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Abstract

This short paper is devoted to a strange looking question: is it possible to deduce the shape
of a smooth convex set by measuring at each point the distance of the horizon standing at a
fixed height h? The question is surprisingly difficult and we only have partial results.
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1 Introduction

It is well known that a smooth planar curve with constant non-zero curvature is a circle. An
analogous property can be stated for a surface in R3. The property of constant curvature can
be used to verify the spherical shape of the earth by measurements made on earth itself. Such
measurements are in a sense more convincing than arguments relying on exterior objects such
as the direction of sunlight, used by Erathostenes to prove at least locally the curved character
of the planet. They can at least theoretically be made global.

A simple calculation, detailed in section 2 below, shows a direct relationship between the radius
of the earth and the distance of the horizon. But what if we do not know in advance that the
planet is approximately spherical? Can we really estimate (locally or globally) the curvature
by measuring the distance of the horizon? This simply looking question is the object of the
present paper.

2 Radius of the earth and distance of the horizon.

In this section, we consider a perfectly spherical planet (which may be the earth) with radius
R and we want to compute the distance of horizon seen from any point of the earth located
at a distance h from the ground. First it is immediate, due to rotation invariance, that the
distance of the horizon in any direction is the same, let us denote it by H(h) := H. To compute
H, let us consider a point O on the ground and the point A on the vertical half-line starting
from O such that OA = h. We consider any plane Π containing the vertical segment OA and
the disk D, intersection of the planet with the plane Π. Let T be the contact point of one
of the two tangents at Γ = ∂D passing through point A. Then AT = H. Denoting by C the
center of the planet, We have TC = R = OC, then AC = R + h and by the Pythagorean
theorem applied in the triangle ATC, we infer

(R+ h)2 = H2 +R2

By expanding the square on the left, we get

R2 + 2Rh+ h2 = H2 +R2

yielding
H2 = 2Rh+ h2

Therefore
H =

√
2Rh+ h2 (1)

and

R =
H2 − h2

2h
. (2)

For instance on earth where R ∼ 6400 km, for a man of height 1, 75m with eyes at approx-
imately 1, 65m from the ground, the calculation gives H ∼ 4, 6 km. This is quite consistent
with what we observe when there is no obstacle to limit our vision. And from a plane, when
If h = 10 km, we end up with

H ∼
√
128000 = 358 km

which is also consistent with the size of the landscape that we can see from a plane when the
wheather allows it.
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3 Recovering the shape from horizon measurements.

This is a so called “̀ınverse problem” and usually this kind of problems is not easy.

3.1 Ruling out flatness

Ruling out absolute flatness of the earth or more generally a planet by local measurements
is the easiest part: on a plane, the distance of horizon is infinite from any point, and more
generally for a subdomain of a plane, the horizon in any direction coincides with a boundary
point of the domain. So, in theory, if the domain is perfectly flat, walking towards the horizon
should not allow new objects to appear.

Unfortunately, the adepts of flatness theory (which can also be considered as a challenge to
well recognized certitudes), do not usually claim absolute flatness. And to contradict that
theory, we need much stronger arguments.

3.2 Curvature radius and confinement

A first question, natural for both planar curves and surfaces in R3, is the following: If the
curvature radius at all points is bounded by a finite number R, can we say that the curve
(resp. surface) is bounded? The answer is positive and we even have the following sharper
property :

Proposition 3.1. If the curvature radius of a C2 planar curve Γ without stationary points is
everywhere less than R, the curve is entirely contained in a disk of radius R.

Proof. First, the curve has no inflexion point and a consequence the curvature has a constant
sign. At any given point, the curve is entirely located in one of the two half-planes delimited
by the tangent vector. Let us study the local situation by choosing the coordinate axes in such
a way that the point has coordinates (0, R) and the equation of Γ becomes

y = f(x)

for |x| small with f ′(0) = 0 and f ′′(0) < 0. For x > 0 small enough, the curvature radius is

ρ(x) = −(1 + y′2)3/2

y′′

Therefore

y′′ = − 1

ρ(x)
(1 + y′2)3/2 ≤ − 1

R
(1 + y′)3/2

Since the circle of center (0,0) and radius R satisfies y = z(x) with

z′′ = − 1

R
(1 + z′2)3/2

the comparison principle implies that

∀x ∈ (0, τ(x)), y′(x) ≤ z′(x)
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Because y(0) = z(0) = R, we also infer y(x) ≤ z(x) and it is not difficult to deduce that the
arch of Γ on the right is interior to the quarter of disk with center (0, 0) and radius R, until
the curve Γ crosses the x-axis for the first time. But actually, |y′(x)| blows up for some value
x1 ≤ R. By rotating the axes by +π

2 so that (x1, y(x1)) plays the role of the initial point and
proceeding backwards instead of forward, we can see that actually y(x1) > 0. The rest of the
proof is rather straighforward, following a sequence of steps analogous to the first one. Since
the curve might be a spiral, an infinite number of steps may be necessary for the proof to be
complete.

3.3 Horizon and curvature radius

Encouraged by the previous result, we might try to deduce a bound on the curvature radius
from an upper bound of the horizon distance. Unfortunately, we have the following very strong
negative result.

Proposition 3.2. For any H0 > 0, we can find a C∞ convex domain D with completely flat
parts (hence an infinite curvature radius) and a positive h such that

∀M ∈ ∂D, H(h,M) ≤ 3H0

Proof. Let us consider an even piecewise affine concave function F defined on [−NH0,+NH0)]
(N positive integer) with F (−L) = F (L) = 0 , F (0) = ε > 0 such that the slope jumps at all
points kH0, where k is an integer between −(N − 1) and (N − 1). For a point on the graph
of F , the horizon relative to the convex set

S := {(x, y)|x ∈ [−NH0,+NH0], 0 ≤ y ≤ F (x)}
is either reduced to 0 for summits, or to the length of the face for the other points. By
smoothing the corners, the distance of horizon for a point lying on the smoothed curve remains
less than the maximum of lengthes of the faces. But since the slope of the faces is less than

ε
NH0

> 0 , for ε small enough, that maximum is less than 2H0. And then for sufficiently small
h we obtain the result since the horizon distance is continuous with respect to h.

3.4 A very partial result

Theorem 3.3. Let Γ be C2 curve delimiting a strictly convex compact domain with positive
curvature everywhere. Then if it happens that

lim
h→0

H(h,M) = 0

we have more precisely

lim
h→0

H2(h,M)

h
= 2ρ(M)

where ρ(M) is the curvature radius at point M .

Proof. By a suitable choice of coordinates, we set M = (0, 0) and we represent locally the curve
Γ in an orthonormal frame by the equation y = f(x) where f(0) = f ′(0) = 0 and f ′′(0) < 0.
With this convention we have

f ′′(0) = − 1

ρ(M)
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We consider the right horizon point T (x, f(x)) (the calculation on the left will give the same
result) and we set H2(h,M) = H. We note first that

H2 = x2 + (h− f(x))2

and we have the two basic formulas

h = f(x)− xf ′(x)

f ′(x) = xf ′′(0) + o(x)

In particular,
h− f(x) = −x2f ′′(0)− xo(x) (3)

yielding
(h− f(x))2 = o(x2)

So since x2 = x2(h) ≤ H2(h) tends to 0 with h, we have

lim
h→0

H2(h)

x2(h)
= 1

Now we have by Taylor’s formula

f(x) = f(0) + xf ′(0) +
1

2
f ′′(0)x2 + o(x2) =

1

2
f ′′(0)x2 + o(x2) (4)

Adding (4) and (3) yields

h = −1

2
f ′′(0)x2 + o(x2) (5)

giving

H2(h) ∼ x2(h) ∼ 2
h

|f ′′(0)|
= 2ρ(M)h. (6)

Corollary 3.4. If for a C2 surface S delimiting a strictly convex domain with positive curva-
ture everywhere, it happens that H(h,M, u) is independent of the point and the direction u in
the tangent plane TM (S) for all h small enough and in addition, H(h) tends to 0 with h, the
surface is a sphere.

Proof. Let M be any point of the surface S and Π any plane containing the normal to S at
M . By applying Theorem 3.3 to Γ(Π) := S ∩Π, we obtain that Γ(Π) has constant curvature.
Therefore by a well known result, Γ(Π) is a circle (an entire circle and not just an arc since the
horizon distance is positive in both directions above each point of the curve), and its radius
does not depend on Π. It is easy to conclude by rotation with respect to the axis containing
the normal to S at M .

4 Concluding remarks

The results of this short note seem to be very partial, so it is interesting to try to understand
where difficulties may come from.
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4.1 Related questions

The main question raised in this paper is reminiscent of another similar looking global problem
concerning convex subsets of R2 with constant width. In that case, there are many other
solutions than disks, even with boundaries consisting of closed smooth algebraic curves, cf.
e.g. [1]-[6].

4.2 Which extensions can we expect?

The big question is whether it is sufficient to assume the constancy ofH(h,M, u) for some fixed
h > 0. This does not follow from the technique of theorem 3.3, and it looks quite intricate,
since the main surprise in this study is the counterexample of Subsection 3.3, showing that
an upper bound of H(h) gives essentially nothing. We might expect that if for all h small
enough, H(h,M, u) varies between C(h) and kC(h) for some k > 1, then the curvature radius
also varies between two constants.
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