usually this kind of problems is not easy. Ruling out absolute flatness of the Earth
or more generally a planet by local measurements is the easiest part: on a plane, the distance of
horizon is infinite from any point, and more generally for a subdomain of a plane, the horizon
in any direction coincides with a boundary point of the domain. So, in theory, if the domain
is perfectly flat, walking towards the horizon should not allow new objects to appear. But the
adepts of flatness theory (which can also be considered as a challenge to well recognized cer-
titudes), do not usually claim absolute flatness. And to contradict that theory, we need much
stronger arguments.

The plan of this paper is as follows: section 2 is devoted to the case of a sphere, in section 3 we
state the main definitions useful for stating the results, in section 4 we indicate how a bound on
the curvature radius of the boundary allows to localize a convex set. Section 5 is devoted to the
construction of examples showing that a global upper bound of the horizon distance does not
imply anything on the curvature radius. Sections 6 and 7 contain the main positive results of
this short note. Finally, Section 8 contains some remarks and observations on related questions
of interest.

2 Radius of the Earth and distance of the horizon

In this section, we consider a perfectly spherical planet (which may be the Earth) with radius R
and we want to compute the distance of horizon seen from any point of the Earth located at a
distance h from the ground. First it is immediate, due to rotation invariance, that the distance
of the horizon in any direction is the same, let us denote it by H(h) := H. To compute H, let
us consider a point O on the ground and the point A on the vertical half-line starting from O
such that OA = h. We consider any plane Il containing the vertical segment OA and the disk
D, intersection of the planet with the plane II. Let T be the contact point of one of the two
tangents at ' = 9D passing through point A. Then AT = H. Denoting by C' the center of the
planet, We have TC' = R = OC, then AC = R+ h and by the Pythagorean theorem applied in
the triangle ATC, we infer
(R+h)? = H? + R%.
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Fig. 1. Spherical planet

By expanding the square on the left, we get

R%? 4+ 2Rh + h? = H? + R?,

yielding
H? = 2Rh + h®.
Therefore
H =+/2Rh + h?
and o2 g2
==

(2.1)

(2.2)

For instance on Earth where R ~ 6400 km, for a man of height 1.75m with eyes at approximately
1.65m from the ground, the calculation gives H ~ 4.6 km. This is quite consistent with what we
observe when there is no obstacle to limit our vision. And from an airplane, when If h = 10 km,

we end up with

H ~ /128000 ~ 358 km

which is also consistent with the size of the landscape that we can see from an airplane when

the wheather allows that.

3 Some definitions

Before attacking the inverse problem mentioned in the introduction, we need to define precisely
what we mean by the horizon on a given hypersurface of R (N > 2) at an exterior point. It is
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Fig. 2: Disconnected visible set.

clear that if the hypersurface is bounded, the distance to the horizon will be finite everywhere,
and that the converse is false. Also, the notion is only of interest if the hypersurface is in fact the
boundary of a solid domain, so that we cannot “see” the interior points. And finally, even for a
curve in R?, the definition of the horizon is problematic if the curvature changes sign, since in a
given direction the set of points which can be seen from the exterior point may be disconnected.
(see Figure 2)

For this reason, we shall restrict ourselves to the case of the boundary of a convex set. Let
us consider a closed convex set K C RY and its boundary ¥ = 0K. Given a point a ¢ K we
consider the smallest closed convex cone C' with vertex a containing K. It is given by the formula

C=a+|J MK -a).
A>0

Then we can define the horizon set H(a, K) at a relative to K by

H(a, K)=0CNX.

If N =2, the set C' is made of two straight lines and if K is strictly convex, H(a, K) is a
pair of points. On the other hand, if ¥ contains some flat parts, H(a, K) is more generally the
union of two separate line segments, some of which possibly reduced to one point, depending on
the position of a, see Figure 3.

If N =3, the set OC is a conic surface with vertex a and if K is strictly convex, H(a, K) is
a curve. On the other hand, if ¥ contains some flat parts, H(a, K) can become very different
from a curve. We shall not try here to describe the most general situation in R3, since convex
sets in 3 dimensions can already be rather complicated, see Figure 4.



3 Some definitions

STRICT LY  CuNWYEX
CASE

STRICTLY C(ONVEX

CASE

=

I

o

> CONTRINING
FLST PARTS

Fig. 3: N=2

SomeE FLAT
TPAETLS

Fig. 4: N=3



4 Curvature radius and confinement 6

In the sequel, the most useful notion will be the horizon distance from a point ¢ ¢ K in a
given direction. When K is a strictly convex C'' domain of RV which contains interior points, so
that it does not reduce to dimension N —1, let us consider any half-plane P whose edge coincides
with the normal at K emanating from a. Then H(a, K) N P reduces to a point T' = T'(a, K, P),
which is the contact point of K with the unique tangent at ¥ contained in P and passing through
a. We set

H(a, K, P) := dist(a,T(a, K, P)) = aT.
In 2 dimensions, there are only two half-planes P with edge Oa that can be written P™ and
P~, with PT corresponding to the right if we take the following system of axes : the origin O
is the projection of @ on K, the vertical axis Oy is the half-line in the direction Oa given by
outgoing normal through a and we chose an horizontal orientation to fix Ox. In N dimensions,
each half-plane P is characterized by its unit vector of origin O orthogonal to 53.

The main objective of this note is to establish a relationship between the properties of the
horizon distance from the points above a given point on 3 and the curvature radius at that
point. But the first thing to investigate is which kind of information can be deduced from the
properties of the curvature on X.

4 Curvature radius and confinement

A first question, natural for both planar curves and surfaces in R3, is the following: If the
curvature radius at all points is bounded by a finite number R, can we say that the curve (resp.
surface) is bounded? For the problem which we address here, we always work in a plane, so we
just provide the simplest property in the direction.

Proposition 4.1. Let K be a closed convex domain of R3, with C? boundary T'. If the curvature
radius of I' is everywhere less than R, the curve is entirely contained in a disk of radius R.

Proof. First, the curve has no inflexion points and as a consequence the curvature has a constant
sign. At any given point A , the curve is entirely located in one of the two half-planes delimited
by the tangent vector. Let us study the local situation by choosing the coordinate axes in such
a way that the point A has coordinates (0, R) and the equation of I' becomes

y=f(z)
for |z| small, with f/(0) =0 and f”(0) < 0. For > 0 small enough, the curvature radius is

(1 + y/2)3/2
Yy :

p(x) = -

Therefore

" 1 /2\3/2 1 \3/2
= —— 1+ <——(1+ .
y M@( y) z1+Y)

Since the circle of center (0, 0) and radius R satisfies y = z(x) with 2/(0) = 0 and
1
S _E(l + 2/2)3/2’

the comparison principle implies that

vz € (0,7(x)), o' (x)<7(x). (4.1)
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Fig. 5: Confinement.

Because y(0) = z(0) = R, we also infer y(z) < z(x). From this we deduce that the arc of I" on
the right is interior to the quarter of disk with center (0, 0) and radius R, until the curve T’
crosses the z-axis for the first time. From (4.1) it follows that |y/(x)| blows up for some value
z1 € (0, R]. By rotating the axes by +7 so that (y(z1),z1) plays the role of the initial point and
proceeding backwards instead of forward, we can see that actually y(z1) > 0. Now two remarks
are in order: first the curve I' is entirely contained in the half-plane x < x1. Secondly, by doing
the same argument on the left, we find a point 2 € [-R,0) such that y(z2) > 0 and |y/(x)]
blows up at xs. In particular the curve I' is entirely contained in the vertical strip s < x < z1.
Now we can reproduce the previous argument starting from the point (y(z1),z1) and rotating
the axes by +7/2, because x1 < R and the slope of the disk with center (0, 0) and radius R at
the point of abscissa y; is nonnegative in the new coordinate system. Then the arc of I' on the
right starting from (y(x1),x1) will remain in the second quarter of the disc until the curve T’
becomes horizontal, which provides a point A’ = (z3,y3)) € I’ with 3 < 21 < R such that the
tangent at I at point A’ is horizontal. And then the curve I is contained in the strip y3 < y < R.
In particular, I' is bounded as a subset of the rectangle R = [x2,z1] X [ys3, R], see Figure 5.

To complete the proof we need to be a little bit more precise. Since we now know that I' is
compact, we can find two points (A, B) in I' such that

AB =d(A,B)= max d(X,Y).
(X,Y)erxr
An immediate geometrical argument shows that the tangents to I" at both points A and B are
orthogonal to the segment AB. For instance if the tangent at B is not orthogonal to AB, taking
a point C very close to B on the side of I" where the tangent makes an angle > 7/2, we see that
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Fig. 6: Diameter.

AC > AB, contradicting the maximality, see Figure 6. The same argument applies to A. By
choosing A as the starting point in the above construction, we can see easily that B = A’ and
so A’ belongs to the vertical axis. We observe that A’ is the “bottom” of I" while A is the top.
Note that there is only one top and one bottom since the curvature never vanishes. Now, we
can see that the “right” part of I', meaning by that its intersection with the half-plane x > 0
is contained in the right half-disk of radius R with center (0,0). The same argument applies,
mutatis mutandis, to the left part of I'; so that I" is entirely contained in the disk of radius R
with center (0,0).

O

Remark 4.2. The result is probably still valid if T is any C? curve, not necessarily the boundary
of a convex set. But the proof would presumably be more involved.

Remark 4.3. An analogous result is probably still valid in RN for the boundary ¥ of a C? convex
set assuming all directional curvatures to be larger than %, since in that case each section by
a plane would be contained in a disc of radius R. Taking A, B in X such that AB realizes the
diameter of X, it is likely that some sphere of radius R tangent to ¥ at A will enclose 3.

5 Horizon and curvature radius

Encouraged by the previous result, we might try to deduce a bound on the curvature radius
from an upper bound of the horizon distance. Unfortunately, we have the following very strong
negative results.

Proposition 5.1. For any Hy > 0, we can find a C*° convexr domain D with completely flat
parts (hence an infinite curvature radius at some points) and a positive h such that

VM € 8D, max{H, (h, M), H_(h,M)} < 2H,.

Proof. Let us consider an even piecewise affine concave function F' defined on [—N Hy, +N Hy]
(N € NN > 0) with F(—NHy) = F(NHy) =0, F(0) =& > 0 such that the slope jumps at all
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points kHy, where k is an integer between —(N — 1) and (N — 1). For a point on the graph of
F other than the corners, both left and right horizon distances relative to the convex set

S :={(z,y)|x € [-NHp,+NH|,0 <y < F(z)}

are less than the length of the corresponding face. By smoothing the corners, the distance of
horizon for any point lying on the smoothed curve remains less than the maximum of lengths
of the faces. But since the slope of the faces is less than NLHO > 0, for € small enough, that
maximum is less than 2Hy. And then for sufficiently small h we obtain the result since the
horizon distance is continuous with respect to h. See Figure 7. OJ

Proposition 5.2. For any Hy > 0, we can find a C™ strictly convex domain D” with arbitrarily
large curvature radius at some boundary points and a positive h such that

VM € oD”, max{H (h, M), H_(h, M)} < 2H,.

Proof. Starting from the previous domain D, we can replace the flat parts by curved ones with
an arbitrarily small curvature, getting a domain D’. Then we consider a large number of copies
of D’ in and dispose them around a circle. More precisely, we start with a regular P-gone with
P very large, the size of the sides being equal to the length of D and place a copy of D’ above
each side of the P-gone. When D’ is sufficiently flat, the resulting domain will still be convex.
Finally we smooth the remaining corners without destroying convexity. We shall obtain this
way a C™ strictly convex curve arbitrarily close to a circle for which the distance of the horizon
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for points very close to the curve will be as small as we wish, while the curvature radius at some
points is arbitrarily large. We skip the details. See Figure 7. OJ

Remark 5.3. The main point here is that the maximum of the curvature radius can be made
as large as we wish for a small fized height h, so that there a bound on H(h) does not imply
anything on the curvature radius. In addition, the domain that we construct can be almost
indistinguishable from a disk. A similar construction for a ball of R3 should be possible, but it
may be more delicate since reqular polyhedrons with a large number of faces do not exist! We
should sacrifice at least partially the symmetry.

6 A very partial result

Theorem 6.1. Let I' be C? curve delimiting a strictly convex compact domain with positive
curvature everywhere. Then it happens that

lim Hy (h, M) =0 (6.1)
h—0
and we have more precisely
H2(h, M)
li =2p(M 2
Jim —=— p(M) (6.2)

where p(M) is the curvature radius at point M.

Proof. In the sequel we shall write for simplicity Hy(h, M) = H(h, M) since the proofs are
identical in both positive and negative directions. The first result is immediate since assuming
the contrary, by compactness and continuity we find a point P € T' such that H(0,P) > 0,
a contradiction with strict convexity. By a suitable choice of coordinates, we set M = (0,0)
and we represent locally the curve I' in an orthonormal frame by the equation y = f(z) where
f(0) = f/(0) =0 and f”(0) < 0. With this convention we have

o1
PO==an

We consider the right horizon point T'(x, f(z)) (the calculation on the left will give the same
result) and we set H2(h, M) = H. We note first that

H? =22 + (h— f(x))? (6.3)
and since the tangent at point (x, f(x)) contains the point (0, h) we have the basic formula
h= @) - 2f (2), (6.4)

see Figure 8. In addition, by definition of f”(0), we have since f/(0) = 0,

f'(@) = 2f"(0) + o(z).
In particular,
h—f(z) = —a?f"(0) — zo(x) (6.5)

yielding
(h = f(x))* = o(z?). (6.6)
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Therefore since 72 = z%(h) < H?(h) tends to 0 with h, we have as a consequence of (6.3) and
(6.6)

_H?(h)
M 2y~ b
Now we have by Taylor’s formula
F(@) = F(0) + 2f(0) + L f(O0) + o(a?) = L f"(0)a +o{a?). (67)
Adding (6.7) and (6.5) yields
h= —% F(0)22 + o(z2) (6.8)
giving )
H%*(h) ~ z%(h) ~ ZW = 2p(M)h. (6.9)

For the next result, we consider a C? surface S delimiting a strictly convex domain with
positive curvature everywhere. For any M € S and P any half-plane containing the normal to S
at M with edge consisting of that normal, we define H(h, M, P) as the horizon in the direction
P from the point M + h7/, where 7 is the outgoing normal unitary vector to S at M.

Corollary 6.2. If for a C? surface S delimiting a strictly convex domain of R3 with positive
curvature everywhere, it happens that H(h, M, P) is independent of the point and the direction
P for all h small enough, the surface is a sphere.

Proof. Let M be any point of the surface S and II any plane containing the normal to S at
M. By applying Theorem 6.1 to I'(IT) := S N1I, we obtain that I'(II) has constant curvature.
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Therefore by a well known result, I'(IT) is a circle (an entire circle and not just an arc since
the horizon distance is positive in both directions above each point of the curve), and its radius
does not depend on II. It is easy to conclude by rotation with respect to the axis containing the
normal to S at M. Ul

Remark 6.3. Fach half-plane P with edge consisting of the normal to S at M can be character-
ized by the unit vector u of its intersection with the tangent plane TM(S).The results can also
be written in terms of u which represents roughly the aiming direction.

Remark 6.4. In the statement of Corollary 6.2, the hypothesis “for all h small enough” can be
replaced by for a sequence hy, of height tending to 0.

7 A reinforced condition involving the angle

If the convex set K is a ball with radius R, not only the distance H(h) of the horizon at height

h is given by
H(h) = V2Rh + h?

as shown in Section 2, but the angle 6 of the tangent AT with the vertical is constant. On figure

1 it appears that
H 2Hh

R+h H2+h?

cosf = (7.1)

and this defines perfectly the angle
6 = (40, AT) € (0, )

Conversely, we have the following proposition

Proposition 7.1. If for a C! surface S delimiting a strictly convex domain of R® with positive
curvature everywhere, it happens that for some h > 0 we have

1) H(h, M, P) := H is independent of the point M € S and the direction P.

2) At all points M, the angle 6 of the incoming normal unit vector m at M with the vector
v(M, Py joining A(M) = M — hm with the horizon point in direction P satisfies

_ 2Hh

COS 0 = m

0
3) —¢Q.

T
H2 _ h2

2h
Proof. Let M be any point of the surface S and II any plane containing the normal to S at M.

We consider the point w := M +le which does not depend on II. We claim that in the plane
I, the circle T" with center w and radius R contains the right horizon point T’y (h, M, P) := T.
Indeed if we consider the intersection w’ of the normal to AT at A with the vertical, then in the
rectangular triangle ATw’ we have

Then S is a sphere with radius R =

H

A’ = .
v cos

(7.2)
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Since the value chosen for R implies H> = 2Rh + h? and then

,_ 2Hh _ 2Hh _ H
ST e 2 TORh 22 R4R

now (7.2) gives Aw’ = R + h. In particular v’ = w and
Aw =R+ h.

Then we observe that

sin’ ) = (

R+h?-H> [ R |
(R+h)?2 [R+h]
and Tw = Awsinf = R. Now if we consider the successive right horizon points at height h
corresponding to Ag = M,T = Aj, etc...we obtain an infinite sequence of points A,, belonging
to SNII and to I', with
0, = (WA, wA,) = né.

By using condition 3), we infer that the sequence A, is dense in I'. Because S N1I is closed,
we find I' C S N1II. Since this is true for any plane II, .S contains the sphere 3 of center w and
radius R. Since S is the boundary of a closed convex set, the only possibility is that S is exactly
equal to X. O

0
Remark 7.2. If, unfortunately, — € Q , we are unable to conclude. And of course this happens

for infinitely many values of h for a given R, even when S is a sphere. This restriction is a bit
strange.

Remark 7.3. For this result we do not need the domain to be C?, since the curvature radius is
not needed in the proof.

MAIN QUESTION. Is the result of Proposition 7.1 still true assuming only property 1)?

8 Additional remarks and topics of interest

Our results seem to be very partial, so it is interesting to try to understand where difficulties
may come from.

8.1 Related questions

The main question raised in this paper is reminiscent of another similar looking global problem
concerning convex subsets of R? with constant width. In that case, there are many other
solutions than disks, even with boundaries consisting of closed smooth algebraic curves, cf. e.g.

[1]-[6].

8.2 To be investigated

We have shown that an upper bound on the curvature radius implies a bound on the diameter,
hence in particular on the horizon distance. It might be of interest to refine the estimate on the
maximum of the horizon distances as a function of the upper bound of the curvature radius and
the height h. What would be the optimal inequality? One would expect something tending to
0 with h as in the case of a disk.
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8.3 Which extensions can we expect?

The big question is whether it is sufficient to assume the constancy of Hy (h, M, P) for some
fixed h > 0. This does not follow from the technique of theorem 6.1, and it looks quite intricate,
since the main surprise in this study is the counterexample of Subsection 5, showing that an
upper bound of H(h) gives essentially nothing. We might expect that if for all A small enough,
H,y(h,M,P) varies between C(h) and kC(h) for some k > 1, then the curvature radius also
varies between two constants.

8.4 A possible source of difficulty

For the statement of Theorem 6.1 and Corollary 6.2, we need to assume that T' (resp ¥ ) is C?,
while the hypothesis on the horizon makes sense for a C'' manifold. This is because we use in
the proof the curvature radius which is a C? notion. This might mean that either the result
is false assuming only the constancy of H (h, M, P) for some fixed h > 0, or that the method
has be be modified, although the involvement of curvature seems to be the right tool to prove
circularity or sphericity ... except in the framework of Proposition 7.1!

8.5 The measurement problem

As was pointed out to me by L. Simonot and L. Dettwiller, evaluating the distance of the
horizon on the earth is not at all straightforward, even if we use a laser beam. The main point
is that the atmosphere can distort light rays, the effect being due to refraction phenomena of
thermal origin. For instance in an airplane flying at an altitude of 10000 meters, when the
surrounding temperature is about - 40°C, while the ground is heated at +30°C, the distorsion
would correspond, according to the figures given to me by L. Dettwiller, to a virtual altitude
differing from the real one by 70 x 8.6 ~ 600 meters, a relative variation of 6 % providing
a relative error of 3% on the measure of H. This is not negligible, and when we deal with
boats or walking people, the relative mistake will probably reach larger values, up to 10%, as a
consequence of local variations of temperature and the complex heat transmission phenomena
between the ground, the atmosphere and oceans. So if we really are to check the constancy
of the horizon distance with great accuracy, corrector methods will have to be used. For more
details, cf. e.g. [7]-[10]. It is clear that distortion of light becomes an even more important point
in the framework of Proposition 7.1

8.6 Stability

All the partial results of this note are pure mathematical results based on exact hypotheses. In
practice any measure is subject to incertitudes, even without the phenomenon described just
above. So, whichever will be the final result, the stability question shall become prominent after
the main question is solved.
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